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Abstract— Current robotic systems carry many diverse sen-
sors such as laser scanners, cameras and inertial measurement
units just to name a few. Typically such data is fused by engi-
neering a feature that weights the different sensors against each
other in perception tasks. However, in a long-term autonomy
setting the sensor readings may change drastically over time
which makes a manual feature design impractical. A method
that can automatically combine features of different data
sources would be highly desirable for adaptation to different
environments. In this paper, we propose a novel clustering
method, coined Layered Affinity Propagation, for automatic
clustering of observations that only requires the definition of
features on individual data sources. How to combine these
features to obtain a good clustering solution is left to the
algorithm, removing the need to create and tune a complicated
feature encompassing all sources. We evaluate the proposed
method on data containing two very common sensor modalities,
images and range information. In a first experiment we show
the capability of the method to perform scene segmentation
on Kinect data. A second experiment shows how this novel
method handles the task of clustering segmented colour and
depth data obtained from a Velodyne and camera in an urban
environment.

I. INTRODUCTION

With robots becoming more widely deployed in settings
where they are left unattended for extended periods of time,
long-term autonomy capabilities become increasingly impor-
tant. For robotic systems to be able to function autonomously
for extended periods of time they need to be able to detect
and adapt to changes in the environment without supervision.
This obviously means that methods depending on supervised
training are less desirable as they either cannot adapt or
require frequent retraining. Clustering methods are a very
prominent method of unsupervised learning which can be
used to group observations according to their similarity.
However, when multiple data sources (such as laser scans and
images) need to be clustered jointly, selecting a feature set
that balances the contribution of each data source becomes
challenging. One possibility is to manually engineer such
a feature set by combining multiple simpler ones through
carefully tuning their relative weights. The resulting feature
is likely to not generalise well and makes an unsupervised
method dependant on human supervision. A better solution
would be an algorithm which can automatically combine
simpler features without requiring any manual tuning by the
user.

In this paper we propose a novel clustering method for
multi sensor data, called layered affinity propagation (LAP).
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As the name suggests the method builds on affinity propa-
gation, a recent clustering method introduced by Frey and
Dueck [3] that clusters the data by propagating messages
over an initially fully connected graph where each node
represents a point. The term layered refers to the fact that we
represent the similarity values derived from each data source
and the associated features by a separate affinity propagation
instance or layer. Broadly speaking our method consists of
the following two parts:

1) data layers, each representing a single data source,
2) a merging layer ensuring an overall consistent cluster-

ing solution.
During clustering the data layers are all updated indepen-
dently followed by an update of the merging layer. This cycle
is repeated until convergence is achieved. Because we do not
explicitly define how the different features are merged, we
can use simple, well known methods to obtain similarities
between data points for a single data source. The difficult
part, which is to decide how to best combine the different
data sources, is left to the algorithm.

The main contribution of this work is a novel, principled
way to perform clustering of multiple data sources by
message propagation. In the experiments we show that the
method is capable of handling data from different sensors
and properties with significant better clustering quality than
competing alternatives. A first set of experiments demon-
strates the capability to perform scene segmentation on
RGB-D data collected indoors with a Kinect. In the second
experiment we cluster segments extracted from a Velodyne
and camera combination in urban settings into groups of
similar appearance.

II. RELATED WORK

In machine learning, there have been several extensions to
affinity propagation addressing hierarchical clustering. Xiao
et al. [16] propose a greedy hierarchical model in which
each subsequent layer is based on the exemplars of the
previous layer. The method proposed by Givoni et al. [6]
uses a graphical model which connects subsequent layers
and shows it to outperform the simple greedy approach. A
two-layer hierarchical model is proposed by Wang et al.
[15]. Their method jointly finds exemplars as well as the
clustering of those. These last two methods derive a set of
update messages from a graphical model. Our work uses a
lateral rather then a hierarchical model but is also based on
a graphical model from which we derive update messages.

There are also other methods designed to cluster data from
multiple sources. Zhang et al. [17] propose a markov random
field model with mutual information as potential functions to
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cluster data with multiple modalities. Another method based
on spectral clustering is proposed by Bekkerman and Jeon
[2] who build a k-partite graph based on the input data. This
graph is then used to derive the matrices needed by spectral
clustering.

In another line of research, the combination of different
sensor modalities has been shown to improve perception
performance. Triebel et al. [14] process point cloud data
into a mesh and compute features to segment scenes and
identify objects in the scene. Jebari and Filliat [8] performed
object segmentation by combining depth and colour features
of superpixels with a Markov random field. Schoenberg et al.
[12] presented another method employing a Markov random
field to cluster coloured 3D point clouds in order to segment
urban scenes. In Howard et al. [7] texture and geometric
features are used to learn terrain type and traversability
from stereo camera data. The clustering of these features
is performed using a distance function that weights the
different features. A different approach to learning terrain
traversability is taken by Sun et al. [13] who use shape and
colour as features. Those are then clustered using an ad-hoc
clustering method based on the feature similarity. Katz et al.
[9] use a linear weighted combination of visual and laser
stamps to detect dynamic obstacles in the environment. In all
of these methods there is a requirement to manually define
how the different features are to be combined. Our method,
in contrast, only requires the definition of features for each
data source. How these are combined is a task automatically
solved by the algorithm.

III. AFFINITY PROPAGATION

In this section we give a short introduction to the orig-
inal affinity propagation algorithm [3] using the alternative
derivation proposed by Givoni and Frey [5]. We derive our
novel clustering method, layered affinity propagation, using
this alternative binary variable model in the next section.

Affinity propagation is a clustering method capable of
determining the number of clusters directly from data. Given
pairwise similarity values Sij between data points i and j,
a graphical model is built on which message propagation
is used to optimise the energy function. By optimising the
energy function, a clustering solution is found consisting of
exemplars (the most representative point of a cluster) and the
assignment of data points to these exemplars.

The graphical model consists of nodes associated to binary
variables {hij}Nj=1 corresponding to each data point i ∈
{1, . . . , N}, with hij = 1 iff j is the exemplar of point
i. Thus the clustering solution is described by the N2 binary
variables {hij} with i, j ∈ {1, . . . , N}. In order to find good
solutions two types of constraints are added:

1) 1-of-N Constraint (Ii). Each data point has to choose
exactly one exemplar.

2) Exemplar Consistency Constraint (Ej). For point i to
select point j as its exemplar, point j must declare
itself an exemplar.

These constraints can be formulated mathematically as fol-
lows:

Ii(hi:) =

{
0 if

∑
j hij = 1

− inf otherwise
(1)

Ej(h:j) =

{
0 if hjj = maxi hij

− inf otherwise
(2)

where hi: = hi1, . . . , hiN and h:j = h1j , . . . , hNj .
Combining these constraints with the user provided pair-

wise data similarities Sij , the following energy function is
maximised:

T ({hij}) =
∑

i,j

Sij(hij) +
∑

i

Ii(hi:) +
∑

j

Ej(h:j) . (3)

In order to optimise this energy function the max-sum
algorithm is used [10] to recover the maximum a posterior
(MAP) assignments of the hij variables. Denoting f as a
factor, or a function of a subset of variables, the following
messages can be defined:

µv→f (xv) =
∑

f∗∈ne(v)\f

µf∗→v(xv) , (4)

µf→v(xv) = max
x1,...,xM

[
f(xv, x1, . . . , xM )+

∑

v∗∈ne(f)\v

µv∗→f (xv∗)
]
,

(5)

where µv→f (x) is the message sent from node v to factor
f , µf→v(xv) is the message from factor f sent to node v,
ne() is the set of neighbours of the given factor or node and
xv is the value of node v.

In Figure 1a it can be seen that each node hij is connected
to three factors Sij , Ii and Ej . This shows that the messages
ρij and βij are sent from nodes to factors and thus are
derived using Eq. (4). The other three messages sij , αij and
ηij go from factor to node and need to be derived using
Eq. (5). Since we are using binary variables they can only
take on two values, 1 and 0. Therefore, it is sufficient to
compute the difference between the two variable settings.
This simplification together with constraints imposed by the
energy function allows us to derive the following messages
shown in Figure 1a:

sij = Sij (6)
βij = sij + αij (7)
ηij = −max

k 6=j
βik (8)

ρij = sij + ηij (9)

αij =

{∑
k 6=j max(0, ρkj) i = j

min
[
0, ρjj +

∑
k/∈{i,j} max(0, ρkj)

]
i 6= j.

(10)

We can further simplify this by expressing ρij as follows:

ρij = sij+ηij = sij−max
k 6=j

βik = sij−max
k 6=j

(sik+αik) (11)

recovering the availability (α) and responsibility (ρ) mes-
sages of the original affinity propagation formulation [3]. In
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order to find the MAP assignments we initialize all messages
αij and ρij to 0 and then iteratively compute ρij and αij

until convergence. Upon convergence we find the exemplars
as the entries for which (αii + ρii) > 0 holds.

IV. LAYERED AFFINITY PROPAGATION

Our proposed method is based on affinity propagation
but optimises a different energy function resulting in the
graphical model shown in Figure 1c. The basic idea is to use
multiple data layers, Figure 1c (left), that represent the data
from the different sensors. These layers are then combined
via a merging layer, Figure 1c(right). This structure allows
us to find solutions that are optimal when considering the
layers jointly. It is important to note that this is not a
hierarchical clustering approach. The different data layers
influence each other indirectly through the merging layer,
which interconnects them. The messages involved in this
model are shown in Figure 1b. For comparison purpose the
messages used in standard affinity propagation are depicted
in Figure 1a.

Comparing the messages exchanged by affinity propaga-
tion and layered affinity propagation we can see that the data
layers L are very similar to standard affinity propagation.
Both methods have a factor node I which ensures that every
data point is assigned to exactly one cluster. The difference
comes from the Q factor node, which replaces the E factor
node. This factor enables communication between the data
layers and the merging layer. The role though stays the same
with the addition that the exemplar consistency constraint
is enforced over the entire network. The merging layer has
a few more differences as it merges the information from
all data layers through the Q nodes into its own cluster
assignments. It also accesses the similarities S:

ij of all data
layers. While the model allows the values of S:

ij to differ
between the data layer and the merging layer we have kept
the values identical. The merging layer uses the information
from the data layers to come up with its own decision which
is fed back into the data layers and thus information is
shared between all layers. All this is encoded in the following
energy function which we optimise again by finding its MAP
assignments:

T ({h:ij , h̃ij}) =
∑

i,j,l

Sl
ij(h

l
ij) +

∑

i,l

I li(h
l
i:)

+
∑

i

Ĩi(h̃i:) +
∑

j,l

Ql
j(h

l
:j , h̃:j) ,

(12)

where hlij is the binary variable for point i and j in layer l,
h̃ij is the binary variable for point i and j in the merging
layer. The different terms of the energy function are defined
as follows:

I li(h
l
i:) =

{
0 if

∑
j h

l
ij = 1

− inf otherwise
(13)

Ĩi(h̃i:) =

{
0 if

∑
j h̃ij = 1

− inf otherwise
(14)

Ql
j(h

l
:j , h̃:j) =





0 if hljj = maxi h
l
ij

∧hljj = hkjj∀l, k
− inf otherwise

(15)

We can now derive the messages shown in Figure 1b using
the same process as for affinity propagation messages. The
messages of the data layers are:

slij = Sl
ij (16)

βl
ij = slij + αl

ij (17)

ηlij = −max
k 6=j

βl
ik (18)

ρlij = slij + ηlij (19)

αl
ij = min

[
0, ρljj + τ ljj+

∑

k/∈{i,j}

max(0, ρlkj) +
∑

k 6=j

max(0, τ lkj)
] (20)

αl
jj = τ ljj +

∑

k 6=j

max(0, ρlkj) +
∑

k 6=j

max(0, τ lkj) . (21)

While the messages of the merging layer have the following
form:

β̃ij =
∑

t

stij +
∑

t

φtij (22)

η̃ij = −max
k 6=j

β̃ik (23)

τ lij = η̃ij +
∑

t

stij +
∑

t 6=l

φtij (24)

φlij = min
[
0, τ ljj + ρljj+

∑

k/∈{i,j}

max(0, τ lkj) +
∑

k 6=j

max(0, ρlkj)
] (25)

φljj = ρljj +
∑

k 6=j

max(0, τ lkj) +
∑

k 6=j

max(0, ρlkj) . (26)

We can then simplify these messages through substitution,
yielding:

ρlij = slij + ηlij

= slij −max
k 6=j

βl
ik

= sij −max
k 6=j

(
slik + αl

ik

)
(27)

τ lij =
∑

t

stij +
∑

t6=l

φtij + η̃ij

=
∑

t

stij −
∑

t6=l

φtij +max
k 6=j

(
β̃ik

)

=
∑

t

stij −
∑

t6=l

φtij +max
k 6=j

(∑

t

stij +
∑

t

φtij

)
.

(28)

To compute the actual clustering solution the algorithm
proceeds as follows:

1) initialise all messages to 0,
2) for each data layer l compute ρlij and αl

ij ,
3) compute τ :ij and φ:ij ,
4) iterate step 2) and 3) until convergence.
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Sij
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sij

αijρij
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(a) AP Messages
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ij h̃ij
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ĨiI li

L

slij

αl
ijρlij

βl
ij ηl

ij β̃ij η̃ij

slijSl
ij

φl
ijτ l

ij

(b) LAP Messages

Ql
1 Ql

j Ql
N

h̃11 h̃1j h̃1N

Ĩ1

Ĩi

h̃N1 h̃Nj h̃NN

ĨN

h̃i1 h̃ij h̃iN

h11 h1j h1N

I1

Ii

hN1 hNj hNN

IN

hi1 hij hiN

L

S11 S1j S1N

Si1 Sij SiN

SN1 SNj SNN

S:
11 S:

1j S:
1N

S:
i1 S:

ij S:
iN

S:
N1 S:

Nj S:
NN

(c) LAP Model

Fig. 1: The messaging structure for a) affinity propagation and b) layered affinity propagation. A graphical model
representation of layered affinity propagation is shown in c). As one can see the Q factor node is in a sense an augmented
version of the E factor node of the original affinity propagation.

In general affinity propagation is not guaranteed to converge
as it is based on loopy belief propagation. However, by
damping the message updates convergence problems are not
a problem in practice.

The exemplars and assignments are obtained in a similar
manner as in standard affinity propagation by selecting the
nodes for which the value of

∑
l

(
τ ljj + φljj

)
is positive as

exemplars. All other points are assigned to the exemplar that
is the most similar.

The runtime of this algorithm is O((L + 1)N2) per
iteration where L is the number of data layers and N is the
number of data points, as we need to run affinity propagation
for every layer and the merging layer. Note that the L data
layers can all be run in parallel as they do not influence
each other directly. With multi-core CPUs being the norm, it
is trivial to distribute the different layers onto the available
cores. Thus in practice the actual cost of running a single
iteration of the algorithm is not more than two to three times
that of affinity propagation.

V. RESULTS

In this section we evaluate the proposed method in two
different applications. First we demonstrate that layered
affinity propagation (LAP) can be used to perform scene
segmentation on Kinect data. Next, we cluster data obtained
from a Velodyne and camera pair. We compare our method
against affinity propagation using only colour or depth in-
formation as well as k-means using a combined colour and
depth feature vector. In all experiments the self-similarity
values Sii were set to the median of Sij multiplied by a
scaling factor between 2 and 10. Convergence of affinity
propagation is achieved once the similarity score of the
assignments is stable over a number of iterations, 20 in our
case. In the experiments convergence was never an issue and
typically achieved after 100 to 200 iterations.

A. Kinect

In this experiment we evaluate how well combining dif-
ferent features using LAP performs at segmenting scenes
captured with a Kinect. The Kinect provides us with dense
depth and colour information with a 1:1 mapping between

Colour Region Growing Smoothness Region Growing

Fig. 4: These images show the segmentation results obtained
using region growing based methods. The first column shows
results obtained based on colour information. Smoothness of
the depth data was used to obtain the results in the second
column.

depth and colour pixels. We approach the segmentation task
by first over segmenting the data by extracting super pixels
from the image using SLIC [1]. From these super pixels
we extract colour and depth features which we subsequently
cluster to obtain the final segmentation. In this experiment
we use LAB colour histograms and average surface normals
as our features. The similarity values required by affinity
propagation are computed using the Bhattacharyya distance
for colour histograms and angular difference between vectors
for the mean surface normals. K-means operates directly
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Camera LAP Colour AP Geometry AP K-Means

Fig. 2: Exemplary segmentation results, from left to right: raw image, LAP, colour affinity propagation, geometry affinity
propagation and k-means. The colours indicate the cluster assignments made.
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Fig. 3: Clustering statistics for the results shown in Figure 2. The first column contains ground truth labels for each of the
scenes while the four plots to the right show the ground truth label distribution in the clusters for each of the four methods
used. Each bar represents a single cluster and visualizes the number of data points in the cluster via its height. Homogeneity
of a cluster is visualized by the number of different colours in the bar. Completeness can be assessed by the distribution of
a single colour over all clusters

on the two histograms and is set to find 10 clusters. For
a more direct comparison to K-Means we additionally run
affinity propagation with a similarity matrix obtained from
the Euclidean distance between the feature histograms. For

both K-Means and affinity propagation we choose reasonable
parameters but no search for the optimal parameter set is per-
formed, as this wouldn’t demonstrate the typical performance
of the methods. To see how clustering methods perform in
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Method V-Measure Homogeneity Completeness

Scene 1
LAP 0.48 0.49 0.47
Colour AP 0.32 0.36 0.29
Geometry AP 0.52 0.53 0.51
Combined AP 0.41 0.51 0.34
K-Means 0.36 0.46 0.29

Scene 2
LAP 0.56 0.55 0.57
Colour AP 0.40 0.36 0.46
Geometry AP 0.45 0.41 0.51
Combined AP 0.54 0.57 0.52
K-Means 0.52 0.50 0.54

Scene 3
LAP 0.44 0.45 0.44
Colour AP 0.36 0.36 0.36
Geometry AP 0.36 0.30 0.44
Combined AP 0.45 0.47 0.44
K-Means 0.45 0.43 0.48

Overall
LAP 0.48± 0.09 0.49± 0.10 0.47± 0.09
Colour AP 0.40± 0.09 0.40± 0.10 0.40± 0.10
Geometry AP 0.43± 0.13 0.41± 0.14 0.45± 0.14
Combined AP 0.43± 0.10 0.46± 0.12 0.40± 0.12
K-Means 0.41± 0.06 0.48± 0.10 0.37± 0.08

TABLE I: V-Measure, homogeneity and completeness scores
for the four methods evaluated for the three scenes shown in
Figure 2 as well as all the recorded scenes.

comparison to dedicated segmentation approaches we also
use colour and smoothness based region growing methods.

We collected several scenes in a typical office environment
containing chairs, books, binders, desks, shelves, computers,
etc. Typical segmentation results obtained with clustering
methods are shown in Figure 2 and Figure 4 for region grow-
ing based methods. Each row contains the results obtained
for the scene shown in the first column of Figure 2.

One big difference between clustering and region growing
methods is that typically clustering methods do not consider
spatial closeness and thus may group spatially distant but
similar objects together. This can be seen in the second
scene with the grey drawers or table surfaces in the third
scene. Whether or not this is a desirable property depends
on the application. However, adding spatial connectivity
information into the clustering system would allow it to
exhibit a more region growing like behaviour. Adapting a
region growing approach to behave more like clustering
methods though is not possible.

Figure 2 shows results obtained with the different methods
in three scenes. Looking at colour AP and geometry AP it is
obvious that the clusters they find correspond to the features
used. However, this is problematic as for example the depth
feature is unable to distinguish between the surface of a table
and the floor. From the k-means results we see how having
both modalities improves the results. However, the choice of
the number of clusters to find can have a big impact on the
result as it can lead to under or over segmentation. If we now
look at results obtained with LAP we can see that clusters
adhere well to object boundaries with most larger areas being

successfully clustered as a single region when compared to
k-means which often ends up splitting them. The numerical
evaluation using V-Measure [11] in Table I shows a general
trend where LAP outperforms K-Means while colour AP
and geometry AP come in last. Comparing K-Means to
Combined AP, which uses the Euclidean distance metric, we
can see how AP outperforms K-Means even when using the
same metric. However, LAP is still able to improve on these
results indicating that a more principled way of combining
the data is beneficial. Looking at the individual results of the
three scenes we can see that geometry AP performs better
when the scene is composed of a few large and distinct areas,
as is the case in scene one.

For a more detailed look at the results we visualize
the size, homogeneity and completeness of each cluster
in Figure 3. Each bar represents a single cluster with the
distribution of true labels in it, given by the labelled image
to the left. The height indicates the cluster’s size while
the distribution of true labels within a bar represents its
homogeneity. The cluster completeness can be assessed by
the distribution of a single label over all clusters. These
plots show how geometry AP tends to form a few large
clusters which capture the major surface normals in the
environment which explains the tendency to under segment
scenes. For colour AP we can observe how most clusters
contain multiple different labels such as the second cluster
in the second scene which contains both the chair and floor.
This visualizes how colour AP fails to separate areas that
appear similar in the colour histograms. The k-means results
exhibit a more uniform size then the other methods with a
mixture of very homogeneous clusters and mixed clusters.
Finally, LAP produces uniform clusters for large areas in
the scenes and at times collapses multiple small classes into
a single cluster.

Taking a look at the results of the two region growing
methods in Figure 4 we see that they produce cleaner results
compared to the clustering methods. Still, they each have
their own set of drawbacks. The colour based version is prone
to oversegmentation if there is no direct connectivity between
components which is easily caused through occlusions.The
smoothness based version has the same need for connectivity
but additionally is much more sensitive to the choice of
smoothness threshold. For example a different set of thresh-
olds could obtain better results for the wall in scene three
though this would cause other parts to be undersegmented.

B. KITTI Dataset

The KITTI dataset [4] is designed as a vision bench-
mark but also provides calibrated Velodyne and camera
data recorded in urban scenes. This provides us with the
same data modalities as the Kinect, depth and colour, but
at different densities and no direct correspondence between
the modalities. Figure 5 shows the type of coloured point
clouds this dataset provides us with. In this experiment we
are not clustering these raw point clouds but rather segments
extracted from these. To this end we segment the data as
follows:
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Fig. 5: Visualization of exemplary point clouds of the KITTI
dataset coloured using information from the camera images.

Fig. 6: Exemplary image data corresponding to point cloud
segments extracted from the raw Velodyne data. Shown are
cars, pedestrians, cyclists and wall segments.

1) remove the ground plane from the point cloud,
2) find segments in the point cloud using Euclidean

distance clustering,
3) extract image parts corresponding to the point cloud

segment.
This provides us with 3D point clouds with associated
colour information. From this data we select segments which
occur frequently, i.e. cars, cyclists, pedestrians and wall
segments. Examples of segments found from this data are
depicted in Figure 6. This shows the variability the data
has in orientation, posture, colour and size, both within and
between classes. From this collection of segments we choose
random subsets to cluster. The features we extract are colour
histograms and surface normal histograms. Bhattacharyya
distance is used to compute pairwise similarities. We show
the average results obtained from 20 runs in Table II. We can

Fig. 7: Examples of successful clustering results obtained
with LAP. The individual groups show cars, pedestrians and
cyclists respectively clustered together despite their different
appearances.

see how combining the two modalities with LAP improves
the results. The colour and geometry based affinity propa-
gation methods produce decent results but are outperformed
by LAP. K-means on the other hand struggles on this data
set. Tweaking the number of clusters could improve the
result somewhat but no single value would work for all
runs. This reinforces the importance of methods that detect
the appropriate number of clusters automatically. Another
important observation is the high homogeneity score of LAP
which means that using hierarchical methods can easily
further improve the results.

To better understand the results we show segments suc-
cessfully assigned to the same cluster by LAP in Figure 7.
This shows how how cars, pedestrians and cyclists are
grouped together even though they appear different in colour
and posture. While at first this may be counter intuitive
we have to remember that affinity propagation optimizes a
global cost function and as such is influenced by within
cluster similarity as well as inter cluster dissimilarity. For
example cars tend to use a single colour and have one or
two strong normals, whereas a pedestrian will have multiple
main colours and more evenly distributed normals. Thus
optimizing both the similarity within a cluster as well as
the dissimilarity between clusters the algorithm is capable
of finding the solutions shown. In Figure 8 we show an
instance where the clustering failed to separate a van from
wall segments. Since only the side of the van is visible it
is easy to see why these segments were grouped together.
While we ideally would like the clustering to provide us with
four clusters representing our four classes it is unrealistic to
achieve this directly. However, the homogeneous nature of
LAP clusters should allow us to use hierarchical methods to
improve the results.

VI. CONCLUSION

In this paper we have presented a novel clustering ap-
proach that combines information from multiple sensors in
a principled way. The approach allows the user to define
features that are appropriate for each sensor individually,
without having to worry about how to best combine them.
In experiments we have shown that this approach can be
used perform segmentation by combining colour and depth
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Fig. 8: This shows one of the more common clustering
mistakes, the side view of a car being clustered together
with wall segments. Since only the planar side of the van is
visible and both walls and van have rather uniform colour
distributions this type of error is not unsurprising.

Method V-Measure Homogeneity Completeness

LAP 0.41± 0.01 0.82± 0.02 0.28± 0.01
Colour AP 0.35± 0.01 0.66± 0.02 0.26± 0.01
Geometry AP 0.37± 0.01 0.67± 0.02 0.26± 0.01
K-Means 0.14± 0.02 0.19± 0.02 0.11± 0.01

TABLE II: Average V-Measure, homogeneity and complete-
ness scores with standard deviation of 20 clustering runs.
LAP has the best overall V-Measure score but also produces
much more homogeneous results. This is important as it
indicates that further hierarchical processing is likely to
further improve the results.

information of a Kinect. In a second experiment we evaluated
the performance of the method when clustering point cloud
segments with colour information obtained in urban scenes.
While the experiments concentrated on depth and colour
information nothing prevents the use of data from other
sensors, such as accelerometers or hyperspectral cameras for
example.
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