
Temporal Logic Motion Planning in Unknown Environments

A. I. Medina Ayala, S. B. Andersson, and C. Belta

Abstract— In this paper, we consider a robot motion planning
problem from a specification given as a syntactically co-safe
linear temporal logic formula over a set of properties known
to be satisfied at the regions of an unknown environment. The
robot is assumed to be equipped with deterministic motion and
accurate sensing capabilities. The environment is assumed to
be partitioned into a finite number of identical square cells. By
bringing together tools from formal verification, graph theory,
and grid-based exploration, we develop an incremental algo-
rithm that makes progress towards satisfying the specification
while the robot discovers the environment using its local sensors.
We show that the algorithm is sound and complete. We illustrate
the feasibility and effectiveness of our approach through a
simulated case study.

I. INTRODUCTION

The flexibility of model checking and automata game
techniques, and the proven expressivity of temporal logics
allow the use of formal methods to extend the applicability
of classical robotics problems. In particular, one of the areas
within the robotics community that has greatly benefited
from the use of formal methods is path planning. Temporal
logics such as the Computation Tree Logic (CTL) [1],
Continuous Stochastic Logic (CSL) [2], Linear Temporal
Logic (LTL) [3], and µ-calculus [4], have been effectively
applied to express complex high-level planning specifica-
tions. Furthermore, the adaptation of existing off-the-shelf
model checking and automaton based tools makes it possible
to automatically generate the solution to the path planning
problem from such specifications.

In general, solving the path planning problem by means
of formal methods requires a priori knowledge of the robot’s
workspace. There are many applications, such as in search
and rescue operations, where the robot must deal with an
unknown or partially known environment. Despite this lack
of knowledge, the robot may be required to plan a strategy
that fulfills certain requirements based on the mission at
hand. Consider, for instance, a robot deployed in a building
after an earthquake. Prior information about the building
may be available in the form of, for example, a blueprint,
but the disaster is likely to have significantly altered the
environment. The task given to the robot could be to look
for survivors, guide them while avoiding unsafe areas, and

This work is partially supported at Boston University by the NSF under
grants CNS-1035588 and CMMI-0928776, and the ONR MURI under grant
N00014-09-1051.

Medina Ayala is with the Department of Mechanical Engineering, An-
dersson and Belta are with the Department of Mechanical Engineering and
the Division of Systems Engineering, Boston University, MA, USA, E-mail:
duvinci@bu.edu, sanderss@bu.edu, cbelta@bu.edu

A. Medina Ayala is the corresponding author.

eventually bring them to safe areas. Given that the environ-
ment is only partially known, the robot will need to gather
information about it in real time and use that while planning
so as to satisfy the task specification.

The example described above is an instance of the Si-
multaneous Localization and Mapping (SLAM) [5] problem.
Motivated by a wide number of applications that fall into
the SLAM framework, this paper proposes an algorithm that
interleaves the use of formal methods, graph theory and
classical exploration techniques to solve the path planning
problem in an unknown environment subject to temporal
logic specifications. Specifically, given a known set of labels
capturing certain elements of interest that can be discovered
during the robot’s navigation through an unknown environ-
ment and a temporal logic formula over this set of labels,
we obtain a trajectory that satisfies the formula.

Our approach to solving the planning problem takes ad-
vantage of automata-based model checking [6] and runtime
verification techniques [7]. We exploit the automata-based
model checking framework to find a trajectory satisfying the
formula given the current information about the environment.
However, the incomplete knowledge of the environment
potentially has a negative effect on finding such a trajectory.
Even though the formula is not yet satisfied, there may exist
at least one trajectory that does not violate the formula.
We use the runtime verification setting to monitor a set of
potential trajectories that lead to unexplored areas of the
environment and select the path that does not violate the
formula, provided one exists, and is the most promising in
terms of the satisfaction of the formula.

Our work is related to the problem of reactive synthesis,
in which a finite state machine satisfying a desired output
behavior subject to a temporal logic constraint is gener-
ated regardless of the input applied [8]. In particular, [9]
presents an approach to automatically synthesize a hybrid
controller that guarantees a user-defined specification while
exploring a partially known environment. As new regions
of the environment are detected, the specification is rewrit-
ten and re-synthesized. Related work includes also [10],
which considers the synthesis of controllers in environments
with uncertain, but fixed structure. By locally modifying a
nominal plan if it fails, the controller is able to deal with
unexpected changes in the environment. These works are
restricted to the class of Generalized Reactivity (GR)(1)
formulas [11]. Unlike these approaches, in this work we use
syntactically co-safe LTL formulas to express the mission
specifications. Syntactically co-safe LTL formulas not only
describe finite horizon specifications, expressing a wide
spectrum of high-level robotic missions, but also belong to

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5279

the class of languages that are monitorable [12].
Other related work includes [13] where the control syn-

thesis problem on a graph is constrained to maximize the
accumulated reward locally while satisfying an LTL mission
specification. In order to solve this problem, a receding
horizon controller is devised to guarantee the fulfillment of
the specification in infinite time. Even though this work
can locally synthesize a control strategy while satisfying
the specification, it still requires knowledge of the graph
representing the workspace a priori. In contrast, our ap-
proach incrementally builds the transition system describing
the motion of the robot while exploring the environment to
find a path satisfying a given specification.

II. PRELIMINARIES

Definition 1. A weighted finite deterministic transition sys-
tem (TS) is a tuple T = (S, s0,∆, w,Π, l) where S is a finite
set of states, s0 ∈ S is the initial state, ∆ ⊆ S×S is the set
of transitions, w : ∆→ N is a weight function that assigns a
positive value to each transition, Π is a set of observations,
and l : S → 2Π is the labeling map.

For convenience of notation, we use s →T s′ if (s, s′) ∈
∆. A finite trajectory of a TS is a finite sequence τ =
s0s1 . . . sn, where sk →T sk+1 for all 0 ≤ k ≤ n − 1. The
finite trajectory τ generates a finite word π = π0π1 . . . πn,
where πk = l(sk) for all k = 0, . . . n.

Definition 2. [14]. A syntactically co-safe LTL (scLTL)
formula over a set of atomic propositions Σ is inductively
defined as follows:

Φ ::= σ | ¬σ | Φ ∨ Φ | Φ ∧ Φ | X Φ | Φ U Φ| F Φ

where σ ∈ Σ is an atomic proposition, ¬ (negation), ∨
(disjunction), and ∧ (conjunction) are Boolean operators,
and X (next), U (until), and F (eventually) are temporal
operators.

The semantics of scLTL formulas are defined over infinite
words in 2Σ. Intuitively, X σ asserts that σ becomes true in
the next position in the word; σ1 U σ2 expresses that σ1 is
true until σ2 becomes true in a word; and F σ states that σ
becomes true at some position in the word. More complex
specifications can be expressed by combining Boolean and
temporal operators (see, e.g. (3)).

Let L(φ) be the set of infinite words satisfying an scLTL
formula φ. L(φ) can be described by the deterministic finite
automaton defined as follows.

Definition 3. A deterministic finite automaton (DFA) is a
tuple A = (Q, q0,Σ, δ, F) where Q is a finite set of states,
q0 ∈ Q is the initial state, Σ is the input alphabet, δ :
Q×Σ→ Q is the transition function, and F ⊆ Q is the set
of accepting states.

We use q
σ−→A q′ if q′ = δ(q, σ). An accepting run τA

of an automaton A on a finite word σ0σ1 . . . σd over Σ is
a sequence of states τA = q0q1 . . . qd+1 such that q0 ∈ Q,
qd+1 ∈ F , and δ(qk, σk) = qk+1 for all k = 0, . . . d.

Model checking on the TS T for an scLTL formula φ can
be conducted by the parallel composition between T and a
DFA A that accepts all runs satisfying φ.

Definition 4. Given a TS T = (S, s0,∆, w,Π, l) and a DFA
A = (Q, q0,Σ, δ, F), their weighted product automaton is a
DFA AP = (QP , qP0, δP , wP , FP), where QP = S×Q is the
set of states, qP0 = (s0, q0) is the initial state, δP ⊆ QP×QP

is the set of transitions defined by ((s, q), (s′, q′)) ∈ δP if and
only if s →T s′ and q

l(s)−−→A q′, wP : QP × QP → N is a
weight function such that wP ((si, qk), (sj , ql)) = w(si, sj),
where (sj , ql) ∈ δP ((si, qk)), and FP = S × F is the set of
final states.

An accepting run τP = (s0, q0) . . . (sn, qn) of AP de-
fines an accepting run q0 . . . qn of A over the input word
l(s0) . . . l(sn−1).

For a DFA A, let A(q) be an identical DFA except for the
initial state, which is redefined in A(q) as q0 = q. Let φ be
an scLTL formula over 2Σ, and let Aφ = (Qφ, qφ0 ,Σ, δ

φ, F φ)
be the DFA accepting all the words satisfying φ; i.e.,
L(φ). Also, let A¬φ = (Q¬φ, q¬φ0 ,Σ, δ¬φ, F¬φ) be the DFA
accepting all the words falsifying φ; i.e., L(¬φ). Let u ∈ Σ∗

be a finite word. u is a good prefix for φ if ∀σ ∈ Σω,
uσ ∈ L(φ). On the other hand, u is a bad prefix for φ if
∀σ ∈ Σω, uσ ∈ L(¬φ). Furthermore, u is an inconclusive
prefix for φ if and only if for all ∀σ ∈ Σω, uσ is neither a
good nor a bad prefix.

A monitor is obtained by defining a Finite State Machine
(FSM) constructed as follows. For the automaton Aφ, the
function Fφ : Qφ → B (with B = {>,⊥}) is defined. The set
Fφ(q) = > if and only if L(Aφ(q)) 6= ∅; a state q evaluates
to > if and only if the language of the automaton starting in
state q is not empty. Using Fφ, let Âφ = (Qφ, qφ0 ,Σ, δ

φ, F̂ φ)
be the DFA with F̂ φ = {q ∈ Qφ|Fφ(q) = >}. Analogously,
set Â¬φ = (Q¬φ, q¬φ0 ,Σ, δ¬φ, F̂¬φ) with F̂¬φ = {q ∈
Qφ|F¬φ(q) = >}. Then,

Definition 5. Given Âφ = (Qφ, qφ0 ,Σ, δ
φ, F̂ φ) and

Â¬φ = (Q¬φ, q¬φ0 ,Σ, δ¬φ, F̂¬φ), we define the FSM M =
(Q̄, q̄0, δ̄, λ̄), where Q̄ = Qφ × Q¬φ is a finite set of
states, q̄0 = (qφ0 , q

¬φ
0) is the initial state, δ̄((q, q′), a) =

(δφ(q, a), δ¬φ(q′, a)) is the transition function, and λ̄ : Q̄→
B3 is the labeling function defined by

λ̄(q, q′) =

> if q′ 6∈ F̂¬φ
⊥ if q 6∈ F̂ φ

? if q ∈ F̂ φ and q′ ∈ F̂¬φ.

The defined FSM M is the monitor of an scLTL formula
that yields >, ⊥ or ? for a word that is a good, bad, or
inconclusive prefix, respectively.

III. PROBLEM FORMULATION AND APPROACH

In this work, we consider a ground mobile robot deployed
in an unknown planar environment containing a known
set of labels. These labels capture the presence of certain
elements of interest within the environment. For simplicity
of presentation and to keep the discussion focused on the

5280

algorithmic part of the problem, the underlying framework
used in this work is a partitioning of the environment into
finitely many identical square cells storing the occupancy
condition [15] (either obstacle free or occupied) and the
labels holding true in each cell.

Given the discrete nature of the environment model, the
robot’s motion is also discretized. More specifically, the robot
can move from its current cell to any of the adjacent neigh-
boring cells provided they are not occupied by an obstacle.
In principle, this assumption can be applied to robots with
realistic dynamics, such as unicycles, cars, and quadrotors by
solving input-output linearization problems, partitioning the
robot’s workspace using simplicial and rectangular partitions,
and assigning vector fields in the regions of the partition [16],
[17].

Initially the robot knows nothing about the environment
except its current cell and the set of labels it may encounter
within the environment. Assuming the robot has perfect lo-
calization, it can determine its current cell exactly. Then, the
robot gains information about the environment by means of
its sensors. Every time a new sensor reading is obtained, all
the cells within the sensors’ range are updated and integrated
into the robot’s knowledge. Such an update includes the
accurate identification of the labels corresponding to each
cell within the sensor’s range, as well as their occupancy
condition. The robot maintains the currently known map
and the history of each one of the cells it has moved
through starting from the initial cell. Hence, we consider
the following problem.

Problem 1. Given a mobile robot deployed in an unknown
partitioned environment with a known set of labels, plan a
trajectory that satisfies a syntactically co-safe linear tempo-
ral logic specification over this set, if one exists, or determine
that one does not.

Our approach to Problem 1 relies on modeling the motion
of the robot within the environment as a TS T , (see Def. 1).
Each state of T corresponds to a cell in the partition with
an assigned set of labels. Notice that T captures only the
segment of the environment that has been explored so far. A
robot trajectory is defined as the finite sequence of states of
T that have been traversed since the robot’s deployment in
the environment.

The main idea behind the solution to Problem 1 builds on
the combination of automata-based model checking, monitor-
based runtime verification, and frontier-based exploration
methods. We incrementally construct a weighted product
automaton AP (see Def. 4) by adding the new information
the robot obtains from the environment. After each update,
an optimal accepting run of the product automaton is sought
by means of the graph algorithm presented in [18]. If no
solution is reported based on the the partially known map,
frontier cells are determined. A frontier cell is an obstacle-
free cell that is adjacent to at least one “unknown” cell [19]
(see Fig. 1). Adjacent frontier cells are grouped into frontier
regions. Then, the robot calculates the shortest traveling
distance to a representative cell of each frontier region by

means of a search algorithm [20]. Once the shortest obstacle-
free paths to each frontier region are obtained, the word
generated by each one of them is analyzed by a monitor
of the scLTL formula representing the robot’s specification.
As a result, the minimum number of letters to be appended
to each word in order to satisfy the specification is obtained.
The robot then moves to the frontier region that minimizes
a cost function combining the traveling distance and the
monitor function’s output, by following the path given by
the search algorithm. After achieving the selected frontier
cell, the robot measures its environment and updates the map
of the environment and the product automaton by inserting
new edges and nodes in the automaton graph. The cycle
is repeated until either a satisfying trajectory is found or
the environment has been completely explored, i.e., no more
frontier regions can be detected.

Fig. 1. A schematic representation of a robot’s grid-world, which consists
of Free cells (in yellow), Obstacles (in black), and a Goal (in green). The
robot is represented as a red disk. Fig. a) depicts the actual topological
structure of the environment. Figs. b) - d) represent the knowledge gained by
the robot about the environment while accomplishing its task specification.
The gray cells correspond to unknown cells and the cells labeled with “F”
represent frontier cells.

IV. MOTION PLANNING FRAMEWORK

As outlined in Sec. III above, our approach attempts to
find a trajectory that satisfies a temporal logic specification
expressed as an scLTL formula φ in an a priori unknown
environment. As seen in Alg. 1, we divide our approach into
the initialization and the trajectory search procedures.

Lines 1-4 of Alg. 1 are run only once and are responsible
for the Initialization of the algorithm. In line 2 of Alg. 1,
we construct the DFA A that captures the temporal logic
specification φ as in Def. 3. In line 3 of Alg. 1, we construct
the FSM M representing the monitor of the specification as
defined in Def. 5.

The rest of the algorithm (lines 5-14) is executed until
either a trajectory satisfying φ is found, there are no more
frontier regions left in the environment, or all the paths to
the frontier regions violate the specification. The latter case
implies that the robot is not able to satisfy the specification.
The procedure Find Path takes as inputs the DFA A, the

5281

FSM M obtained in the initialization procedure, and the set
C of new cells detected by the robot’s sensor and gives as an
output a trajectory to be executed by the robot. This can be
achieved by dividing the procedure into three stages: tran-
sition system update, incremental automaton-based search,
and frontier-based exploration.

The transition system update (line 7 of Alg. 1) incorporates
the newly discovered information about the environment,
represented by C to the model representing the motion of the
robot. The updated transition system is then used to construct
the product automaton incrementally in line 8 of Alg. 1
and an optimal robot trajectory is sought. If this search was
unsuccessful (lines 10-12 of Alg. 1), a trajectory is planned
by means of the frontier-based exploration stage. In what
follows, each one of these stages is fully described.

Algorithm 1 The temporal logic path planning algorithm

1: procedure INITIALIZATION(φ)
2: Construct DFA A corresponding to φ
3: Construct FSM M corresponding to φ
4: end procedure

5: procedure FIND PATH(A,M, C)
6: repeat
7: T ← Transition System Update(C)
8: AP←Incremental Automaton-Based Search(T , A)
9: return τ

10: if τ 6� φ then
11: Frontier-Based Exploration(C, M)
12: end if
13: until termination conditions are satisfied
14: end procedure

A. Transition System Update

Under our framework, given the absence of a priori knowl-
edge of the robot’s environment, the complete transition
system is not accessible. The construction of the transition
system T is performed in an incremental fashion. T models
the motion of the robot within the cells of the environment
that have been identified so far. We initialize the set of
states of T as a single state corresponding to the robot’s
current cell. An update in T is the outcome of the robot’s
local sensing providing a new set of states to be included
in T corresponding to the set of cells within the robot’s
sensor range. Moreover, we define unit weight transitions
between all adjacent cells in this range and identify their
corresponding labels. Thus, the updated transition system
inherits the set of transitions, weights, and labels from the
recently discovered cells.

As an example, consider the environment illustrated in
Fig. 1.a). A robot deployed without having any prior in-
formation in such an environment starts by measuring the
cells within its sensors’ range (Fig. 1.b)). The robot’s current
knowledge about the environment corresponds to all non-
gray colored cells. Once the robot travels to a new cell such

as in Fig. 1.c), its transition system includes the currently
and previously seen cells.

B. Incremental Automaton-Based Search

Naively, searching for a trajectory satisfying an scLTL
formula φ when only partial information about the system
is unveiled can be achieved by constructing a new product
automaton each time T is updated. In order to alleviate the
time complexity of this process, and to take advantage of
recent advances in graph algorithms, we integrate a method
based on the Incremental Breadth First Search (IBFS) algo-
rithm [18] into our framework.

The algorithm starts by defining two types of trees, trees
rooted from the automaton’s initial state qP0, and trees rooted
into every vertex q ∈ FP . After the transition system has
been updated, the algorithm scans the tree rooted from the
automaton’s initial state qP0 and identifies the path q0−qcur,
where qcur is the state of the automaton corresponding to the
current’s robot cell. Then, this tree is expanded by scanning
the set of new edges generated after the transition system
update and augmenting the arcs rooted from qcur. If no arc
is found, the algorithm terminates, otherwise the expansion
continues from the newly added set of vertices. Similarly,
the trees rooted into vertices q ∈ FP are also augmented and
expanded if possible. If an arc (q, q′) with q rooted from
qcur − q and q′ rooted into a vertex in FP is discovered,
the path obtained by concatenating the qcur− q path, the arc
(q, q′), and the q′ − q′′ path, with q′′ ∈ FP is an optimal
trajectory satisfying φ. It can be shown that such a path is
also the shortest path [18].

C. Frontier-Based Exploration

The frontier-based exploration stage is triggered by the
absence of an accepting run in the product automaton AP .
At this stage, the robot identifies the set of frontier cells
that are visible from its current cell. Frontier cells that are
immediately adjacent to each other and share at least one
Cartesian coordinate are then grouped and the center of the
set represents a candidate frontier cell. A trajectory linking
the robot’s current cell and a frontier candidate is called a
candidate trajectory.

The objective of the frontier-based exploration stage is
to find the candidate within the frontier cells to which a
candidate trajectory not only minimizes the distance to be
traversed by the robot, but also is most “promising” with
respect to fulfilling φ. Therefore, we propose an ordering
relation of the frontier candidates based on the trajectory
length to the frontier found by using a search algorithm, such
as A∗ [21], and the monitor’s output of the prefix generated
by such a trajectory. In other words, we assign a weight w(i)
for every frontier candidate i, defined as:

w(i) = m(πi) · exp(−γ · l(τi)), (1)

where m(ui) is the output of the monitor describing the
future of the prefix πi generated by the candidate trajectory
τi and l(τi) expresses the trajectory length. The parameter γ
expresses the importance of the path length over the future

5282

Fig. 2. Snapshots (to be read left-to-right) from a movie showing the robot’s motion produced by applying our path planning algorithm to satisfy
Specification 1. The robot is represented as a blue triangle and the arrows coming from the triangle represent the robot’s sensor measurements.

aspect of the trajectory. Eq. (1) allows us to establish a
trade-off between the cost of reaching a frontier cell and
the utility of reaching that frontier cell. Moreover, Eq. (1)
allows the robot to choose a more distant frontier if the
candidate trajectory to that frontier is more promising in
terms of satisfying φ.

For instance, consider Fig. 1 and the specification given
as ¬Obstacles U Goal. The robot’s knowledge in Fig. 1.b
is not sufficient to obtain a trajectory satisfying the specifi-
cation. In the absence of occlusion by obstacles, the robot
chooses a cell from the frontier candidates (in red) that allows
it to obtain more information about the environment without
falsifying the specification. This is depicted in Fig. 1.c, which
shows the system after the robot moves to the frontier cell
selected in the previous round and augments its knowledge of
the environment. The process is repeated until the robot ac-
quires the information needed to satisfy the task specification
(Fig. 1.d). Note that one can also incorporate the appropriate
approach to reason about occlusion into the planning process.

To compute the future aspect of the prefix generated by the
candidate trajectory τ , we do a breadth first search on the
automaton graph of the FSM M representing the monitor
of φ to obtain the distances dbad, dgood to the closest bad
state q⊥ (i.e. λ(q⊥) = ⊥) and the closest good state q> (i.e.
λ(q>) = >) . These distances are then used to define the
labeling function λF : Q→ Z [22],

λF(q) = dbad(q)− dgood(q),

where dbad and dgood evaluate to ∞ if no such state is
reachable.

In order to project the computed aspect into the satisfaction
value domain [0, 1], let ξ : N→ [0, 1] be a strictly monotonic
function. The future aspect of a trajectory τ generating a
prefix π is given by:

m(π) = ξ(exp(f(π))), (2)

where ξ(x) is chosen to be equal to 1− 1
1−x , and f(π) is the

difference between the shortest bad prefix and the shortest
good prefix for φ that is an extension of π. In the case the
candidate trajectory violates φ (i.e., m(·) = 0), the candidate
frontier is discarded, and one of the cells adjacent to it within
its region is chosen as the new candidate. Finally, the frontier

candidate maximizing Eq. (1) is selected and its candidate
trajectory is traversed.

D. Soundness and Completeness

The soundness and completeness properties of the algo-
rithm are summarized in the following theorem.

Theorem 1. Given a mobile robot deployed in an unknown
partitioned environment with a known set of labels capturing
certain elements of interest at its regions, and a specification
given as an scLTL formula over these labels, the proposed
algorithm returns a solution to Problem 1.

Proof. Consider that an empty run resulted from seeking
a satisfying trajectory in the product automaton, i.e., the
formula cannot be yet satisfied. Let π be the word generated
by a candidate trajectory. If π violates the specification, the
monitor function evaluates to 0 discarding this trajectory. The
algorithm then prevents the formula from being violated by
selecting a trajectory that does not falsify the specification.

Each time the transition system is updated, the algorithm
updates the corresponding product automaton. If there exists
a path concatenating the robot’s traversed path and an accept-
ing state of the product automaton, the IBFS is guaranteed
to find this path.

The algorithm terminates when an accepting run has
been found or when there are no frontier cells left; i.e.,
the environment has been completely explored and yet no
accepting run has been found in the product automaton after
the most recent update of the transition system, or all paths
to frontiers violate the specification.

V. IMPLEMENTATION AND CASE STUDY

In this section, we first describe the software implementing
our algorithm. Then, we show the results of our simulation
when applying the algorithm.

A. Software and Simulation Implementation

The controller presented in Alg. 1 is implemented in
the Matlab environment. In our implementation, we use
scheck [23] to obtain the DFA A corresponding to the
scLTL formula φ. Furthermore, the FSM M representing
the monitor of φ is obtained by a slight modification of

5283

the LTL3 [24] tool. Our incremental automaton construction
uses a modified version of the IBFS code [25].

Our simulated environment comprises a 2-D workspace
partitioned into 400 cells and a mobile robot provided with an
accurate radial laser range sensor of three cell range. Within
the environment, we consider four areas of interest denoted
by the following labels: Safe (SA), Critical Functional (CF),
Critical (CR), and Power Supply (PS). Critical and Critical
Functional are terms used in search and rescue operations to
assess possible locations of victims, or areas of entrapment.
Critical areas are characterized for the lack of entrance to
the areas, while Critical Functional areas represent limited
entrance to them. Furthermore, we distinguish the occupancy
condition of each cell in the environment by means of the
labels Free (FR), and Occupied (OC).

B. Simulation Results

Consider the environment shown in Fig. 2 and the follow-
ing motion specification.

Specification 1. “Visit a Critical area, then a Critical Func-
tional area, and then a Power Supply area and, finally, go
to a Safe region while avoiding any Critical and Critical
Functional areas. Always avoid obstacles”.

This specification can be translated to the scLTL formula

φ :: FR U (CR ∧ ((FR ∨ CR) U (CF ∧ ((FR ∨ CF)

U (PS ∧ (¬OC ∧ ¬CR ∧ ¬CF) U SA))))). (3)

Fig. 2 highlights scenes from the simulation of our path
planning algorithm for specification 1. For simplicity of
presentation, the effects of occlusion by obstacles are ignored
in this example. The black line corresponds to the actual
trajectory executed by the robot. The robot begins its motion
planning at the initial cell which is depicted with a cyan dot.
Next the robot starts the exploration process by discovering
new areas of the environment. Due to its limited sensing,
the robot only senses part of the environment and some
labels corresponding to the regions it sees. Nevertheless,
note that the specification is never falsified. Once the robot
has accumulated enough information to complete its task, it
stops exploring and executes the trajectory obtained through
the incremental automaton-based search. Such a trajectory is
found by using the transition system integrating the acquired
knowledge of the environment up to then. We selected γ
in Eq. (1) to be equal to 0.3. The running time of this
example was 6.78 seconds on a computer with 2.5 GHz dual
processor.

VI. CONCLUSIONS

This paper presented a complete framework to solve the
motion planning problem for a robot deployed in an unknown
environment with a mission expressed as an scLTL formula.
An algorithm was derived to find a trajectory that does
not falsify the formula when the formula is yet to be
satisfied given the current knowledge of the environment.
The proposed algorithm exploits the existence of off-the-
shelf model checking and runtime verification tools, the

efficiency of graph search algorithms, and the efficacy of
exploration techniques to solve the considered problem. To
illustrate the effectiveness of our approach, we implemented
the devised algorithm and applied it in a simulation setup.

REFERENCES

[1] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Trans. Robot., vol. 99, no. 6, pp. 1–14, 2011.

[2] A. I. Medina Ayala, S. B. Andersson, and C. Belta, “Probabilistic
control from time-bounded temporal logic specifications in dynamic
environments,” in Proc. IEEE Int. Conf. on Robot. and Autom., 2012,
pp. 4705–4710.

[3] E. Plaku, “Planning in discrete and continuous spaces: From LTL tasks
to robot motions,” in Towards Autonomous Robotic Syst., 2012, pp.
331–342.

[4] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. IEEE Conference on
Decision and Control, 2009, pp. 2222–2229.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, Cambridge, Massachusetts, 2005.

[6] M. Y. Vardi and P. Wolper, “Probabilistic robotics,” in Proc. First IEEE
Symposium on Logic in Computer Science, 1986, pp. 332–344.

[7] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 4,
p. 14, 2011.

[8] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proc. 16th ACMSIGPLAN−SIGACT Symposium on Principles
of Programming Languages, ser. POPL 89, 1989, pp. 179–190.

[9] S. Sarid, B. Xu, and H. Kress-Gazit, “Guaranteeing high-level behav-
iors while exploring partially known maps,” in Robotics: Science and
Systems, 2012.

[10] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in Proc. IEEE
Int. Conf. on Robot. and Autom., 2012, pp. 5163–5170.

[11] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive(1) designs,” J. Comput. Syst. Sci., vol. 78, no. 3,
pp. 911–938, 2012.

[12] A. Bauer, M. Leucker, and C. Schallhart, “The good, the bad, and
the ugly, but how ugly is ugly?” in Runtime Verification, 2007, pp.
126–138.

[13] X. C. Ding, M. Lazar, and C. Belta, “Receding horizon temporal logic
control for finite deterministic systems,” Compt. Research Repository,
vol. abs/1203.2860, 2012.

[14] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[15] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” IEEE Computer, vol. 22, no. 6, pp. 46–57, 1989.

[16] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Trans. on
Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[17] S. R. Lindemann and S. M. LaValle, “Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions,” International Journal of Robotics Research, vol. 28,
no. 5, pp. 600–621, 2009.

[18] A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. F. Werneck,
“Maximum flows by incremental breadth-first search,” in ESA, 2011,
pp. 457–468.

[19] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Agents, 1998, pp. 47–53.

[20] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in AI,” AI Magazine, vol. 25, no. 2, pp. 99–112, 2004.

[21] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Third Edition. Prentice Hall, 2009.

[22] N. Decker, “A continuous truth domain for runtime verification,”
University of Stuttgart, Institute of Formal Methods in Computer
Science, Theoretical Computer Science, Tech. Rep., 2011.

[23] T. Latvala, “Efficient model checking of safety properties,” in 10th
Int. SPIN Workshop, 2003, pp. 74–88.

[24] A. Bauer, “LTL3 tools.” [Online]. Available:
http://ltl3tools.sourceforge.net/index.html

[25] “Incremental BFS code.” [Online]. Available:
http://www.cs.tau.ac.il/ sagihed/ibfs/

5284

