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Abstract— Path finding is a fundamental, yet computationally
expensive problem in robotics navigation. Often times, it is
necessary to sacrifice optimality to find a feasible plan given
a time constraint due to the search complexity. Dynamic
environments may further invalidate current computed plans,
requiring an efficient planning strategy that can repair ex-
isting solutions. This paper presents a massively parallelized
wavefront-based approach to path planning, running on the
GPU, that can efficiently repair plans to accommodate world
changes and agent movement, without having to restart the
wavefront propagation process. In addition, we introduce a
termination condition which ensures the minimum number of
GPU iterations while maintaining strict optimality constraints
on search graphs with non-uniform costs.

I. INTRODUCTION

Pathfinding is a fundamental problem in robot navigation,
with a large variety of proposed approaches [1], [2] that
balance computational performance, problem domain com-
plexity, and plan optimality. Graph-based search methods
such as A* [3] provide strict optimality guarantees but
cannot handle dynamically changing environments. Real-
time planners [4] have been proposed which provide any-
time solution guarantees, and can efficiently repair existing
plans to accommodate world changes and agent movement.
However, these approaches are difficult to parallelize. Parallel
search algorithms [5] exploit multiple computer resources to
greatly reduce computational cost, but sacrifice optimality
guarantees. Additionally, they have no mechanism to effi-
ciently handle world changes and agent movement.

This paper presents a massively parallelizable, wavefront-
based approach to path planning that can exploit graphics
hardware to considerably reduce the computational time,
while still maintaining strict optimality guarantees. This
approach performs efficient updates to accommodate world
changes and agent movement, while reusing previous compu-
tations. We introduce a termination condition which ensures
that the plans returned are strictly optimal, even on search
graphs with non-uniform costs, while requiring minimum
GPU iterations. Furthermore, the computational complexity
of our approach is independent of the number of agents
(traveling to the same goal), facilitating optimal, dynamic
path planning for a large number of agents in complex
dynamic environments, opening the possibility to large-
scale crowd applications. This paper makes the following
contributions:
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o A wavefront based search technique that can efficiently
handle world changes and agent movement, while
reusing previous efforts, and is amenable to massive
parallelization.

« A termination condition which enforces strict optimality
guarantees, even for non-uniform search graphs, while
requiring the minimum number of GPU iterations.

« Extension to handle any number of moving agents trav-
eling to the same goal, at no additional computational
cost.

To our knowledge, this is the first massively parallelizable,
dynamic search technique with strict optimality guarantees
for non-uniform search graphs.

II. RELATED WORK

There exists considerable research in robot motion plan-
ning [1] that investigate a variety of trade-offs in compu-
tational cost, domain complexity, and solution optimality.
Discrete search methods like A* [3] provide strict opti-
mality guarantees but cannot efficiently handle dynamic
world updates and agent movement. To meet real-time con-
straints, techniques are proposed which limit the horizon
of the search [6], or reduce the effective branching factor
by hierarchically coarsening the resolution of the problem
domain [7]. AD* [4] is an anytime dynamic planner that
satisfies strict time constraints while efficiently repairing
existing solutions to accommodate dynamic events. Opti-
mizations for lattice-based methods have been proposed [8]
which prune transitions by embedding semantic information
in the lattices. Tree-based search algorithms [9] have been
optimized to exploit multiple processors. However, these
approaches are not amenable to massive parallelization using
graphics hardware.

GPU accelerated path planning algorithms provide
tremendous performance boost, enabling the solutions
of higher dimensional problem domains, but return sub-
optimal paths. The work in [10] demonstrates shortest
path calculations for graph-based searches on the GPU.
The work in [11] uses a blocked recursive elimination
strategy to utilize the computational power and memory
bandwidth of the GPU. Randomized searches [12], [5]
have been successfully ported to the GPU, by doing
multiple short-range searches in parallel, but provide no
optimality guarantees. Distance fields can be used to solve

3332



multi-agent planning on the GPU [13]. Crowd simulation
techniques [14], [15] exploit GPU hardware to accelerate
local collision avoidance for crowds but do not handle
global planning. Hierarchical planning approaches [16]
perform map abstraction to adaptively subdivide the search
space into smaller grids, each of which can be resolved in
parallel. Wavefront based algorithms [17] are amenable to
parallelization and have been demonstrated in a wide variety
of problem domains [18], yielding substantial performance
benefits over serial algorithms.

Comparison to Prior Work. Our work provides the benefits
of both dynamic search techniques [4] and wavefront-based
algorithms [17] to provide a search technique which is
massively parallelizable and can efficiently update search
efforts to accommodate dynamic world changes and agent
movement. Many wavefront-based search techniques exist;
however, these methods cannot efficiently handle dynamic
environments and require the propagation to start from
scratch when the environment changes. Our approach differs
from traditional search methods, as we do not maintain
a sorted list of open or closed states, which cannot be
easily parallelized. In contrast, all states are self-contained
and can be evaluated independently without any need for
synchronization. Agent movement and obstacle movement
is handled in a similar fashion to AD* by propagating state
inconsistency, while exploiting GPU parallelization.

I1I. METHOD OVERVIEW

Our method relies on appropriate data transfer between
the CPU and GPU at specific times. In the initial setup, the
CPU calls generateMap(rows, columns) which allocates
rows X columns states in the GPU to represent the entire
world. Initially, all free states s have an associated cost of
-1, g(s) = —1, which represents a state that needs to be
updated, while obstacles have infinite cost, g(s) = co. Given
an environment configuration with start and goal state(s),
computePlan is executed which repeatedly invokes plan-
nerKernel (a GPU operation) until a solution is achieved.
We keep two copies of the world map: one for reading state
costs and the other for writing updated state costs. After each
iteration (i.e., kernel execution), the two maps are swapped.
This strategy addresses the synchronization issues inherent
in GPU programming, by ensuring that the main kernel does
not write to the same map used for reads.

Once the planner is done executing, each agent can just
follow the least cost path from the goal to its own state to
find the generated plan. If an obstacle moves from state s to
state s’, we update the GPU map by setting g(s’) = oo
and g(s) = —1. This means that s’ is now an obstacle
and the cost for s is invalid and needs to be updated. In
addition, we check the neighbors of s’ and mark them as
inconsistent if they had s’ as their least cost predecessor. The
planner kernel monitors states that are marked as inconsistent
and efficiently computes their updated costs (while also
propagating inconsistency) without the need for resetting
the entire map. Agent movement (change in start) is also

efficiently handled by performing the search in a backward
fashion from the goal to the start, and marking the previous
state as inconsistent to ensure a plan update. Algorithm 1
provides the pseudocode for computePlan.

Algorithm 1 computePlan(*mp,)

My <= Mepu

Moy <= Mepu

repeat
flag <0
plannerKernel(m.,., m,,, flag)
swap (M., M)

until (flag = 0)

Mepy < My

IV. GPU-BASED WAVEFRONT ALGORITHM

Existing graph-based search [3] guarantee optimality and
work well for dynamic environments [4], however they
are not amenable to massive parallelization. The wavefront
algorithm [17] takes its name as an analogy of the way it
behaves. It sets up a map with a initial state which contains
an initial cost. At each iteration, every state at the frontier
is expanded computing its cost relative to its predecessor’s
cost. This process repeats until the cost for every state is
computed, thus creating the effect of a wave spreading
across the map. Wavefront-based approaches are inherently
parallelizable, but existing techniques require the entire
map to be recomputed to handle dynamic world changes
and agent movement. Figure 1 visualizes the wavefront
propagation process in a simple environment.

Our Approach. Algorithm 2 describes the shortest path
wavefront algorithm ported to the GPU. The planner first
initializes the cost of every traversable state to a default
value, g(s) = —1, indicating it needs to be updated. States
occupied by obstacles take a value of infinity, g(s) = oo, and
the goal state is initialized with a value of 0, g(s) = 0. The
planner finds the value g of reaching any state s from the
goal by launching a kernel at each iteration that computes
g(s) as follows:

g(S) = mins’Esucc(s)/\g(s’)ZO(C(Sa 3/) + g(s/))

where 0 < ¢(s, s’) < oo is the cost of traversing from state s
to ', and is used to encode regions of the environment which
should be avoided (e.g., rough terrain, dangerous areas), in
addition to obstacles that cannot be traversed. This process
continues until all states have been updated at which point
the planner terminates execution. To address the concurrency
problem inherent in a massively parallel application, we use
use two maps, one as read-only m,. and the other write-only
my,. Each thread in the kernel reads the necessary values to
calculate the cost of its corresponding state from m,., and
writes it to its given state in m,,. This ensures that the map
we are reading from will not change as we are executing the
kernel. Once the kernel finishes execution, we swap m,. and
my,, thus allowing the threads to read the most recent map
while preventing race conditions.
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Fig. 1.

Algorithm 2 plannerKernel(*m.., *m.,,, *flag)

s < threadState
if s # obstacle As # goal then
for all s’ in neighbor(s) do
if s’ # obstacle then
newg « g(s') + c(s, s')
if (newg < g(s) V g(s) = —1) A g(s’) > —1 then
pred(s) + s’
g(s) + newg
{ evaluate_termination_condition }

The kernel also takes as a parameter a £1ag which is set
depending on the termination condition used:

Exit when goal reached. The flag is originally set to
1 before each kernel run. If we find that goal state was
updated, that means we have a path to it and can terminate
execution. We do so by changing the £lag as 0. This will
produce considerably fewer iterations but will not guarantee
optimality on search graphs with non-uniform costs. Since
each thread corresponds to only one state, only one thread
is able to modify this flag and no race condition is possible.

if(s == goal)f1lag =0

Exit when whole map converges. An alternate exit con-
dition is to continue propagating until the whole map has
been successfully updated with accurate g values. This will
guarantee optimality but with a considerable increase in the
number of iterations. The f1ag is set to 0 before each kernel
run. If there is any update in a given iteration, f1ag is set to
1 thus ensuring that the planner keeps running until no further
update is possible. In other words, the kernel will terminate
only when the cost computation for the entire environment
has converged. This will compute costs for unnecessary parts
of the environment but will guarantee optimal solutions.

flag=1

Minimal Map Convergence with Optimality Guarantees.
The naive approach discussed previously does much more
work than it is necessary to find an optimal path. For large
environments, this is prohibitively expensive. We introduce a
termination condition that can greatly reduce the number of
iterations required to find an optimal plan in large environ-
ments with non-uniform search graphs. If at any iteration,
we find that the minimum g-value expanded corresponds to
that of the agent, this means that a path to that agent is
available and any other possible path would yield a higher

(© (d

Wavefront expansion process. (a) 3 iterations. (b) 11 iterations. (c) 15 iterations. (d) 18 iterations.

cost. To make sure that the agent state is expanded at each
iteration (to compare to the other states expanded), we give
it a g-value of -1 before each kernel run, marking it as a
state that needs to be updated. To implement this strategy,
it is enough to just adjust the condition that would set the
flag that terminates the execution:

if(g(s) < g(start) V g(agent) = —1)flag =1

Once the planner has finished executing, an agent can simply
generate its plan by following the reverse of the least-cost
path from the goal to its position. Figure 2 compares the
different termination conditions on a simple environment.

V. EFFICIENT PLAN REPAIR FOR DYNAMIC
ENVIRONMENTS AND MOVING AGENTS

We extend the algorithm to handle dynamic environ-
ments where obstacle changes may invalidate plans that
are currently being executed, and create a new plan if an
agent diverges from a previous plan. To handle obstacle
movements, we identify and resolve inconsistent states. A
state is inconsistent if its predecessor is not the neighbor with
lowest cost or if its successor is inconsistent. If an obstacle
moves from state s to state s’, then we set g(s’') = oo and
g(s) = —1 (marking it for update). We then run a kernel
(Algorithm 3) which sets the g-value of every inconsistent
state to —1. A state s with predecessor s’ is inconsistent if
g(s) # g(s') + (s, s'). This kernel is executed repeatedly
until all inconsistencies are resolved and is detected when
there are no updates performed by any thread during an
iteration. Algorithm 3 is triggered when environment changes
are detected to ensure that node inconsistency is propagated
and resolved in the entire map. Keep in mind that the
following code will run in parallel, and that all read and write
operations are done in two distinct maps. Keep in mind that
the following code will run in parallel, and that all read and
write operations are done in two distinct maps.

Algorithm 3 Algorithm to propagate state inconsistency

s < threadState
if pred(s) # NULL then
if (g(s) == obstacle V pred(s) == obstacle V g(s) # g(pred(s)) +
c(s,s")) then
pred(s) = NULL
g(s) = -1
wmcons = true

Handling agent movement is straightforward. For the non-
optimized planner, the cost to reach every state has already
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Comparison of termination conditions. (a) Non-uniform state space. The states shown in red are of much higher cost as compared to other

states. (b) The planner terminates after updating g values for the whole map, producing an optimal path with significantly more iterations = 17. (c) Plan
termination as soon as it finds a path to the goal, producing a sub-optimal path. Total number of iterations = 8. (d) Convergence of minimum number of
states in the search graph, while ensuring path optimality. Number of iterations = 12.

been computed, so the agent would only require to recon-
struct its path again. In the case of the optimized version of
the planner it is necessary to run the planner again so that
any state between the goal and the new agent position that
has not been expanded, gets a chance to update its cost.

VI. MULTI-AGENT PLANNING

We extend our planner implementation by making a slight
modification to the termination condition to account for
multiple agents. We execute the kernel until all agent states
have been reached, and the maximum g-value of a state that
is occupied by an agent is less than the g-value of any other
state that was updated during the current iteration.

if((9(s) < maxa,c(ayg(ai)) v (g(a;) = —1Va; € {a}))

The number of iterations for convergence depends on the
distance from the goal to the farthest agent. When the map
is updated, each agent simply follows the least cost path
from the goal to its position to find an optimal path. Note
that our approach requires no additional computational cost
to handle many agents, provided they share the same goal.

Multi-Agent Simulation. Since our approach can efficiently
plan paths for a large number of agents, and use existing
plans to efficiently repair solutions due to change in world
state, we can easily extend our approach to simulate a crowd
of autonomous agents. Each agent computes and maintains
its path, and interleaves planning with execution by moving
along its current path using a simple particle simulator with
local collision-avoidance [19]. At each frame, the map is
efficiently repaired to accommodate world changes and
agent movement, thereby repairing the paths of all agents.

Multiple Target Locations. Our method can be easily
applied to agents traveling between alternating goals, and
would only require the agent to retrieve a path from the map
corresponding to its current target location. However, we are
limited to a small number of target locations, since a separate
map needs to be maintained for each target, resulting in a
significant memory overhead. Possible extensions to miti-
gate this issue include an adaptive quad-based environment
representation, which would also reduce the computation of

wave propagation in large worlds, and significantly reduce
the memory footprint. Efficiently porting an adaptive-quad
based environment representation to the GPU is the subject
for future exploration.

VII. RESULTS

We ran our planner on several challenging navigation
benchmarks [20] to showcase the benefits and limits over
traditional methods (see Figure 3). We compared results
using two different GPUs, specified in Table I. Our algo-
rithm has an order of magnitude performance boost over
CPU implementations of graph search and wavefront-based
methods, which is even more significant for many agents and
large environments.

TABLE I
GRAPHICS PROCESSING UNITS SPECIFICATIONS

Information GPU 1 GPU 2
Type Geforce GT 650M 2GB | GeForce GTX680
Warp Size 32 32
Threads/Block 1024 1024
Global Mem 2147483648 Bytes 2147483648 Bytes
MultiProcessors 2 8
Mem Clock Rate 900000 KHz 3004000 KHz
Mem Bus Width 128 bits 256 bits
Chip Clock Rate 950000 KHz 1058500 KHz

Figure 4(a) demonstrates the scalability of our approach
with increase in number of agents on a 256 x 256 world
map. We observe that there was no noticeable increase in
the computational cost with increase in number of agents.
Figure 4(b) illustrates the scalability of our approach to
accommodate large environments. We tested it with a single
agent with a goal distance of N/2 in a N x N world
map. We observe that the use of the minimal yet sufficient
exit condition (EXIT A) produces significant performance
improvements over EXIT B as the planner does not have to
wait until the g values of the whole map have converged,
resulting in great savings.

Figure 4(c) illustrates the overall advantage of using our
method with a simple test scenario where we handle obstacle,
agent and goal movement. We generated a random map of
size 512 x 512 populated with 8 agents. We can observe that
our method took fewer iterations to reach an optimal solution
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Fig. 3.
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(a)—(d) Global Navigation for multiple agents on a variety of challenging benchmarks [20] of size 512 x 512. Color lines are the computed paths,

while a black region is an obstacle. (e)—(h) Global Path Planning and Simulation of 200 agents on a complex navigation benchmark.
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EXIT B: Exit condition which checks for convergence of whole map. All solutions returned are optimal paths. Experiment performed on a 256 x 256
environment. GPU memory = 5120 KB. CPU memory varies from 2048 KB to 2080 KB. (b) Time to compute optimal solution for different map sizes.
(c) GPU planner performance for dynamic simulation with changes in environment, start, and goal.

ALGORITHM PERFORMANCE FOR DIFFERENT ENVIRONMENTS. (TIME

TABLE 11

IN SECONDS)

. GPU 1 GPU 2
World Size | o T FGiB | ExitA | ExitB
32 x 32 0011 | 0.012 0.01 0.012
64 x 64 0.024 | 0027 | 0017 0.022
128 x 128 | 0.107 | 0.146 | 0.078 0.096
256 x 256 | 0.608 | 0.871 | 0.349 0.542
512 x 512 | 4219 | 624 2.691 3.816
1024 x 1024 | 32.931 | 49.126 | 21.246 | 30.778
2048 x 2048 | 258.88 | 387.35 | 178.794 | 264.373

at each step, with a significant performance improvement on
the initial plan and after goal movement, when the map needs
to be reset and planned from scratch. Figure 5 illustrates the
memory requirements of our approach based on world size.
Figure 3(e)—(h) demonstrates path planning for 200 agents
in a randomly generated environment of size 512 x 512.
Since our approach can efficiently handle dynamic updates,
we can interleave planning with execution to create a crowd
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Fig. 5. GPU memory requirement with increase in environment size. GPU
memory usage is 263 MB for a 2048 x 2048 environment.

simulator.

Optimality. When the planner is first executed, state costs
are updated until the start states of all agents are reached,
and the maximum g-value of a state that is occupied by
an agent is less than the g-value of any other state that was
updated during the current iteration. During cost propagation,
a state computes its g-value based by referencing its neighbor
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Fig. 6. Complex 512 x 512 with 200 agents. Goal is in center of map,
and computed paths are shown in blue. Every black area is an obstacle.

with the least cost. A particular state is guaranteed to have
converged when there is no other state with lower cost. This
means that there cannot be a lower cost solution to reaching
the state from the goal. Hence, this exit condition ensures
that there will always be a valid least-cost path from the
current position of all agents to the target. After an obstacle
movement, if a state s or its predecessor s’ contains an
obstacle, or g(s) # g(s’) +c(s, s) then g(s) = —1, marking
it for an update. This means that every state that defines
an invalid transition will set its g-value to -1 allowing it to
update in the next run of the planner. If there is a better plan
for a given agent from the one we previously had, then newly
updated states will have a lower g-value than the agent’s start
state. This means a lower-cost solution may possibly exist,
and the planner continues executing until all inconsistencies
are resolved or a least-cost solution is achieved.

VIII. CONCLUSION AND FUTURE WORK

We have developed a massively parallel wavefront-based
planning technique which can efficiently handle world
changes and agent movement by reusing previous computa-
tions. The computational cost of our approach is independent
of number of agents, facilitating global path planning for
hundreds and thousands of agents in very large, complex,
dynamic environments. Furthermore, we demonstrate a pro-
totype crowd simulator by interleaving planning with execu-
tion where the plans are efficiently updated to accommodate
agent movement.

There are some limitations to our approach. A separate
map needs to be maintained for each target location, resulting
in substantial memory and computational overhead. This
makes our current approach intractable for large numbers
of agents with independent targets. One possible approach
to attenuate the impact in memory would be to use a
quad-based environment representation where open spaces
can be represented as a coarser grid. Porting a quad-based
environment representation to the GPU is ongoing work.
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