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Abstract— We investigate the problem of estimating the state
of an object during manipulation. Contact sensors provide
valuable information about the object state during actions
which involve persistent contact, e.g. pushing. However, contact
sensing is very discriminative by nature, and therefore the
set of object states that contact a sensor constitutes a lower-
dimensional manifold in the state space of the object. This
causes stochastic state estimation methods, such as particle
filters, to perform poorly when contact sensors are used. We
propose a new algorithm, the manifold particle filter, which uses
dual particles directly sampled from the contact manifold to
avoid this problem. The algorithm adapts to the probability of
contact by dynamically changing the number of dual particles
sampled from the manifold. We compare our algorithm to
the conventional particle filter through extensive experiments
and we show that our algorithm is both faster and better
at estimating the state. Unlike the conventional particle filter,
our algorithm’s performance improves with increasing sensor
accuracy and the filter’s update rate. We implement the
algorithm on a real robot using commercially available tactile
sensors to track the pose of a pushed object.

I. INTRODUCTION

In this paper, we study contact manipulation, where a

robot makes persistent contact with the object it is manipu-

lating. Imagine reaching into a high cabinet to feel around for

the salt shaker, or a robot push-grasping an object into its

hand (Fig. 1-Bottom). The persistence of contact in these

actions makes contact sensors, like strain gauges, force-

torque sensors, and tactile pads a rich source of information

about the object pose’s during manipulation.

Prior research on pose estimation for contact manipula-

tion has focused on using simple analytical motion models

derived from the physics of pushing to build analytical state

estimators that track the pose of the object from contact

positions on the hand [1]. However, in reality there is much

uncertainty both in the motion and observation models in

the real world: physical parameters—like friction, mass, and

pressure distributions—are hard to measure and variable.

Contact sensors are noisy and potentially have low spatial

resolution. This naturally leads to probabilistic formulations

that lend themselves to Bayesian analysis, like the particle

filter [2, 3].

However, we observed that the conventional particle fil-

ter [4] suffers from a startling problem when applied to

contact manipulation: they systematically perform worse as

the sensor resolution increases.

The problem arises because contact sensing is highly

discriminative between contact and no-contact states: if a

particle (i.e. a hypothesized object pose) is infinitesimally

close to the robot hand but not touching it, then contact
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Fig. 1. Top: The contact states constitute a lower-dimensional manifold
in the object’s state space. Bottom: Example manipulation of a box with
persistent contact.

sensors will not discriminate between it and another particle

which is much farther away from the hand. Topologically,

the observation space of a contact sensor constitutes a lower

dimensional manifold in the configuration space of the object

(Fig. 1-Top). Particles sampled from the state space during

contact have low probability of falling into the observation

space. This results in particle starvation in the vicinity of the

true state. Artificially introducing noise into the observation

model sidesteps this problem, but comes at the expense of

losing precious information [5].

We address this problem by deriving the manifold particle

filter (MPF) for state estimation on multiple manifolds of

possibly different dimensions. The gist of the algorithm is

quite simple: we factorize belief into the marginal probability

of being on a manifold and the probability of the current state

conditioned on that manifold. We first sample a manifold,

then a particle from that manifold.

Our factorization has two key consequences.

First, we can use a different sampling technique for each

manifold. This allows us to avoid particle starvation on the

contact manifold by using the dual proposal distribution [5]

to sample directly from the observation model.

Second, the marginal adaptively and automatically adjusts

the number of particles on each manifold. When there is no

contact, most of the particles are concentrated in the ambient
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space. Once contact occurs, the marginal shifts the focus onto

the contact manifold.

Choosing a manifold requires evaluating a marginal of the

current belief. We subvert this race condition by exploiting

the discriminative nature of the observation model to approx-

imate the marginal.

The MPF is not only theoretically sound, but also practi-

cally useful. We demonstrate:

Better state estimation. Through extensive simulation ex-

periments, we show that the MPF’s state estimate becomes

more accurate as we increase the resolution of the contact

sensors. On the contrary, the conventional particle filter be-

comes less accurate because higher-resolution sensors further

shrink the size of the observation space.

Faster performance. The MPF requires fewer particles and

is orders of magnitude faster than the conventional particle

filter. The increase in speed is critical as it enables state

estimation to occur in real-time.

Real robot implementation. Finally, we contribute an

implementation of our algorithm on a real robot, Andy,

equipped with an array of tactile sensors that covers the

interior surface of its hand. These experiments confirm that

the MPF successfully tracks the pose of an object using

commercially available tactile sensors [6].

We also discuss several limitations of our work. Key

among them is scope: The MPF exploits a discriminative

observation model that accurately identifies which manifold

the state is evolving on. It is also designed for persistent

contact and is unlikely to outperform a conventional particle

filter when there is intermittent contact, like when tracking

a billiard ball bouncing on a pool table.

II. RELATED WORK

We borrow the concept of the dual proposal distribution

from mobile robot localization literature [5]. Particle filters

in this domain suffer from a similar particle deprivation prob-

lem if a robot uses very high-accuracy depth rangefinders or

cameras. The dual proposal distribution solves the problem

by sampling dual particles directly from the observation

model. This is possible because the vision and depth sen-

sors used on mobile robots provide high-accuracy readings

independent of the true state. Conversely, contact sensors

only provide accurate readings when the object is in contact

with the sensor. Therefore, normal particles are necessary

for periods of no contact and dual particles are ideal during

contact. Our algorithm adaptively varies the number of dual

particles sampled from the contact manifold according to the

probability of contact.

Our focus is on state estimation during contact manip-

ulation and, particularly, pushing actions. Pushing enables

robots to perform a wide variety of tasks that are not

possible through pick-and-place manipulation: pushing can

move objects that are too large or heavy to be grasped [7],

is effective at manipulating objects under uncertainty [8, 9],

and can be used as pre-grasp manipulation to bring objects

to configurations where they can be easily grasped [10, 11].

Additionally, pushing has been used to simultaneously move

multiple objects [12]. Since pushing offers such a dramatic

expansion of manipulation skills, there have been extensive

research on the fundamental mechanics of pushing [13–16]

and on the planning of pushing operations [16, 17]. Recently,

there has been interest in generating push trajectories using

sampling based planners [18, 19] and learning methods [20].

Most of the work described above employs pushing as an

open-loop operation. Conversely, closed-loop actions that use

contact sensors for feedback allows the robot to adapt in real-

time and achieve success in more scenarios. One approach

of using sensor feedback is to create a feedback controller

that directly maps sensor readings to actions [21–23]. These

controllers have been shown to be effective for specific tasks,

such as locally refining the quality of a grasp [22], but do

not generalize to general contact manipulation. Our method

explicitly estimates the state of the object, which can then

be used by a higher-level planning algorithm to achieve an

arbitrary goal.

Another, separate, large body of work uses probabilis-

tic methods for the tactile localization of immovable ob-

jects [24–26]. These systems produce a series of discrete

move-until-touch actions that provide information about the

object pose. In contrast, our system uses the persistent

contact between the hand and the object during manipulation.

The most closely related prior work [2, 3] uses a con-

ventional particle filter to track the pose of an object during

persistent contact with environmental fixtures. In this paper

we show that the MPF formulation leads to faster and

more accurate state estimation when compared with the

conventional formulation.

III. CONVENTIONAL PARTICLE FILTER

In this section, we formalize the problem of state esti-

mation for contact manipulation. We introduce the particle

filter as a potential solution and provide insight into why

its conventional implementation degenerates with contact

sensors.

A. Pose Estimation for Contact Manipulation

Let x ∈ S be the state of a dynamical system which

evolves over time under actions u ∈ A and emits obser-

vations z ∈ Z. The state estimation problem addresses

the computation of the belief state, which is a probability

distribution over the current state xt

b(xt) = p(xt|z1:t, u1:t) (1)

given the past history of actions u1:t and observations z1:t.

In our problem, the state is the pose x of the manipulated

object (Fig. 2(a)) and an action u (Fig. 2(b)) is a relative

motion of the hand. During contact, the object moves ac-

cording to the function xt = fΦ(xt−1, ut) that encodes the

physics of the object’s motion in response to the pushing

action ut. The parameter Φ includes any properties of the

hand, object, or environment that may affect the object’s

motion. Unfortunately, the exact value of Φ is rarely known

with certainty. Instead, we assume that there is a distribution

p(Φ) over the parameters. This distribution, together with
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(a) State
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Φx = f (x,u).

(b) Action (c) Observation

Fig. 2. Examples illustrating the (a) state, (b) action, and (c) observation
for the state estimation for contact manipulation problem.

physics model fΦ, defines the stochastic transition model

p(xt|xt−1, ut).
We implement fΦ using a quasistatic pushing simula-

tion [12, 21]. The quasistatic assumption states that the object

moves without accelerating; i.e. it comes to rest as soon as

the robot stops exerting force. This approximation is accurate

for the objects and end-effector velocities that are common

during the manipulation tasks that we are concerned with. As

a result, our formulation of the state consists of the object’s

pose, but not its velocity or acceleration. The parameter

Φ = (µ, c) consists of the hand-object coefficient of friction

µ and the radius c of the object’s pressure distribution.

Contact sensors provide observations z about where the

object touches the hand during manipulation. We assume

that the sensors accurately discriminate between contact and

no-contact, but are noisy and potentially have low spatial

resolution. For example, in Fig. 2(c), the nine contact sensors

(drawn as bold line segments) cannot differentiate between

different points of contact within their boundaries.

B. Bayes Filter

The Bayes filter is the most general algorithm for filtering

a belief state given a sequence of actions and observa-

tions [4]. The Bayes filter recursively constructs b(xt) from

b(xt−1) using the update

b(xt) = η p(zt|xt, ut)

∫
S

p(xt|xt−1, ut)b(xt−1)dxt−1 (2)

where η is a normalization factor. The terms p(zt|xt, ut)
and p(xt|xt−1, ut) are, respectively, the observation and

transition models defined above. The recursion is initialized

with a prior belief b(x0) provided by task-specific knowledge

or other sensors (e.g. an object recognition system).

The Bayesian update (Eq. (2)) is derived from the defi-

nition of the belief state (Eq. (1)) by applying Bayes’ rule

and assuming that the state satisfies the Markov assumption

xt ⊥ (u1:t−1, z1:t−1) |xt−1. The Markov assumption holds

when x is complete, i.e. is “memoryless,” which is true of

our formulation.

C. Conventional Particle Filter

There are a variety of techniques for representing the belief

state and implementing the Bayes filter. In our case, the

motion and observation models are highly non-linear and

lack analytic derivatives. Even worse, the belief state is non-

Gaussian and may be multi-modal. For example, the belief

Algorithm 1 Particle Filter

Input: Xt−1, previous particles

Output: Xt, particles sampled from b(xt)
1: Xt ← ∅
2: for all x

[i]
t−1 ∈ Xt−1 do

3: Sample x
[i]
t ∼ p(xt|x

[i]
t−1, ut)

4: w
[i]
t ← p(zt|x

[i]
t , ut)

5: Xt ← {x
[i]
t } ∪Xt

6: Xt ← Resample(Xt)

becomes bimodal in the trivial case where the hand sweeps

through the center of the prior distribution without contacting

the object. Together, these challenges preclude us from using

the Kalman filter or its extended and unscented variants.

Instead, we can track the belief state using a particle filter.

The particle filter [4] is a non-parametric formulation of

the Bayes filter that represents the belief state with a discrete

set of samples. The samples Xt = {x
[i]
t }

n
i=1 are called

particles and are distributed according to the belief state

x
[i]
t ∼ b(xt). The particle filter implements the Bayesian

update (Eq. (2)) by recursively constructing Xt from Xt−1

using importance sampling.

The conventional realization of the particle filter (CPF) is

summarized in Alg. 1. The key insight behind this realization

is that it is difficult to directly sample from the target

distribution Eq. (2), but it is relatively easy to sample from

the transition model. Therefore, we sample x
[i]
t from the

proposal distribution
∫
S
p(xt|xt−1, ut)b(xt−1)dxt−1 (line 3)

by forward-simulating Xt−1 to Xt using the motion

model. Next, we compute an importance weight w
[i]
t =

η p(zt|xt, ut) for each forward-simulated particle (line 4).

The importance weights result from dividing the target

distribution by the proposal distribution. The samples x
[i]
t ,

along with their importance weights w
[i]
t , are distributed

according to the target distribution b(xt). Intuitively, the

weighting step incorporates the observation model into the

update by assigning higher weight to particles that are

consistent with zt.

Periodically, the particle filter resamples the set of

weighted particles (line 6) with replacement to distribute Xt

according to the desired posterior b(xt). Frequent resampling

is necessary to prevent the weights from degenerating over

time [4].

IV. DEGENERACY OF THE PROPOSAL DISTRIBUTION

The particle filter, as described above, is agnostic to the

observation model and has been applied to a variety of

application domains [2, 27]. However, contact sensors are

unique because they operate in two discrete states: contact

and no contact. During periods of contact, observations

are discriminative and the states for which p(zt|xt, ut) is

peaked form a lower-dimensional manifold that includes

the true state (Fig. 1). Conversely, during periods of no

contact, p(zt|xt, ut) is nearly uniform and provides little

useful information. This property makes contact sensors
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Fig. 3. (a) Illustration of particle deprivation. (b) The swept volume
of contact sensors shrinks as the update rate or resolution of the sensors
increases.

fundamentally different than the cameras and depth sensors,

which have relatively smooth observation models, typically

used in mobile robot localization [27].

In practice, particle filters update in discrete steps. The

hand moves a non-zero distance during each step and the

swept volume of the contact sensor gains full dimensionality.

As such, particle filters are not completely ineffective at

estimating the state. Instead, they require a large number

of particles to increase the probability that some fall into

the small swept volume of each sensor. We illustrate this in

Fig. 3(a) for a hand pushing a cloud of 500 particles that

represent the center of a 7 cm diameter bottle. Of the 500

particles (light blue), only 17 (dark orange) contact the hand

during a 1 cm step. This causes particle deprivation and may

result in there being no particles in the vicinity of the true

state during periods of contact.

Surprisingly, this effect causes the particle filter to perform

worse as sensor resolution or the update rate increases. We

illustrate the reason in Fig. 3(b). As sensor resolution in-

creases, the swept volume of each sensor becomes narrower.

As the update rate increases, the distance traveled by the hand

between updates decreases, and the swept volume becomes

shorter. As a result, the particle filter requires a large number

of particles to successfully track the state.

V. MANIFOLD PARTICLE FILTER

We have shown that the conventional particle filter is

poorly suited for contact sensors because the state evolves

on a lower-dimensional manifold. In this section, we derive

the manifold particle filter (MPF) to solve this problem and

show how it can be applied to contact manipulation.

A. Formulation

Suppose the state space S is partitioned into m disjoint

components M = {Mi}
m
i=1, where M1, . . . ,Mm−1 ⊆ S are

manifolds and Mm = S \ ∪m−1
i=1 Mi is the remaining free

space. We factor the belief space as

b(xt) =
m∑
i=1

b(xt|Mi) Pr(xt ∈Mi) (3)

Algorithm 2 Manifold Particle Filter

Input: Xt−1, previous particles

Input: k, number of particles to sample

Output: X̄t, particles sampled from b(xt)
1: X̄Mi

← ∅ for i = 1, . . . ,m
2: for 1, . . . , k do

3: Sample Mi ∼ Pr(xt ∈Mi)
4: if Mi 6= Mm then

5: Sample x̄
[i]
t ∼

p(zt|xt,ut)
p(zt|ut)

6: w̄
[i]
t = p(zt|ut) ·EstimateDensity(Xt−1, ut, x̄

[i]
t )

7: X̄Mi
← {(x̄

[i]
t , w̄

[i]
t )} ∪ X̄Mi

8: end if

9: X̄Mm
← ConventionalProposal(Xt−1, ut, zt) ∩Mm

10: X̄t ← Resample(
∑m

i=1 P (xt ∈Mi)X̄Mi
)

where b(xt|Mi) is the belief over Mi.

Our algorithm, summarized in Alg. 2, represents the belief

using particles. For each particle, we first choose which

manifold to sample from according to Mi ∼ Pr(xt ∈

Mi). Then, we sample the particle x̄
[i]
t from that manifold

according to x̄
[i]
t ∼ b(xt|Mi) using an appropriate sampling

technique.

Ideally, we would compute Pr(xt ∈Mi) as

Pr(xt ∈Mi) =

∫
Mi

b(xt) dxt (4)

by marginalizing over xt. Unfortunately, doing so requires

knowing b(xt), which is precisely the distribution that we

are trying to estimate.

Instead, we must approximate Pr(xt ∈ Mi). Using the

previous belief state to compute
∫
Mi

b(xt−1) dxt−1 might

seem like a good approximation, but in fact it does not

work. To see why, consider an update step at which the filter

receives an observation which suggests xt ∈Mi for the first

time. If we approximate b(xt) ≈ b(xt−1), then Pr(xt ∈Mi)
will remain low and we will not sample from Mi. This

problem persists even if we receive repeated observations

that suggest xt ∈ Mi because we will always be using the

belief from the previous step.

Hence, we approximate (4) using only the most recent

observation

Pr(xt ∈Mi) ≈

∫
Mi

p(zt|xt, ut)

p(zt|ut)
dxt, (5)

where p(zt|ut) =
∫
xt

p(zt|xt, ut) dxt is the prior probability

of receiving observation zt. This is not, in general, equivalent

to Eq. (4). However, Eq. (5) is a good approximation

when p(zt|xt, ut) accurately discriminates between the man-

ifolds. In the limit, when observations perfectly discriminate

between manifolds, p(zt|xt, ut) becomes binary and this

technique directly samples from the target distribution. This

approximation performs well for our purposes since contact

sensors accurately discriminate between contact and no-

contact.

Finally, we sample a particle x̄
[i]
t according to the belief

distribution over the chosen manifold b(xt|Mi). Our key
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Fig. 4. Belief state estimated by the CPF and MPF for BarrettHand
pushing a cylindrical bottle. (a) Particles that are in the swept volume of
the hand are eliminated through no-contact observations. (b) Contact occurs.
(c) The CPF has converged to an inaccurate state estimate, whereas the MPF
successfully tracks the object.

insight is that we can apply a different sampling technique for

each Mi that is specifically designed to take advantage of the

structure of the manifold. For the manifolds {Mi : i < m},
we sample from the dual proposal distribution as described

below. In the case of the free space Mm, we sample x̄
[i]
t with

the conventional technique and reject any x̄
[i]
t ∈ ∪

m−1
i=1 Mi.

This rejection sampling step is necessary to avoid biasing

the estimate of b(xt) towards the manifolds.

B. Dual Proposal Distribution

If we choose to sample from Mi for i < m, then the

conventional sampling technique will be ineffective. Instead,

we sample from the observation model and compute the

importance weights using the motion model. First, we sample

from the dual proposal distribution [5]

x̄
[i]
t ∼

p(zt|xt, ut)

p(zt|ut)
, (6)

which assign high probability to particles that are consistent

with zt (line 5). Next, we compute the importance weight

w̄
[i]
t = η p(zt|ut)

∫
S

p(x̄
[i]
t |xt−1, ut)b(xt−1)dxt−1 (7)

using the motion model (line 6). Just as before, the im-

portance weight is found by dividing the target distribution

(Eq. (2)) by the proposal distribution (Eq. (6)) [5].

The conventional proposal distribution forward-predicts

using the motion model and computes importance weights

using the observation model. Conversely, the dual proposal

distribution samples particles from the observation model and

weights them by how well they agree with the prediction

of the motion model. This is the logical inverse of the

conventional proposal distribution and has complementary

strengths and weaknesses: the dual distribution performs best

with a discriminative observation model that is tightly peaked

around the true state [5].

C. Mixture Proposal Distribution

Just as how the conventional proposal distribution per-

forms poorly with accurate sensors, the dual proposal dis-

tribution tends to be disrupted by observation noise. The

MPF uses the dual proposal distribution to sample from the

manifolds and, as result, shares the same weakness.

We use a mixture proposal distribution [5] to mitigate this

effect by combining both sampling techniques. Instead of

sampling all of the particles from the MPF, we sample n

particles from the CPF and d particles from the MPF. We

then combine the two sets of particles with the weighted

sum (1− φ)X̃t = Xt + φX̄t before resampling. The mixing

rate 0 ≤ φ ≤ 1 is a parameter that allows the algorithm

to smoothly transition from the CPF (φ = 0) to the MPF

(φ = 1).

Intuitively, d = |X̄t| is the number of particles necessary

to cover manifolds and n = |Xt| is the number of additional

particles necessary to represent b(xt) over the entire state

space.

D. Manifold Particle Filter for Contact Manipulation

In contact manipulation, m = 2 and there is a single

contact manifold M1 that contains the set of all states that

are in non-penetrating contact with the hand. The free space

M2 contains the remaining states that are not in contact

with the hand. Using the manifold particle filter for contact

manipulation requires two extra capabilities: (1) sampling

from the dual proposal distribution and (2) weighting with

the transition model.

First, we must sample from the dual proposal distribu-

tion. In the general case, where the object and hand have

arbitrary three-dimensional geometry, we represent M1 as

a pre-computed set of discrete samples that are in non-

penetrating contact with the hand. This representation is

tractable because M1 is a two-dimensional manifold that

can be densely covered using a relatively small number of

samples. We sample from Eq. (6) by assigning each sample

a weight equal to likelihood p(zt|xt, ut). Then, we sample

x̄
[i]
t with replacement from this weighted set.

It is often possible to use a more compact representation

of M1 if there is special structure in the observation model

or object-hand geometry. For example, we can pre-compute

a set of samples consistent with each observation if the

sensors are binary. In another case, we can approximate M1

as a polyhedron if the object’s and hand’s geometry can be

decomposed into a set of extruded convex polygons [28].

Second, we must compute the dual importance weights

given in Eq. (7). Importance weights are defined up to a

scale factor, so we drop the constant term η p(zt|ut). The

remaining term
∫
S
p(xt|xt−1, ut)b(xt−1)dxt−1 is equal to

the belief at time t before incorporating observation zt.

We evaluate this term by forward-simulating the previous

set of particles Xt−1 to time t using p(xt|xt−1, ut) and

approximating the value of this distribution at x̄
[i]
t using

kernel density estimation. Kernel density estimation is a non-

parametric technique for estimating a continuous probability

distribution that generated a set of samples.

Note that forward-simulating Xt−1 to time t is necessary

for both the CPF and MPF. As a result, the MPF incurs

minimal computational overhead over the CPF. Additionally
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Fig. 5. Andy pushing a box (a)–(d) and cylinder (e)–(i) across the table. The top row shows a video of the experiment from an overhead camera. The
bottom two rows show the belief state estimated by the CPF (middle, dark blue) and MPF (bottom, light orange) as a cloud of particles. Ground truth is
shown as a thick green outline. In both cases, the belief state estimated by the MPF is more accurate than that estimated by the CPF.

it is possible to re-use this computation when the CPF and

MPF are combined in a mixture proposal distribution.

Figure 4 shows a comparison of the CPF and MPF with

simulated BarrettHand pushing a cylindrical bottle from left-

to-right. Each link is equipped with a binary contact sensor

and the b(xt) is shown as a colormap. The CPF (Fig. 4-

Top) fails to track the state because there are no particles

in the vicinity of the contact observation. The MPF (Fig. 4-

Bottom) avoids this problem by sampling particles from the

dual proposal distribution.

VI. REAL-ROBOT EXPERIMENTS

We evaluated the estimators on Andy, a bimanual manip-

ulator developed for the DARPA ARM-S competition. Andy

used a Barrett WAM arm equipped with the i-HY [29] end-

effector to push an object across a table. The i-HY’s palm

(48 tactels), interior of the proximal links (12 tactels each),

interior of the distal links (6 tactels each), and fingertips

(2 tactels each) were equipped with an array of tactile

sensors [6] based on MEMS barometer technology. The

tactels were grouped into 39 vertical stripes to compensate

for dead tactels and to simplify the observation model.

Figure 5 shows the two representative runs of the state

estimator on Andy. The ground-truth pose of the object was

tracked by an overhead camera using a visual fiducial. Both

filters were run with 250 particles, with n = 250 for the

CPF and n = 225, d = 25, φ = 0.1 for the MPF, and

were updated after each 5 mm of end-effector motion. With

the speed of the arm, this corresponded to an update rate of

approximately 5–15 Hz.

In Experiment 1, Andy pushed a metal box that made

initial contact with the right proximal link (b) and rolled

into the palm (c). The CPF did not have any particles in the

small observation space and, thus, failed to track the box as it

rolled into the palm (d). The MPF successfully tracked the

box by sampling particles that agree with the observation.

Note that the MPF was able to exploit the observation of

simultaneous contact on the palm and distal link to correctly

infer the orientation of the box.

In Experiment 2, Andy pushed a cylindrical container that

made initial contact with its left fingertip (e). The cylinder

rolled down the distal (f) and proximal (h) links to finally

settle in the palm (i). Both the CPF and MPF made use of

the initial contact observation to localize the container near

the robot’s left fingertip. However, the CPF’s few remaining

particles incorrectly rolled off of the fingertip and outside

the hand. The MPF avoided particle starvation near the true

state and was able to successfully track the container for the

duration of contact.

Please see the accompanying video for more experiments.

VII. SIMULATION EXPERIMENTS

We have qualitatively shown that the MPF outperforms the

CPF when used on a real robot. In this section, we verify

those properties in simulation and show that these differences

are statistically significant.

We will verify the following hypotheses:

H1 The error of the CPF and MPF are similar before

contact.

H2 The MPF has lower error than the CPF after contact.

H3 Improving resolution increases the error of the CPF.

H4 Improving resolution reduces the error of the MPF.

Additionally, we demonstrate that the MPF achieves lower

error than the CPF when provided with a fixed computational

budget.

A. Experiment Design

We implemented both filters in the OpenRAVE [30] sim-

ulation environment and evaluated the algorithms with a

simulated BarrettHand. The hand was equipped with binary

contact sensors of a fixed size, ranging from 1 cm to 5 cm,

uniformly distributed across the front surface of the hand.

Observations were randomly perturbed with a 5% probability

to simulate sensor error.

In each trial, the hand moved in a straight line at a

constant speed of 5 cm/s for 10 s and received observations

at 10 Hz. The initial pose of the object was drawn from

a Gaussian prior distribution with a randomly chosen mean

and a standard deviation of 10 cm. The object’s orientation

was uniformly sampled within 0.4 rad of its true value.

Contact was simulated using three-dimensional mesh col-

lision checks. For efficiency, the pushing simulation was

implemented using an approximate, cached collision checker.
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Fig. 6. RMSE and SR of the CPF (n = 500) and MPF (n = 450, d =
50, φ = 0.1) plotted over time along with their 95% confidence intervals
(gray shaded regions). Contact occurs at t = 0 and is denoted by the
vertical dashed line. The horizontal dashed line in the middle figure marks
the angular resolution of our approximate physics model.

B. Metrics

We will compare the performance of the algorithms with

the following metrics:

• Root-mean-square error (RMSE) between the particles

and the true state.

• Success rate (SR), the probability mass of particles

within 2 cm of the true state

• Update rate (UR), the time required to perform a single

action-observation update

These three metrics capture different properties of the filters.

RMSE is the traditional error metric used in the localization

literature [5, 27] and measures how closely the particles track

the true state. Similarly, SR acts as a proxy of how well the

filter would perform while performing a task that succeeds

under bounded uncertainty. UR directly measures the real-

time performance of each filter and acts as a proxy for its

computational complexity.

C. Estimation Error

We tracked the RMSE (Fig. 6-Top, Fig. 6-Middle) and

SR (Fig. 6-Bottom) over 250 experiments. In all cases, the

x-axes of the plots were aligned such that contact occurs at

t = 0. The hand was outfitted with 1 cm resolution sensors

and pushed a 11.5 cm× 1.7 cm× 17.2 cm rectangular box.

Before contact, both filters behave similarly and there

not a significant difference in RMSE (t(4066) = 0.20,

p = .844). After contact, the MPF achieves 6.4 cm less

RMSE than the CPF (t(15630) = 87.30, p < .001). These

results confirm hypotheses H1 and H2: the MPF achieves

significantly lower error than the CPF. Note that position and

orientation errors are coupled: once the transients of initial
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Fig. 7. (a) Effect of sensor resolution on RMSE. The MPF monotonically
decreases in RMSE as resolution increases. Conversely, the accuracy of
the CPF degrades with high resolution sensors. (b) Real-time performance
of the filters. The MPF achieves lower RMSE than the CPF given a fixed
computational budget. In both cases, the error bars denote a 95% confidence
interval.

contact fade, further improvement in positional accuracy

comes from better knowledge of the object’s orientation.

D. Sensor Resolution

We additionally evaluated the effect of sensor resolution

on the RMSE error of both filters over 250 experiments. To

simplify the analysis, we pushed a 3.5 cm radius cylindrical

bottle in this set of experiments. Figure 7(a) shows the

average RMSE error during contact as the sensor resolution

was varied from cell sizes of 1 cm to 5 cm. Smaller sizes

correspond to a higher sensing resolution and, ideally, lower

error. As expected, the MPF outperforms the CPF at all

sensor resolutions.

In both cases, an ANOVA showed that sensor resolu-

tion was a significant main effect for both the particle

filter (F (3, 17900) = 316.83, p < .001) and the MPF

(F (3, 17900) = 105.72, p < .001) with a negative corre-

lation for the CPF and a positive correlation for the MPF.

This confirms hypotheses H3 and H4. Unlike the MPF, the

performance of the CPF degrades as the sensor resolution

increases. As described in Section IV, this occurs because

it becomes progressively less likely to sample particle with

high p(zt|xt, ut) during periods of contact. The MPF does

not suffer from this problem and improves with sensor

resolution.

E. Realtime Performance

These filters are intended to be used for real-time feed-

back. Therefore, it is important that the filters achieve

acceptable error at real-time update rates. Figure 7(b) shows

RMSE during contact as a function of update rate using the

same parameters as in Section VII-D. The update rate was

indirectly manipulated by varying the number of particles

from 100 to 2000 and measuring the time required for each

filter to execute a single update step. All measurements were

taken using a single core of a 2.53 GHz Intel Xeon processor

and were averaged over 250 experiments.

The MPF achieved acceptable accuracy (e.g. < 2.5 cm

RMSE) with several hundred particles and URs of 20+ Hz.
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Conversely, the CPF only was able to achieve 4 cm RMSE

with 2000 particles and an UR approximately 1.25 Hz. These

results confirm that CPF requires a huge number of particles

to accurately track the state and is ill-suited for real-time use.

Conversely, the MPF is fast enough to be used as real-time

feedback.

VIII. DISCUSSION AND FUTURE WORK

We made several simplifying assumptions to find a real-

time solution to the state estimation problem during contact

manipulation.

First, we implicitly assume that the hand can only contact

the object that we are manipulating. This may not be possible

in highly cluttered environments where we must contact

multiple objects to achieve the desired task [12]. In future

work, we hope to explore methods of generalizing the MPF

to environments with multiple—both static and movable—

objects. We believe it is possible to do so by factoring

the belief state (e.g. through Rao-Blackwellization) to avoid

requiring exponentially more particles.

Second, our implementation assumes X = SE(2). This

is sufficient for planar manipulation, but the state space be-

comes larger if objects are articulated, can topple, or can roll.

In particular, sampling x̄
[i]
t according to Eq. (6) may become

challenging. For most observation models, this is done by

representing M1 with a finite set of samples. However, the

number of samples required to densely represent M1 grows

exponentially with the dimension of the manifold. We plan

to address this by replacing the importance sampling step

with a more efficient Markov chain Monte Carlo sampling

technique.

Third, we can improve our algorithm by recognizing

that tracking the state on different manifolds may have

very different computational costs. They are different during

pushing: tracking particles on the contact manifold requires

making a physics-based motion prediction, whereas tracking

particles in the free space is almost free since those particles

do not move. Similarly, different manifolds may require dif-

ferent number of particles. For example, fewer particles may

sufficient to track the state on lower dimensional manifolds.

The performance of our algorithm can be improved by taking

into account such manifold characteristics.

In summary, we have shown that contact sensors funda-

mentally differ from the vision and depth sensors tradition-

ally used for state estimation. Using this insight, we formu-

lated the MPF and demonstrated that contact sensors provide

useful information during manipulation both in simulation

and on a real robot. We believe that the state estimation

technique described in this paper could be used to create

robust closed-loop actions that use real-time contact feedback

to deal with high amounts of uncertainty.
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