
  

� 

Abstract² To realize an autonomous odor source localization 

robot, we focused on the adaptability of an insect¶s brain to 

compensate for rotational disturbances during odor source 

searching behavior. We manipulated motor outputs to control 

the sensory feedback of an insect using a brain-machine hybrid 

system. This system is composed of an insect¶s head and a 

two-wheeled mobile robot. The velocity of the robot is 

proportional to neural activities descending from an insect brain. 

We successfully manipulated the behavior of the robot. In 

disturbance experiments, insects responded to given rotational 

disturbances by modifying their neural activities to make 

compensative angular velocity. We assumed this control system 

of the compensation as an output-error model. We calculated the 

parameters under different motor gains to reveal it as an 

adaptive controller. We propose that an insect has its 

appropriate angular velocity during odor source localization, 

and performed simulation experiments involving an odor source 

searching agent and odor distribution environment. We 

calculated the cost for odor source localization by changing the 

angular velocity of the agent, and found that it had the minimum 

value. 

I. INTRODUCTION 

There is a need for a technology that assists in locating 
injured persons or dangerous objects (such as toxic gases) in 
disaster sites. In most cases, scents that are released from them 
are traced to locate the odor sources. This task is called 
chemical plume tracing (CPT) and is not easily solved by 
artificial systems because scents that are distributed as plumes 
[1], [2], show trajectories that cannot be easily modeled and 
the odor environment is almost unpredictable. We usually rely 
on the noses of dogs to solve this task. However, it takes a long 
time to train dogs and there is an ethical issue regarding the 
use of animals in dangerous places. There is therefore the need 
for an autonomous robot that can trace an odor source. To date, 
however, there has been no success in the development of a 
practical design.  

On the other hand, various animals have the ability to locate 
odor sources, and their strategies of localization have been 
studied [3]. Insects are among such animals [4], [5], [6], [7], 
[8], [9]. Even though their brain size is comparatively small, 
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they can adapt to localize an odor source to ensure survival in 
changing environmental conditions [10].  

In this study, based on biological experiments we 
performed, we evaluated the important behavioral parameters 
in an insect¶s effective CPT. To control the behavioral 
parameter, we used a brain-machine hybrid system which we 
developed [11], [12]. The brain-machine hybrid system is a 
two-wheeled mobile robot controlled by neural activities 
relating to steering behavior recorded from an insect¶s head 
mounted on the robot. Using this system, we manipulated the 
motor output of the robot by giving disturbances as angular 
velocity and translational velocity to control the relationship 
between a brain and environment. We add arbitrary movement 
on the robot controlled by the command signals from the brain. 
Moreover, in simulation experiments, we evaluated a 
behavioral parameter by calculating the costs for odor source 
localization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. BRAIN-MACHINE HYBRID SYSTEM 

We used a male silkworm moth as an experimental animal. 
Male silkworm moths orient toward conspecific females by 
displaying a programmed behavioral pattern upon detection of 
sex pheromones by their antennae. This behavior consists of 
straight-line walking, zigzagging turns and looping [13], [14], 
[15], [16]. Silkworm moths reset and restart this behavior 
every time they detect female sex pheromones. Because the 
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Fig. 1. Composition of a brain-machine hybrid system compared with 

that of organism. In an organism, the brain and body are inseparable. 

In the brain-machine hybrid system, we can separate and identify 

functions of a brain using a robot which is controllable, allowing it to 

interact with real environments. 
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relationship between input stimulus and output behavior is 
clear, it is a suitable CPT model to use in analysis. In addition 
to their behavioral pattern, they do not fly and their orientation 
trajectories can be analyzed in a two dimensional surface.  

We recorded neural activities related to turn walking and 
UHFRQVWUXFWHG�WKH�PRWK¶V�EHKDYLRU�on the robot. We used the 
activities of neck motor neurons 2

nd
 CNb (2

nd
 cervical nerve b) 

[11], [12]. 2
nd

 CNbs consist of 5 motor neurons and innervate 
to neck muscles, which contract during horizontal side-wise 
head movement.  There is a pair of 2

nd
 CNbs, and head swing 

is caused by the contraction of complementally muscles¶ 
regulated by bilateral 2

nd
 CNbs [17]. Based on simultaneous 

recording of head swing and walking, the angular velocity of 
the moths¶ turning walk and angle of head swing were found to 
be in agreement [17], [18]. 

Details of the signal recording methods have already been 
described in previous works [11], [12], [17], [18]. We applied 
two glass micro-electrodes to suck the cut ends of the right and 
left 2

nd
 CNb nerves. Recorded raw signals were amplified and 

filtered through small amplifiers [11], [12] on the robot 
(e-puck, EPFL), and acquired signals were processed in a 
micro-computer of the robot for conversion into motor outputs 
�ZKHHOV¶�URWDWLRQ�.  

Neural activities are shown as waveforms such as spines, 
and we refer to them as spikes, where a spike is a unit of neural 
activities. To quantify neural activities of the bilateral 2

nd
 

CNbs, we set thresholds to count spikes. We set a 
spike-EHKDYLRU� FRQYHUVLRQ� UXOH� WR� UHFRQVWUXFW� D� PRWK¶V�
behavior on a robot [11], [12]. The forward velocity is 
proportional to the sum of the right and left 2

nd
 &1EV¶�VSLNLQJ�

rates. The angular velocity is proportional to the difference 
between the right and left 2

nd
 &1EV¶� VSLNLQJ� UDWHV. A 

proportional constant was calculated from the average 
walking speed (26 mm/s) in behavioral experiments and 
average spiking rate (6.5 spikes/0.1 s) in physiological 
experiments. The control cycle of the hybrid system is 0.1 
second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. MODELL OF FEEDBACK CONTROL SYSTEM IN INSECT AND 

THE HYBRID SYSTEM   

The hybrid system can use sensory information by using a 
silkworm moth¶s sensors including antennae, compound eyes, 
and other sensory organs. To identify the sensory feedback 
system in the brain, we assumed a functional block diagram of 
this hybrid system. We set frameworks of feedback control 
systems between a silkworm moth¶s sensors and an artificial 
body¶s motor output. Here, we focused on the sensory 
feedback system including a plant (P, a robot), a controller (C, 
a brain) and a sensor (S) (Fig. 3). Command signals for the 
behavioral patterns are generated in the upper region of the 
brain, and the pattern is then modified in feedback systems in 
the brain by using sensory feedbacks (Fig. 3). Using the 
brain-machine hybrid system, we can separate functions of a 
brain and body by independently giving disturbances in the 
artificial body to identify the controller of the feedback 
system. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

IV. DISTURBANCE EXPERIMENTS ON AN BRAIN-MACHINE 

HYBRID SYSTEM 

For the first step of the disturbance experiments, we gave 
the robot forced movement and recorded its neural responses. 
We rotated the robot with an angular velocity 1.0 rad/s 
independent of 2

nd
 &1E¶V�VSLNLQJ�UDWHV. The moth on the robot 

responded to rotational movement (Fig. 4). The right and left 
2

nd
 CNbs were excited in response to the counterclockwise 

and clockwise rotations, respectively. These responses 
disappeared when the compound eyes were covered by 
aluminum foil. These results indicate that the responses were 
caused by visual feedback. Because the moth was set 
ventral-side up (Fig. 2), each 2

nd
 CNb¶s excitation followed 

ipsi-lateral optical flow caused by rotational movement. In 
general, flying insects keep their body axis constant using 
directional optical cues [19], [20], [21], [22], [23].  

The 2
nd

 CNbs only responded to rotational forced 
movement which induced an angular velocity. The responses 
to rotational movement increased as the angular velocity 
increased (Fig. 5). There was no response in the 2

nd
 CNbs 

during forced translational movement which induced forward 
velocity. 
 

 
 
Fig. 2. Picture of a brain-machine hybrid system. Neural signals 

recorded from an insect using two electrodes are amplified and 

processed for conversion into motor outputs of the mobile robot. i.e. a 

moth on the robot with sensors is a living controller of the artificial body.  

  
Fig. 3. Feedback control system in the brain-machine hybrid system. 

Desired value r from the premotor area in a brain is the command signals. 

A disturbance (in this figure, the rotational angular velocity d) given to a 

robot (P, plant) is fed back to the brain (C, controller) through sensors 

(S). If there are any adaptive feedback mechanisms, the disturbance will 

be cancelled out in behavior outputs (in this figure, y) by changing the 

neural spike rate.  
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From the response properties of the 2

nd
 CNbs described 

above, for the next step, we introduced the angular velocity as 
disturbances to the hybrid system. In this experiment, the 
hybrid system is mobile using the robot converting steering 
neural signals acquired from the moth. We investigated the 
ability of a moth on the hybrid system to cancel disturbances 
using their own steering command signals. Disturbances were 
added to the motor outputs of the robot as increments of 
angular velocity (1.0 rad/s) with direction (clockwise or 
counterclockwise rotation) for different durations (0.5-5.0 s) 
and intervals (5 s) (Fig. 6).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With the hybrid system, a moth could cancel out 
disturbances using compensative neural responses to maintain 
its body position (Fig. 7). When the clockwise rotation was 
given, the view from a moth on the robot flew from right to left, 
and the left 2

nd
 CNb was excited to follow the view. Then, the 

excitation made the robot turn in a counterclockwise direction 
to compensate for the given disturbance. This response is the 
same as that shown in Fig. 4.  

Fig. 7 shows the given disturbances as increments with the 
direction and neural responses converted into angular velocity. 
The motor output of the hybrid system is the sum of 
disturbances and neural outputs. The motor output in Fig. 7 
shows that neural outputs in directions opposite the angular 
velocity of the disturbances cancel out the disturbances. 

Then, we changed a spike-behavior conversion rule of the 
hybrid system into an angular velocity double condition and 
introduced disturbances as in the normal condition (Fig. 6). As 
we mentioned in section II, we set the angular velocity of the 
hybrid system proportional to the difference between the right 
and left 2

nd
 &1EV¶�VSLNLQJ�UDWHV��A proportional constant was 

calculated from the average walking speed (26 mm/s) in 
behavioral experiments and average spiking rate (6.5 
spikes/0.1 s) in physiological experiments. We doubled the 
proportional constant in the angular velocity doubled 
condition. Even though the conversion rule had changed, the 
angular velocity disturbances given to the hybrid system were 
cancelled out by neural responses. This means that the neural 
function compensative to disturbances works according to the 
sensory feedback resulting from motor outputs. From this 
result, we supposed that there is an adaptive feedback system 
in the controller (moth¶s brain) of the hybrid system. 
 
 
 
 

 
 

Fig. 6. Protocol of disturbance experiments. Disturbances as angular 

velocity were given to the mobile hybrid system as steps adding to 

motor outputs. Disturbances were given as 2 pairs of clockwise and 

counterclockwise rotations with 5 s intervals. To avoid responses 

caused by learning or adaptation, we introduced disturbances for 4 

different durations and shuffled the order. 

 
Fig. 5. Response properties of right and left 2nd CNbs to given rotational 
movement for different angular velocities. In this graph, ³Right´ and 
³Left´ bars represent right and left 2nd CNb¶s responses to 
counterclockwise and clockwise rotations, respectively. The hybrid 
system was rotated at the center in a cylindrical arena. The diameter of 
the arena is 600 mm, while its height 526 mm. The inside wall of the 
arena is patterned with sinusoidal stripes to duplicate a visual condition. 
The width of a stripe is 47.5 mm. Spiking rates with standard deviations 
were averaged results of 30 trials from different individuals.  

 
Fig. 4. Typical neural responses of a moth to rotational movement of 

the robot. Upper graph shows both 2nd CNbs¶ neural activities 

responding to forced rotational movement (1.0 rad/s) on a robot. We 

switched 5 s clockwise and counterclockwise rotations. The lower 

graph shows histograms of spiking number corresponding to the 

upper neural activities. The bin width of the histogram is 0.1 s. Cw: 

clockwise rotation. Ccw: counterclockwise rotation. 
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V. COMPARISON OF PARAMETERS IN TRANSFER FUNCTION 

(OUTPUT ERROR MODEL) 

We applied a system identification method to a supposed 
feedback control system (Fig. 3) using input and output data 
(disturbances d [rad/s] and motor outputs y [rad/s]). We 
estimated the system model parameters using the output error 
model (OE model). The model is described by the relationship 
between a function B(q) and a function F(q) as in (1). The 
function B(q) represents the input characteristics, while the 
function F(q) represents the output characteristics. This model 
has three parameters, namely b1, f1 and f2 as in (2). We 
calculated these parameters using input disturbance data d(k), 
output behavior data y(k) and white noise w(k). 
 

 
 

(1) 
 
 

 
(2) 

 
 
 

We calculated the model parameters (b1, f1, f2) based on 
the neural responses acquired from disturbance experiments 
in normal angular velocity and doubled angular velocity 
conditions (Fig. 8). By comparing the parameters of the 
angular velocity double condition with those of the normal 
angular velocity condition, we found that there was no 
significant difference in the parameters between two groups 
(t-test, P < 0.05). This means that the input disturbances were 
cancelled out by neural responses to keep the behavior outputs 
constant independent of the spike-behavior conversion rule. In 
short, a brain can be assumed to be an adaptive controller that 
keeps the angular velocity constant. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. SIMULATION EXPERIMENTS 

From the system identification experiments, we concluded 

that the moth controlled command neural signals to adapt the 

different motor gain of the robot. The hybrid system was not 

just moved by the given spike behavior conversion rule. The 

system maintained its behavior constant. 

 

A. Simulation Setup 

Based on the experimental results regarding the effect of 
disturbances, we hypothesized that there would be an 
appropriate angular velocity during odor source localization. 
We investigated whether the adaptive feedback control system 
contributed to CPT performance, and carried out simulations 
to investigate the relationship between the CPT performance 
and the angular velocity of a moth. 

We assumed the behavior model of a moth. A simulated 
moth agent has two sensors that detect pheromone stimuli. 
The odor source searching behavior is expressed on a two 
dimensional coordinate field because silkworm moths cannot 
fly. They walk to search for an odor source. 

We simulated a moth¶s programmed behavior (straight-line 
walking, zigzag turns and looping) by setting the average 
forward velocity, angular velocity and duration acquired from 
behavioral experiments (Fig. 9) [16]. This programmed 
behavior resets and restarts every time a moth agent detects a 
pheromone stimulus.  

To investigate whether the CPT performance was related to 
the angular velocity, we considered the angular velocity 
during zigzag turns and looping as a variable.  
 
 
 

 
 
Fig. 7. Typical responses to step disturbances on the hybrid system. 

This figure shows the time response of the neural response, 

disturbances and motor output. Neural responses were converted into 

angular velocity. 1.0 rad/s angular velocities with 5 s duration were 

given as clockwise and counterclockwise rotational disturbances. The 

vertical axis indicates the angular velocity. A positive value indicates 

counterclockwise rotation and a negative value indicates clockwise 

rotation. The motor output is represented as the sum of disturbances and 

neural responses. 

 
 
Fig. 8. Parameters in the feedback system model. Parameters in the 

output error model were calculated using input data and output data 

acquired from disturbance experiments under different angular velocity 

conditions (normal gain and double gain). Normal gain and double gain 

refer to normal angular velocity and angular velocity double conditions. 

Values shown in bar graphs are the averages of 22 trials in 5 individuals 

with standard deviations. In each parameter, there was no significant 

difference between two conditions (t-test, P < 0.05). 

)()(
)(

)(
)( kwkd

qF

qB
ky �  

)()(
1

)(
2

2

1

1

1 kwkd
qfqf

b
ky �

��
 

��
 

360



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The sensor that detects the pheromone stimuli is determined 
by considering the bearing of an agent moth and the wind 
direction. The direction of the first turn and loop behavior 
correspond to the side of the antenna which detects the 
pheromone stimulus (Fig. 9) [24]. We also assumed that a 
moth agent has a wing flapping effect, which is used to avoid 
detecting a pheromone stimulus coming from behind.  Real 
moths beat their wings while searching for an odor source. 
There is therefore an air pocket behind the moth, and moths 
without wings tend to require more time to localize an odor 
source than those with wings that are intact [15]. 

We assumed the pheromone field model which is described 
as an odor detecting probability density distribution [25]. An 
odor source was set upwind from the agent¶s starting point. 
Considering the upwind direction, the distribution pattern is 
asymmetric. The distance from the starting point to the target 
is 512 mm, and the time limit for odor source localization is 
720 s.  

Using the moth behavior modeled agent and the odor 
distribution modeled field, we simulated the odor source 
searching behavior using the variable angular velocity of an 
agent. We varied the angular velocity of an agent from 0.1 
rad/s to 6.3 rad/s for every 0.1 rad/s. We repeated orientation 
experiments in this simulation and acquired 100 sets of data 
averaging 100 trials. 
 

B. Evaluation of Performance in Odor Source Localization by 

Orientation Cost 

Based on results acquired in the simulation experiments, we 
evaluated the CPT performance by calculating the odor source 
localization cost defined as (3). 
 
 

                                                                             (3) 
 
 

This cost function is composed of evaluation indices (T, K, 
L) of the first order lag system. The success rate of odor 
source localization gradually increases as moth agents arrive 

at the pheromone source in simulation experiments (Fig. 10). 

K(T) means the rate of success, L(T) means the minimum 

localization time, and T(T) means the variance of the 
localization time. Using these indices, we evaluated the cost 
for each angular velocity.  

If the angular velocity is large, the odor source localization 
behavior of a moth agent is very uncertain. The agent tends to 
turn, and the recovery rate required to detect the pheromone 
stimulus increases. Both K and L become large. If the angular 
velocity is small, the behavior of an agent is similar to an 
all-or-nothing approach. Once the agent misses the 
pheromone stimulus, it gets lost because of the low angular 
velocity. L becomes small, but T becomes large.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9. Behavior model simulated on a moth agent. A simulated moth 

agent has right and left sensors that detect pheromone stimuli. The 

programmed behavior of a moth agent consists of a surge (straight-line 

walking) and following turning behavior (zigzag turns (3 times) and 

loop). Each behavioral phase has a forward velocity, angular velocity 

and duration acquired in behavioral experiments. In simulation 

experiments, angular velocity during zigzag turns and loop behavior is 

regarded as variable T.   

 
 
Fig. 11. Evaluation of odor source localization cost. Cost calculated in 

(3) according to angular velocity from 0.1 rad/s to 6.3 rad/s in 

increments of 0.1 rad/s are averaged with standard deviations. 

 
 
Fig. 10. Parameters used in evaluating the odor source localization cost. 

This figure shows an example of relationships between the odor source 

localization success rate and the time required. The success rate 

increases over time. K is the rate of success. L is the minimum 

localization time. T is the variance of the localization time, and is 

determined by K and L.  
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By calculating the costs of odor source localization 
corresponding to each angular velocity from 0.1 rad/s to 6.3 
rad/s in increments of 0.1 rad/s, the cost reached a minimum at 
around 1.0 rad/s (Fig. 11). This means that an angular velocity 
of around 1.0 rad/s improves the CPT performance. The 
average angular velocity of real moths is close to 1.0 rad/s. As 
we discussed above, simply increasing the angular velocity is 
not the optimum way to reduce the cost, and there is a need for 
a trade-off between the success rate and the localization time. 
The angular velocity of a moth should be adapted to an 
appropriate value through evolution, and a moth maintains its 
angular velocity using an adaptive sensory feedback system.  

It is reported that moths use optomotor responses (feedback 
responses to maintain the body position using optical cues) 
during odor source localization [26], [27], [28], [29], [30]. 
The results of our simulation experiments suggest that a moth 
maintains its body position during odor source localization.  
 
 

VII. CONCLUSION 

In this study, we showed that an insect could compensate 
for steering disturbances by controlling its angular velocity, 
and it had an appropriate behavioral value to minimize the 
cost in odor source localization. CPT performances given by 
the appropriate behavioral values suggested in this study can 
be verified using artificial gas sensors implemented on a 
mobile robot in real odor environments. 
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