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Abstract— Achieving a robust, accurately scaled pose esti-
mate in long-range stereo presents significant challenges. For
large scene depths, triangulation from a single stereo pair
is inadequate and noisy. Additionally, vibration and flexible
rigs in airborne applications mean accurate calibrations are
often compromised. This paper presents a technique for accu-
rately initializing a long-range stereo VO algorithm at large
scene depth, with accurate scale, without explicitly computing
structure from rigidly fixed camera pairs. By performing a
monocular pose estimate over a window of frames from a single
camera, followed by adding the secondary camera frames in a
modified bundle adjustment, an accurate, metrically scaled pose
estimate can be found. To achieve this the scale of the stereo
pair is included in the optimization as an additional parameter.
Results are presented both on simulated and field gathered data
from a fixed-wing UAV flying at significant altitude, where the
epipolar geometry is inaccurate due to structural deformation
and triangulation from a single pair is insufficient. Comparisons
are made with more conventional VO techniques where the scale
is not explicitly optimized, and demonstrated over repeated
trials to indicate robustness.

I. INTRODUCTION

Visual Odometry (VO) is a well established field, with

a large sum of literature on the topic in recent years [1],

[2], [3], [4]. However, stereo VO using rigidly fixed camera

pairs has received little investigation as a pose estimator

in long-range (or ultra-short baseline) applications, mostly

from a lack of accuracy and the nonlinear effects due to

extremely small disparities at this range. It is well known

that with increasing distance of the scene from a camera pair,

the quantization inherent from tracking features via single

pixels means that depth error grows quadratically [5] with

distance (Fig. 1). Most applications of visual odometry avoid

the problems inherent in long distance sensing by either

performing VO in environments where the camera system is

in close proximity to scene structure [2], [6], [7] or increasing

the baseline of the stereo pair [8].

In these more conventional scenarios, 3D scene structure is

initially triangulated from the calibrated stereo pair, meaning

no special initialization step is needed. Additionally, scale is

implicitly defined by the stereo baseline. However, at large

depths such triangulation is noisy and structural deformation

from vibration or other factors may render accurate trian-

gulation from the rigid pair impossible. This paper presents

a technique for accurately initializing the pose of a stereo

camera pair from 8-10 sequential frames, at accurate metric

scale, for long-range applications where triangulation from
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a single pair is neither reliable nor accurate. In previous

work [18] we use a triplet of cameras to estimate initial

scale, but this initialization routine often suffers from degen-

eracies caused by linear motion and the poor observability

of scale from a limited set of camera frames. To address

these shortcomings, this paper presents a novel initialization

routine where modification is made to bundle adjustment

that includes the scale of the rigid-stereo transform as an

optimizable parameter, in addition to optimizing the stereo

transform within fixed bounds (an inequality constrained

optimization) to account for structural deformations. By

performing the initialization over a large window (∼8-10)

of frames, poor scale observability is addressed and degen-

eracies are avoided.

With the technological advancement of multi-rotor and

fixed-wing Unmanned Aerial Vehicles (UAVs), vision has

a unique position to fill as a full 6DOF sensor in areas

where the Global Positioning System (GPS) is unreliable

due to urban and natural canyons, and maintains accurate

estimates for far greater distances than inertial sensing alone

[9], [10], [11]. In pure vision based pose estimation, stereo

has been shown to estimate pose at altitudes of 40m [8],

[12]. Additionally, it has applications in other schemes such

as riverine environments [13] or even pose estimation on

other planets such as Mars, where localization infrastructure

is non-existent.
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Fig. 1. Depth versus depth resolution and disparity for selected baselines of
a stereo pair with 1024×768 image resolution, focal length of f =∼6mm
and a 3.75µm pixel size.

While the obvious technique in long-range sensing is to

increase the baseline-to-depth ratio, in many cases this is

neither beneficial nor practical. With increasing baseline the

stereo calibration becomes increasingly unreliable due to flex

and vibration induced deformation, and the apparatus be-

comes unwieldly when placed on smaller vehicles. Structural

deformation can be counteracted by engineering but this also

means larger, heavier rigs, which are specifically unsuitable

for flying vehicles where size and weight restrictions are

paramount. In many long-range stereo applications, a short

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2115



baseline remains the only feasible implementation when seen

from an engineering perspective.

In most stereo-based VO algorithms, scene structure is

directly triangulated from physical stereo pairs and used to

initialize a new pose update in an iterative fashion [14],

dropping the structure and re-triangulating at every step.

However, at long range the triangulation from a single pair

is inadequate (See Fig. 1, reflective of the setup utilized in

this paper) and noisy, meaning a poor pose update and ulti-

mately poor reliability. By triangulating from a single camera

moved spatially through time, a large pseudo-baseline can be

generated more akin to monocular VO, and the integration

of multiple observations from several images (rather than

just two) ensures a high accuracy estimate of structure

can be found. Here lies the dichotomy: long-range stereo

necessitates observations from wide baselines (beyond the

range of a single stereo pair) to maintain accuracy and

reliability, but an accurately scaled initialization is dependent

on the geometry of the stereo baseline.

Also inherent in long-range sensing is a range bias from

short baseline triangulation that grows with increasing depth.

At disparities on the order of 10 pixels or less, triangula-

tion from a single pair follows a non-Gaussian curve with

a long tail [15], that tends to overestimate scene depth

and underestimate camera motion [16], adversely affecting

scale. Such non-Gaussian effects must be considered in

filtered applications [17], where individual observations are

marginalized out quickly. However, these effects are less

relevant in a bundle-adjusted context where a least-squares

multi-view approach quickly approaches a Gaussian error,

due to wide baseline observations over time.

In order to adequately initialize an accurately scaled pose

estimate at long range, previous techniques have utilized

other sensors [10] to approximate scale, but only in a

monocular perspective. In contrast, we are interested in a

vision-only initialization for rigid-stereo VO, without assum-

ing known structure and ensuring robustness against poor

initializations. Our previous work has attempted to initialize

scale at long-range from only a triplet of images [18], using

the stereo baseline to achieve a linear solution to the scale

error, but this approach is unreliable due to degeneracies from

linear trajectories and the lack of sufficient information to

accurately estimate the true scale. Failure is frequent and

means repeated attempts at initialization. We address these

shortcomings by proposing a new initialization that uses a

larger set of cameras over a fixed ‘window’ of frames.

A simple but naı̈ve implementation of the proposed ini-

tialization technique is to perform a fully monocular pose

estimate using only a single physical (“base”) camera, then

include the secondary camera in a batch bundle adjustment

to recover scale. However, the introduction of a set of images

from this second camera at an incorrect scale causes bundle

adjustment to be poorly initialized, with the obvious con-

sequence of unreliable and poor convergence performance

[19]. The introduction of the second camera’s images causes

a high re-projection error that will force the base cameras

and scene structure to move significantly with the scale error.
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Fig. 2. Scaling of the stereo transform via the scale term κ

With the introduction of a specific scale term into the bundle

adjustment routine that encodes the scale of the entire scene

via the stereo baseline, convergence can then proceed without

significantly modifying camera positions or scene depth.

This paper presents a technique for accurately initializing

the pose of a stereo camera pair over multiple frames, at ac-

curate metric scale, for long-range applications where trian-

gulation from a single pair is neither reliable or accurate, and

the information from a small set of cameras is insufficient

to estimate scale accurately at long range. In standard rigid-

stereo VO scale is implicitly defined by the stereo baseline.

In long-range applications, however, the stereo baseline is

inadequate to accurately triangulate structure. Therefore, we

initialize the stereo VO algorithm from a set of monocular

poses, re-add the secondary cameras via the stereo baseline,

then explicitly optimize for the scale to recover metricity.

By performing an initialization in this way, issues of poor

triangulation and pose updates are avoided. An accurate scale

can be recovered in just the first few frames.

In addition, we note that the technique is applicable to

the unreliable calibration often present in these situations.

A high vibration environment, coupled with flimsy rigs to

reduce weight, means that stereo calibrations are difficult

to maintain and present an additional challenge to a robust

initialization in more conventional algorithms. As allowed

by the proposed technique, including the parameters of

the stereo transform as optimizable variables means that

vibration induced deformation can be alleviated while still

maintaining a viable, scaled VO output. We demonstrate

the performance of the proposed algorithm in the presence

of poor epipolar geometry as a result of this deformation.

Results are presented in the context of a fixed-wing UAV

at significant altitude (100− 300ft), where the baseline-to-

depth ratio is small and relative disparity is small.

The rest of this paper is outlined as follows: Section II

describes the novel initilialization, VO method and modified

bundle adjustment methodology. Section III demonstrates

results of the proposed algorithm on both simulated and field-

gathered data, and finally the paper is concluded in Section

IV.

II. METHODOLOGY

We describe the methodology in two sections:

• A modified stereo bundle adjustment that includes an

explicit scale term κ
• A pose initializer for long-range stereo that ensures

metric scale
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Fig. 3. The long-range stereo initialization routine. A monocular pose estimate on a set of base camera images is followed by adding the secondary
camera and optimizing for the scale constant κ. This is followed by the application of 1

κ
to recover metric scale, ready to perform a long-range stereo VO.

Following this, a modified stereo VO algorithm suited to

long-range sensing is presented.

A. Modified Stereo Bundle Adjustment

Here we explicitly define the physical cameras as two

unique rigidly linked cameras (k ∈ {0, 1}), with k = 0
as the base camera that determines the origin of the local

co-ordinate system of the camera pair, and k = 1 as the

secondary camera, that lies at some transform T
1

0
from the

origin or base camera.

Given m (j ∈ {1, . . . ,m}) 3D scene points Xj observed

at n unique time points/locations (i ∈ {1, . . . , n}), we define

the general projection equation:

x
k
i,j = K

k
MiT

k
0
Xj (1)

where K
k encodes the intrinsic properties of each physical

camera, Mi = [Ri |ti ] denotes the extrinsics or pose of

the base camera at time i and T
k
0
= [Rk

0
|tk

0
] denotes the

stereo transform between the base and other rigidly fixed

cameras. In this paper we only consider the case of two

cameras, where T
0

0
= [I|0] and T

1

0
=

[

R
1

0
|t1

0

]

, but the

algorithm can be easily extended to more than two. For

standard visual odometry with two cameras, the transform

T
1

0
would typically remain fixed. However, we explicitly

include the parameters that make up this transform as ad-

ditional optimizable variables, and apply a boundary on the

allowable space in order to maintain an accurate transform,

the subject of a separate paper [18]. This allows the algorithm

to alleviate small deformations caused by external factors

such as vibration.

The basic theory of this modification is similar to that

presented by Lhuillier et al. [20], where constraints are

generated by other sensors in a more generalized bundle

adjustment algorithm to constrain pose drift. However, in

contrast to the use of GPS poses as boundary or inequal-

ity constraints on camera pose, our methodology applies

inequality constraints on the rotational and translational

components of the stereo transform. Deformations can be

accounted for by including these parameters in a bundle

adjusted solution, but the inclusion of strict boundaries

ensures that the transform remains in a feasible parameter

space as is limited by the physical baseline.

As a component of the key novelty in this paper, we intro-

duce a scaling term κ to Eq. 1, that allows the translational

component of the stereo transform t
k
0

to scale in the vector

defined by its units (Fig. 2):

x
k
i,j = K

k [Ri|ti]
[

R
k
0
|κtk

0

]

Xj (2)

By optimizing this variable in addition to the scene points,

base camera positions and stereo transform, any discrepancy

in scale of the scene defined by adding the secondary

cameras is handled efficiently without rendering the bundle

adjustment problem as poorly initialized.

The addition of the scale term κ does not significantly

affect computational performance of the bundle adjustment

algorithm, but requires changes to the analytical derivatives

of some optimization parameters. The analytical Jacobian

for the optimized variables is shown in Table I, expressed in

terms of a number of simpler components:

Assigning from (2), the normalized homogeneous pixel

co-ordinates, xβ , yβ , wβ can be expressed as:

xβ =





xβ

yβ
wβ



 ≡ [RiR
k
0
|Riκt

k
0
+ ti]

therefore, the projected pixel co-ordinates x̂
k
ij can be stated

as:

x̂
k
ij =





xα

yα
1



 ≡ f(Kkxβ)
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where f(Kkxβ) results in the affine part of f(Kk
xβ).

Additionally, by making the assignment:

G =

[

fsx γ
0 f

]

[

1

wβ
0

−xβ

w2

β

0 1

wβ

−yβ

w2

β

]

(where f , sx and γ are the intrinsic components focal length,

aspect ratio and skew respectively) the components of the

Jacobian can then be expressed simply as in Table I. As can

be seen, the addition of the scale term does not significantly

impact on the complexity of the Jacobian entries, allowing

a computationally efficient solution.

TABLE I

THE ANALYTICAL DERIVATIVES

Stereo Transform

∂x̂k
ij

∂tk
0

= GRiκ
∂x̂k

ij

∂rk
= GRi

[

R̄
k
Xj

]

×

∂x̂k
ij

∂κ
= GRit

k
0

Extrinsics

∂x̂k
ij

∂ti
= G

∂x̂k
ij

∂ri
= G

[

R̄i(RkXj + κtk
0
)
]

×

Scene

∂x̂k
ij

∂Xj
= GRiR

k

B. Pose Initialization

As has been described, in more traditional scenarios 3D

scene structure is initially triangulated from the calibrated

stereo pair, hence there is no need for a special initialization

step. At large depths such triangulation is inaccurate and

structural deformation may render triangulation impossible.

Hence, a scaled solution is needed for camera pose without

initially computing structure from a geometric pair, more

akin to monocular VO.

The novel components of the initialization procedure per-

formed in this paper are described in Fig. 3. Initially, an

essential matrix E1 between the base camera at two adjacent

time-steps is recovered via the five-point algorithm [21], and

relative pose (up to scale) extracted from this transform. To

avoid degeneracies caused by near-planar structure, essential

matrices pass an additional ‘scene-spread’ test as in [11].

This boot-strapping procedure ensures that accurate trian-

gulation is achieved from a wide-baseline pair and is not

dependent on the geometric stereo transform.

1) Monocular Visual Odometry: (Fig. 3: Initialize

Monocular VO). From this initialization, a monocular VO

is then performed using the imagery from the base camera

only in 5 main repeating steps:

1) Image capture

2) Feature matching

3) Pose update

4) Structure triangulation

5) Euclidean bundle adjustment

On a new image, upright SURF [22] descriptors are matched

between the current and previous base camera. From already

triangulated structure and feature matches to the previous

image, the new base camera pose P
0

i = K
0
Mi is found

using calibrated 3-point pose estimation, performed inside

a robust MLESAC [23] estimator to ensure a reliable pose

update. New structure is then triangulated using at least

three observations, and then a Euclidean bundle adjustment

is applied to the set of extracted poses and their associated

structure. A Levenberg-Marquadt robust optimization routine

is followed to ensure the estimation converges.

Importantly, the scale of this pose estimate is arbitrary,

initialized so that the first camera pair has unity distance

to ensure stable numerical precision, irrespective of the

true distance between camera poses. In order to accurately

recover scale, the stereo baseline must now be included (in

lieu of other scale measurements from an IMU or external

reference) by utilizing feature projections from the secondary

camera to provide a geometric constraint on the scale term.

2) Scale Recovery: (Fig. 3: Add secondary cameras,

Estimate κ, Scale by 1

κ
). Following an empirically derived

number of initialization frames from the monocular VO, the

secondary camera is introduced via the pre-calibrated stereo

transform T
1

0
to lie at the correctly scaled distance from each

base camera. In this configuration, the re-projection error on

the set of base cameras will be low due to the bundle adjusted

set of poses and scene, while the re-projection error on the set

of secondary cameras will be high due to the inaccurate scale.

This will manifest in a large translational offset in feature

projections in the second camera if the cameras are close to

parallel in their x or y pixel co-ordinates, typical of most

rigid-stereo configurations, whether vertical or horizontal.

The set of all base cameras and their corresponding sec-

ondary cameras are then optimized along with scene structure

in a batch bundle adjustment that includes the scale term κ
and the stereo transform subject to the previously mentioned

boundaries. These boundaries allow small movements in the

stereo transform to accommodate deformation induced error

in the epipolar geometry without adversely impacting scale

or camera pose.

Once the optimization routine has converged and the scale

parameter κ is well estimated, the entire scene and camera

geometry is scaled by the inverse 1

κ
to recover metricity,

forcing κ back to a unity value and the final solution as

correctly scaled.

C. Stereo Visual Odometry

Following the monocular initialization and scale recovery,

stereo VO can now perform as normal on the correctly scaled

cameras and scene, closely following the 5 main steps as

described in II-B.1. On a new set of images from a stereo

pair, features are matched both between the pair and the

previous base camera. The new base camera pose P0

i is found

using calibrated 3-point pose estimation, and the secondary

camera initialized via the stereo transform T
1

0
. New structure

is then triangulated using only the base camera set to avoid

dependence on fixed-stereo geometry. Following this, the

stereo bundle adjustment algorithm (including all cameras,

the stereo transform with constraints, but not the scale term)

is applied on a sliding window of 12 of the most recent frame

pairs and their associated structure.
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III. EXPERIMENTAL RESULTS

To investigate the applicability of the algorithm and its

robustness over multiple trials and situations, we present

results evaluated on both a simulated dataset and field

gathered data. To show the performance of the proposed

algorithm that includes both a monocular initialization and

scale optimization, we compare it to a ‘standard’ stereo VO

that triangulates structure from rigid stereo pairs and against

a similar monocular intilizer that does not explicitly optimize

scale.

A. Simulated Experiments

In the first simulated experiment, each algorithm is eval-

uated over multiple trials at a range of baseline-to-depth

ratios. This is achieved by flying a pair of simulated cameras

at varying altitudes over a simulated 3D scene generated

from previously gathered LiDAR data1 (Fig. 4). In all ex-

periments the cameras have a 0.75m baseline and are flown

at speeds ranging from 15m/s to 50m/s to ensure image

overlap, mirroring the motion of a generalized fixed-wing

UAV model. The total distance covered in each experiment

is set to approximately 60m, independent of flight speed

and frame coverage. Additionally, the number of features

tracked per frame is kept approximately equal independent

of altitude. Each image has a resolution of 1024×768 pixels

and each feature is projected with Gaussian noise of 1.0
pixels standard deviation. The simulation is performed for

20 trials at each altitude, and the final pose error compared

to ground-truth recorded at each iteration.

Fig. 4. The simulated scene

In the second experiment, the camera pair is flown at

a 70m altitude for the same 60m distance, with a fixed

flight speed of 30m/s. However, in this case the proposed

algorithm is initialized at a range of scales, defined by the

Euclidean distance between the first monocular camera pair

(see Fig. 3). By varying this value, the ability of the modified

bundle adjustment algorithm to converge in the presence of a

poor initial scale is examined. Without the optimization of κ
as representative of the scale of the scene, bundle adjustment

is rendered poorly initialized and should only converge if

the initial scale closely approximates the truth. In contrast,

with the addition of κ to the optimization, bundle adjustment

1http://www.liblas.org/samples/

should converge from a wide range of initialization scales.

For this experiment, the algorithm with and without scale

optimization is run for a range of initial scale errors, with

20 trials performed at each step to examine consistency of

performance.

1) Results: The results of these experiments are shown

in Figs. 5 and 6, where the final pose error of the novel

initialization scheme is directly compared to the standard

VO in the first experiment, and the relative scale before

and after optimization with and without κ optimization is

demonstrated in the second.
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Conventional VO

Fig. 5. Final pose error for varying altitudes calculated from the Euclidean
distance between the final camera poses of the VO and ground truth.
Conventional stereo VO in red, modified long-range VO in green.

In the first experiment (Fig. 5), the Euclidean distance

between the final camera in the initialization and ground

truth is used to define the final pose error. As reflected

in the large variance and high average pose error of the

conventional VO above altitudes of approximately 40m, or

a baseline-to-depth ratio of 1.9×10−2, the standard stereo

pose estimator fails to recover a sufficiently accurate pose.

In many cases, the standard stereo estimator fails before the

minimum number of frames is completed due to the poor

triangulation and subsequent lack of viable feature tracks,

in addition to forming degenerate pose updates that do not

follow the known motion of the cameras. As the altitude

approaches 100m, the conventional estimator consistently

fails, approaching the limit of error at 60m, reflected in the

high error, low variance result at the highest altitude.

In contrast, the long-range estimator with scale optimiza-

tion shows robust performance even at altitudes up to 100m,

achieving an accurately scaled pose within 5m over the

trajectory in all trials at the highest simulated altitude. In

this configuration, according to Fig. 1, a 100m altitude

corresponds to a disparity of ∼9 pixels and a depth resolution

of 12.5m from single pairs. As is clear from this analysis,

triangulation from a stereo pair in a conventional VO is

difficult and will generally fail in the first few frames at

high altitudes.

In the second experiment (Fig. 6), the scale error (ex-

pressed as the ratio between ground truth and recovered

distance) before and after optimization is demonstrated

on the long-range VO algorithm. A direct comparison is

made between convergence with explicit κ optimization,
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Fig. 6. Scale error comparison before and after optimization with and
without explicit scale optimization. A scale of 1 is considered optimal.
Bundle adjustment with κ in green, bundle adjustment without κ in blue.

and without. As can be seen, the addition of explicit scale

optimization ensures the algorithm converges appropriately

at a wide range of scale ratios (0.25↔1.5). However, without

the addition of the κ term the bundle adjustment algorithm

fails to converge reliably except within a range of ∼10% of

the true value, demonstrating the necessity of the addition

of the scale term. This addition ensures far more reliable

convergence at a wide range of unknown initial scale values.

B. Field Data Experiment

In this experiment, stereo visual data gathered from a

UAV is used to test the proposed algorithm and compare its

output to a GPS/INS ground-truth. In this experiment, due to

vibration induced deformation on the camera rig, the epipolar

geometry is not well aligned causing standard methods of

stereo VO to fail, even at low altitude, due to inaccurate

triangulation. To counteract this, we implement optimization

of the stereo transform during the bundle adjustment in

addition to estimation of scale. Additionally, the altitudes at

which the VO algorithm is expected to accurately initialize

are below the minimum baseline-to-depth ratio demonstrated

successfully for the conventional VO in the simulated experi-

ment, meaning a conventional stereo VO method is incapable

of performing adequately.

1) Experimental Platform: The platform used for data

gathering is a remotely-piloted fixed-wing Unmanned Aerial

Vehicle (UAV) (Fig. 7), flown within visual line of sight

from the ground. The aircraft includes two Flea2 Firewire

Fig. 7. The experimental platform showing component layout. Blue
line indicates length and orientation of stereo baseline between on-board
cameras.

cameras, rigidly fixed to each other via an aluminium L-

bar with an approximate baseline of 0.77m, placed looking

down towards the terrain (see Fig. 7). An XSens Mti-G

INS/GPS system is used as the ground truth measurement

system, with the inertial measurement unit placed on the

camera rig approximately 10cm behind the front camera, and

the GPS receiver placed on the fuselage directly above the

front camera. An off-the-shelf computer system is used to

log image data, raw inertial and GPS data from the INS,

along with a filtered pose estimate from the INS.

Each camera uses a 6mm lens with a field of view of

approximately 42°×32°. The cameras are calibrated before

flight using a calibration-pattern to achieve an intrinsic

calibration for each camera and an approximated stereo

transform between the cameras. In flight, however, vibration

causes misalignment in the epipolar geometry on the order

of around 15 pixels.

2) Dataset: Data was collected over an approximately

5 minute flight, at an altitude of 20 − 100m and a speed

of ∼20m/s. Bayer encoded colour images are logged at a

resolution of 1280×960 pixels at 30Hz and later converted

to color for processing (Fig. 8). Raw GPS and filtered

INS poses were recorded at 4Hz and 120Hz respectively

from the XSens MTi-G to give a ground truth position

comparison. The area flown over by the aircraft consisted

of rural farmland with relatively few trees, animals and

buildings.

���������	 ��������	


Fig. 8. An example image pair from the dataset, showing the small disparity
between the stereo pair. Left: Front Camera, Right: Rear Camera.

C. Results

The monocular initialization routine and stereo VO al-

gorithm were applied to a sequence of the trajectory at

approximately 80 − 100m above ground level, as shown

in Figures 9 and 10. With a final pose error between the

modified VO and ground truth of 22m over the 2.70km
trajectory, and a total distance covered within an error of

< 2%, the result is within the error bounds of most visual

odometry algorithms in the typically simpler ground-based

case. From this, it can be seen that the presented pose

initializer is capable of estimating scale accurately even at

high altitude on field-gathered data, and allowing a metrically

scaled pose estimate at extremely small baseline-to-depth

ratios.

As described, a conventional VO fails within a few frames

and does not perform adequately in this scenario. This is

due to both the inadequate structure triangulation from a

single pair due to the distance of the scene, but also the

poor epipolar geometry.
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GPS/INS ground truth (red). The entire trajectory is 2698m, with a relative
distance error of ∼2%. Note the accurate scale of the final trajectory.
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Fig. 10. Perspective view comparison between visual odometry (green)
and GPS/INS ground truth (red), showing the approximate height of the
trajectory from the ground plane.

IV. CONCLUSIONS

This paper has demonstrated an algorithm capable of

accurately initializing a metrically scaled pose from purely

visual data in a long-range stereo application, where trian-

gulation from a rigid stereo pair is unreliable and standard

VO methods of initialization will fail. By introducing a novel

initialization that avoids rigid stereo triangulation and adding

a new scale term into a stereo-aware bundle adjustment

routine, an accurately scaled pose estimate can be generated

at altitudes exceeding 80m. Through the addition of a scale

term, the optimization is well initialized and allows accurate

estimation of the scale ratio between the estimate and truth

defined by the previously calibrated stereo baseline. The

technique has been shown on both simulated data and a

difficult airborne dataset where standard stereo algorithms

fail.

Future work will involve demonstrating the long-range

stereo initialization and VO on a full dataset with loop-

closure to constrain pose drift and an examination of the

limits of the baseline-to-depth ratio on the performance of

the algorithm.
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