
Heterogeneous Map Merging Using WiFi Signals

Gorkem Erinc, Benjamin Balaguer, and Stefano Carpin

Abstract— We propose a map merging algorithm that is capa-
ble of merging together heterogeneous maps independently built
by different robots. Heterogeneous map merging is a crucially
important problem for scenarios where multiple heterogeneous
robots collaborate to provide situational awareness in urban
search and rescue, patrolling, and explorations tasks, just to
name a few. To remedy the lack of uniform representation
between heterogeneous map models, we rely on the ubiquitous
presence of WiFi signals in today’s environments. Our solution
consists of three steps. First, the overlap between the hetero-
geneous maps being merged is determined. Second, metric
correspondences between overlapping parts are established.
Third, the merging is improved by exploiting the structural
properties inherent to graph-based maps. Our proposed system
is validated using various occupancy grid and appearance-based
maps built in real-world conditions, the results of which confirm
its strengths. To the best of our knowledge, this is the first
solution to the heterogeneous map merging problem.

I. INTRODUCTION

In this paper we consider the problem of merging together

spatial models relying on different representations. This

problem is relevant when multiple heterogeneous robots are

operating in the same environment and need to combine

together their maps. The problem of merging occupancy grid

maps can be considered solved [3], but the heterogeneous

case has not been addressed. In many practical scenarios

(e.g., urban search and rescue, patrolling, and exploration)

robots are used as tools to provide information to humans,

who then decide the proper course of action given that

information. Evidently, the ability to fuse together multiple

heterogeneous partial models can greatly improve the overall

utility of the collected information, especially when consid-

ering each model’s strengths and weaknesses.

Although the algorithm we propose extends to other map

types, we focus our discussion on occupancy grid and

appearance-based maps. The merging problem has the inher-

ent challenge that different spatial models lack, by definition,

a common representation. To overcome this obstacle, we

assume that every robot, regardless of the type of map they

produce, is equipped with a WiFi card. We believe this

is a safe assumption considering that robots will need to

communicate amongst each other and with human operators.

As each robot builds its map, the Wireless Signal Strength

(WSS) of all Access Points (APs) in range is recorded and

later on used as a substrate to combine models relying on

different representations. In this manuscript we offer the

following contributions:

School of Engineering, University of California, Merced, CA, USA,
{gerinc,bbalaguer,scarpin}@ucmerced.edu.

• we compute the amount of map overlap between multi-

ple heterogeneous maps by casting the problem as One

Class Classification;

• we develop, to the best of our knowledge, the first

system capable of merging heterogeneous maps;

• we outline crucial design choices with respect to the

algorithm’s applicability and performance;

• we evaluate and compare numerous algorithms across

different datasets.

The rest of the paper is organized as follows. Section II

highlights previous work on map merging and WiFi local-

ization. In Section III, we describe the problem statement

and introduce mathematical definitions used throughout the

paper. The map merging algorithm consisting of three stages

is described in Section IV. We conclude the paper by pre-

senting, in Section V, results performed in real environments

and making final remarks in Section VI.

II. RELATED WORK

Map merging research has been limited and most related

works appeared relatively recently when compared to the

mapping literature. All former attempts to solve this problem

have considered instances where all maps to be merged are

homogeneous. Specifically, map merging can be approached

in two ways. On one hand, robots may combine their indi-

vidual models during the mapping phase. On the other hand,

the maps may be fused together after the individual mapping

processes have terminated. We consider the second approach,

which has been solved exclusively for the homogeneous

merging of occupancy grid [2], [3], [6], [7], topological

[10], and appearance-based maps [4]. Heterogeneous maps

in general have scarcely been considered, although never in

the context of merging, in [12], [16].

Since we exploit WSS as a shared medium available to ev-

ery heterogeneous map, we briefly described robotics-related

WiFi research. Literature in this area is growing and the

reader is referred to [1] for a more comprehensive survey. We

embrace a data-driven approach, where we exploit recorded

WSS information to infer location. This technique enables

various algorithms to solve WiFi localization problem as

a machine learning problem [1], [5], [9], [11], [15]. It is

important to note that WSS readings acquired with different

hardware and at varying times of the day (and even weeks

or months) were sufficiently consistent to produce accurate

localization results [1], [9]. These findings were the first in-

dication that exploiting WSS for map merging had potential,

especially when considering heterogeneous robot teams.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5258

5 8 11 14 17 20

9

11

13

15

17

19

X (m)

Y
 (

m
)

(a) Wifi map

X (m)

Y
 (

m
)

5 8 11 14 17 20

9

11

13

15

17

19

(b) Occupancy grid map

5 8 11 14 17 20

9

11

13

15

17

19

X (m)

Y
 (

m
)

(c) Appearance-based map

Fig. 1: Illustrative examples for the three different types of maps presented in this paper.

III. PROBLEM FORMULATION

As aforementioned, we focus on merging occupancy grid

and appearance-based maps, but the approach is generic and

supports merging different types of maps as long as WSS

are collected during the map building process. An occupancy

grid map, MOCC , represents the environment as a uniformly

spaced grid of binary random variables, each encoding the

presence of an obstacle at that location [8]. Conversely to

occupancy grid maps, there exists no unified definition of

appearance-based maps. We define an appearance-based map

as an undirected weighted graph MAPP = (V,E,w) in

which every vertex v ∈ V represents an image acquired by a

camera at a certain position in the workspace. An edge eij ∈
E connects vertices vi, vj ∈ V if the associated images are

sufficiently similar according to a given similarity metric S.

The weight w of an edge is set to the similarity between the

vertices it connects, w(eij) = S(vi, vj). Different S metrics

have been proposed. In our implementation, the similarity

between two images is defined by extracting SIFT features

from each image and counting the number of common ones

among both images. It is important to note that the graph-

like appearance-based map structure does not include any

metric information. Further details on building appearance-

based maps are given in [4]. Figure 1 shows examples of the

different types of maps presented herein.

Regardless of the map’s type being considered, an obser-

vation Zi = [z1i , z
2

i , . . . , z
a
i] is acquired using a WiFi card,

where a denotes the total number of APs seen throughout

the environment. Each zki is the WSS of the k-th AP,

measured in dBm, unless the AP cannot be seen from a

particular location, in which case we set zki = −100. Each

observation Zi is linked to a label L̂i representing either a

Cartesian point Ci = [Xi, Yi] in the case of an occupancy

grid map or an image Ii for an appearance-based map. All

acquired observations and their labels are then collected into

a set T̂ = ∪mi=1
{L̂i, Zi} where m is the total number of

observations.

In an attempt to model the noise in WSS readings and

increase the robustness of the algorithm, we partition the

m WiFi readings using their labels L̂ = {L̂1, L̂2, . . . , L̂m}
into c clusters L = {L1, L2, . . . , Lc} with c ≤ m. For

appearance-based maps no clustering is required since each

label representing an image corresponds to only one observa-

tion. Therefore, labels are kept such that Li = L̂i and c = m.

For occupancy grid maps, WiFi observations are clustered

using their Cartesian coordinates. One of the most common

clustering methods is k-means. This method aims at creating

optimal cluster boundaries such that each cluster contains

all the points closest to its centroid. This methodology fails

to address some vital aspects required for successful WiFi

signal classification. First, the algorithm does not guarantee

a minimum number of points within each cluster. As ex-

perimentally shown in [1], the number of observations per

location has a considerable impact on the WiFi classification

error. The minimum number of observations per location

smin should not be less than a preset value in order to

reach the targeted average classification error. Furthermore,

we do not want observations acquired at locations that are

far away from each other to be grouped in the same cluster.

By increasing the number of clusters k the average cluster

diameter can be decreased. The maximum cluster diameter

dmax, however, cannot be controlled and depends on several

other parameters such as the initialization method and data

distribution. In our implementation, we set smin and dmax

to 3 and 1 meter, respectively. These values are motivated

by the results presented in [1].

The non-uniform binary split algorithm [13] (also known

as bisecting divisive partitioning or hierarchical clustering)

addresses these issues at the expense of optimality. Specif-

ically, it is possible for the binary split algorithm to create

clusters in which some points are actually closer to a

neighboring centroid. The method starts with one cluster

containing all of the data and recursively bipartitions the

cluster with largest distortion into two sub-clusters until

the required number of clusters is reached. The method

essentially structures clustering into a hierarchical binary

tree. Our modified version of the algorithm uses k-means

clustering with k = 2 to split the data into two partitions.

More importantly, instead of fixing the final number of

clusters, we define a stopping condition for splitting a branch

in the binary tree. According to this condition, we only

approve a cluster split if its diameter is greater than dmax

and both resulting sub-clusters contain at least smin points.

These conditions guarantee that after the final iteration of the

algorithm we have at least smin observations in each cluster

and the diameter of a cluster only exceeds dmax in parts

5259

of the environment where not enough WSS readings were

acquired. The algorithm is fast, taking less than 4 seconds

to cluster over 1000 points.

For each cluster we store the Cartesian coordinate of its

centroid as a label Li along with a vector of observations

located inside the cluster Zi =
{

Z1

i , Z
2

i , . . . , Z
si
i

}

where

si is the total number of observations inside cluster i. Put

differently, si observations are made for cluster i, whose

label is Li. It is worthwhile to note that the clusters may not

and do not need to be uniform (i.e., si is not necessarily

equal to sj ∀i,j : i 6= j). In other words, the number

of observations for one cluster can be different than the

number of observations for another cluster. The WiFi map

can mathematically be represented as a set T of observations

and their labels, T = ∪ci=1
{Li,Zi}.

We define the heterogeneous map merging problem as

follows. Given two maps M1 and M2, their corresponding

WiFi maps T1 and T2 with the list of corresponding labels

L1 = {L1

1
, L1

2
, . . . , L1

c1
} and L2 = {L2

1
, L2

2
, . . . , L2

c2
} where

c1 and c2 are the number of clusters in T1 and T2, determine

the mapping f : L2 → {L1 ∪ ξ} where ξ is the null label.

Since the maps do not necessarily fully overlap, some labels

in L2 will not have a corresponding label match in L1. These

labels will then be assigned to the null label ξ. Note that

in general the roles of L1 and L2 can be swapped. For the

sake of space and simplicity, the problem statement considers

only the case where two maps are merged and, without

loss of generality, we describe the process for merging an

occupancy grid map M1 = MOCC with an appearance-based

map M2 = MAPP . The idea can naturally be extended to

multiple maps by merging them in pairs, other types of map

(e.g., topological), and identical map types (e.g., merging

two appearance-based maps). In the case considered in this

paper, merging these two maps narrows down to assigning a

Cartesian coordinate to each image in the appearance-based

map. The merged map will consequently consist of images

overlaid on the occupancy grid map with edges connecting

the similar ones.

IV. MAP MERGING

Our map merging algorithm consists of three steps,

as shown in Figure 2. Given an occupancy grid and an

appearance-based map, we first deduce the amount of map

overlap by identifying and separating the labels that map

to the null label (i.e., Li → ξ). In the second stage,

for each of the remaining labels in the appearance-based

map Li ∈ L2 the probability distribution over the set of

labels in the occupancy grid map L1 is computed. The

most similar Cartesian label can be determined using the

probability distribution. Such an estimation, however, would

be solely based on the WiFi readings linked to each image

in the appearance-based map. In the last step, we use the

additional information inherently encoded by the appearance-

based map’s edges to refine the probability distribution and

improve the precision of the estimate by applying regression

in the space of Cartesian labels.

��������

���	�
������

����������

����	�

���������

���
�����

�������

���	�������	

��������	��
�����	��������������������������

��������������������

�������
��	

����������	��

 ��������

����������	��

Fig. 2: Flowchart describing three stage of heterogeneous

map merging algorithm

A. Computing Map Overlap

The issue of determining map overlap is a One-Class

Classification (OCC) problem, whose aim is to distinguish

one class of objects from all other possible objects. Given

a set of observations in T1 (i.e., the metric map) and we

want to classify unknown observations inside T2 (i.e., the

appearance-based map) to see whether or not they belong

to T1. With principles related to outlier detection, OCC has

stimulated the design of many algorithms. Since these algo-

rithms are often data-dependent, we have implemented and

contrasted five alternatives. Interested readers are directed to

[14] for a more detailed survey.

One-Class Support Vector Machine (OC SVM): OC

SVM is a modified version of the two-class SVM where

only one class is necessary for training. Similarly to SVM, a

kernel function maps the training data into a feature space.

The origin of that feature space is then treated as the only

member of the “second” class and the techniques of a binary

SVM classifier can be applied to produce a hyperplane that

maximizes the functional margin. For the kernel of the OC

SVM, we use a Gaussian Radial Basis Function that requires

a parameter h describing the bandwidth of the kernel. Once

the OC SVM is trained on the first map’s data T1, a new

observation Zi ∈ T2 is classified by computing its relation

to the hyperplane, f(Zi) = (w · Φ(Zi)) − ρ, where f(x)
represents the hyperplane equation, w is the normal vector

to the hyperplane, Φ(x) describes the kernel function, and

ρ corresponds to the hyperplane’s offset. If f(Zi) > 0 then

Zi ∈ T1 ∩ T2 and if f(Zi) < 0 then Zi /∈ T1.

Principal Component Analysis (PCA): PCA orthog-

onally projects a dataset from one subspace to another

while retaining as much variance into as few components

as possible. PCA in the context of OCC is performed as

follows. First, the training data T1 is used to compute the

a components, of which only the x < a with the greatest

variance are retained. The x components are then used to

project the training data into a lower dimensional subspace,

resulting in T̃1. A new observation to classify Zi ∈ T2 is

projected into the same subspace (resulting in Z̃i) and the

Euclidean distance to the nearest point in T̃1 is computed by

D(Z̃i). If D(Z̃i) < d, where d is a pre-computed distance

threshold, we deduce that Zi ∈ T1∩T2 (otherwise, Zi /∈ T1).

k-Means: the k-Means algorithm for OCC attempts to

characterize the training data T1 as a set of similar objects.

The observations of the first map T1 are partitioned into a set

5260

of k clusters that can then be exploited to classify unknown

observations. The k cluster centers are consequently a-

dimensional objects. An observation to classify Zi ∈ T2

is compared against its closest cluster center, where the

Euclidean distance between the two is given by D(Zi). The

new observation is considered part of the first map (i.e.,

Zi ∈ T1∩T2) when D(Zi) < d (otherwise, Zi /∈ T1), where

d is a pre-determined distance threshold.

Nearest Neighbors Ratio (NN Ratio): the NN ratio is a

modification of the simple NN search, where the distances

of the NN and second-NN are compared. Since NN searches

operate directly in the space of the training data T1, they

possess the distinct advantage of not requiring a training

phase. To classify a new observation Zi ∈ T2, its two NN

ZN1, ZN2 ∈ T1 are computed, along with their Euclidean

distances D(ZN1) and D(ZN2). If D(ZN1)/D(ZN2) < d,

where d is a pre-computed ratio threshold, then we can assert

that Zi ∈ T1 ∩ T2 (otherwise, Zi /∈ T1).

Gaussian Model: this method models the density of the

training data by fitting a Gaussian distribution. More specif-

ically, the mean µ and covariance matrix Σ are computed

from the occupancy grid map data T1 to construct a multi-

variate Gaussian. The number of dimensions of the Gaussian

is equal to a. To determine whether a new observation

Zi ∈ T2 is part of the first map, we evaluate the Gaussian’s

Probability Density Function (PDF), ϕµ,Σ(Zi), and compare

the results against a PDF threshold, d. We conclude that

Zi ∈ T1∩T2 when ϕµ,Σ(Zi) > d and that Zi /∈ T1 otherwise.

All these OCC algorithms rely on various parameters

as described above and classification results are highly-

dependent on them. To determine each of these parameters,

we use a process that relies on the cross-validation of the

parameters by using a different dataset. Our cross-validation

dataset TO covers a large residential neighborhood spanning

close to 2 kilometers and encompassing more than 200 APs.

The dataset is equally divided into positive and negative test

cases and 50% of the positive test cases are reserved for

training with the remaining 50% being allocated, along with

50% of the negative test cases, for classification. Using this

data decomposition, we learn each parameter using a brute-

force approach, where the parameters are sampled uniformly

within their respective logical ranges. We train each OCC

algorithm with a parameter sample on the training data of

TO and attempt to classify the data reserved for classification.

Since we have ground truth, we can then compute the

number of correct classifications. The process is repeated

for all parameter samples and the one that yields the highest

classification accuracy is retained. This process, which only

needs to be performed once, assumes that the dataset TO is a

good representation of the datasets that will be used by OCC

algorithms. We have experimentally verified this assumption,

but omit the results in this paper due to space restrictions.

We compare the classification accuracy of each algorithm

to determine the best one to be used for map overlap

estimation function. The results presented here are based on

a WiFi map acquired in the same environment used in the

map merging results of Section V. The map spans about

1 3 5 7 9 11 13 15 17 19

50

60

70

80

90

100

Readings per Location

A
v

e
ra

g
e

 C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (

%
)

OC SVM

PCA

k−Means

NN Ratio

Gaussian Model

Fig. 3: Classification accuracy for each OCC algorithm, as

the number of observations per location is increased. The

data presented is the average of 50 experiments.

200 meters of one floor in an office building where 48 APs

have been discovered. To investigate the potential effects of

the number of observations per location on the algorithms’

accuracy, the robot was stopped at pre-determined intervals

and a total of 20 observations were recorded for each

location. Similarly to the parameter estimator, the entire map

is divided in two, with 50% representing positive examples

and the rest representing negative examples. Out of the

positive examples, the algorithms are trained on 50% of the

data so that the remaining 50% is used for classification,

along with 50% of the data representing negative examples

(i.e., we have the same number of positive and negative

examples to classify). Due to the random nature of some

OCC algorithms and potential bias towards certain datasets,

we randomize the training and classification datasets and run

the experiments 50 times.

Figure 3 shows the results of the experiments performed

on a consumer desktop with a Core 2 Duo 2.2 GHz CPU

as the rest of the experiments presented in this paper. OC

SVM clearly separates itself from the other algorithms, with

a classification accuracy of over 90% with very few readings

per location. Comparatively, OC SVM is on average 6.49%,

20.17%, 23.74%, and 26.99% more accurate than PCA, k-

Means, NN Ratio, and the Gaussian Model, respectively. All

of the algorithms are extremely fast, taking, in the worst case,

100ms and 20ms to train on the entire dataset and classify

100 observations, respectively.

B. Probability Density Function Estimation

Once the map overlap is estimated, the labels that belong

to the overlapping regions of the maps are considered for

merging. These identified labels are then matched using

the WiFi readings associated to each label. Building upon

the discovery that it is possible to differentiate between

different locations by only considering WSS readings re-

ceived from APs [1], we cast the problem of label matching

as a classification problem where we compute a function

f : Zi ∈ T2 → L1

j from the data in the WiFi map T1.

Function f takes an observation Zi = [z1i , . . . , z
a
i] tied to

L2

i in the appearance-based map and returns the matching

label in the grid map, L1

j , from which we can look up

5261

the Cartesian label Cj . Computing f from the training data

T1 can be achieved using a Random Forest (RF), which is

shown to provide the best classification results for WSS data

[1]. An RF is an ensemble of decision trees built to reduce

over fitting behaviors often observed in single decision trees

where each decision tree is constructed as a binary tree from

a random portion of the training data. In these tree structures,

each node corresponds to a decision made on one of the

input parameters zk and leaves correspond to class labels. In

order to classify a new observation Z in a decision tree, the

parameter zk is compared at each node, the decision of which

dictates which branch is taken - a step that is repeated until

a leaf is reached. This procedure is repeated in all trees in

the forest resulting in a collection of votes. The label with

the most votes can be chosen as the matching label. The

number of trees in the RF creates a tradeoff between speed

and accuracy. We trained a RF with 250 trees using T1 in

order to accurately classify WSS readings of all overlapping

images in the appearance-based map, Zi ∈ T2, and determine

their matching labels L1

j in the grid map.

Algorithm 1 Construct-GMM(Zi ∈ T2)

1: for j ← 1 to c1 do

2: µ(j)← Cj

3: Σ(j)← σ2I // I: Identity matrix

4: φ(j)← P (L1

j |Zi)←Random-Forest-Predict(Zi)

5: return gi ←Build-GMM(µ, Σ, φ)

The RF classification not only determines the label with

the most votes but, thanks to its voting scheme, also provides

the distribution of votes, which can be interpreted as a

probability distribution over the set of labels P (L1

j = L2

i |Zi)
where Zi ∈ T2. We model this probability distribution

function using a Gaussian Mixture Model (GMM) described

in Algorithm 1. The GMM is introduced to non-linearly

propagate in the two-dimensional Cartesian space the results

acquired from the RF. More specifically, we build a GMM

comprised of c1 mixture components (line 1). Each mixture

component is constructed from a Gaussian distribution with

a mean µ(j) (line 2), corresponding to the Cartesian coor-

dinates of the cluster center labeled as L1

j in the occupancy

grid map, covariance Σ(j) (line 3), and mixture weights

φ(j) that are acquired directly from the RF’s voting scheme

(line 4). Line 4 highlights the key difference between the

classification and regression methodologies, which arises

from the fact that taking the mode of the RF’s results, as

is done in classification, discards valuable information that

is instead exploited in by the GMM. The mixture weights

are proportional to the RF’s belief of being at location Cj

given the observation Zi ∈ T2 (i.e., φ(j) = P (L1

j |Zi)). The

algorithm requires one parameter to be set, σ which dictates

how much the Gaussian components influence each other

and should be approximately set to the distance between

the clusters’ centers in the training data, T1. Given an

observation Zi, the GMM maps a three-dimensional surface

to the X-Y Cartesian space represented by the occupancy

grid map, where the higher the surface’s Z-value the more

probable the X-Y location.

C. Edge-Based Refinement

For each image in the appearance-based map, a GMM is

generated using RF classification, from which a Cartesian

coordinate can be computed. This single-shot localization

approach only focuses on the WiFi readings associated with

vertices. It can, however, be greatly improved by including

the extra information inherently associated with the edges.

As described in Section III, edges of appearance-based maps

symbolize similarity between connected images. Based on

the idea that similar images should be captured from the

same area in the environment, the position estimate of an

image can be fine-tuned using its neighbors. The power of

this local consistency approach is evident when one image is

misclassified while the position of all its neighbors are cor-

rectly estimated. To address this and similar issues, we create,

for each image Ii, an aggregated GMM g̃i that combines each

of i’s 1-hop neighbor’s GMMs. The contribution of each

neighbor is weighted with the edge’s weight that encodes

their image similarity. In other words, the more similar

the neighbor, the higher its contribution to the aggregated

probability distribution. The neighbor’s GMM is combined

with the GMM of image i and the resulting distribution is

normalized.

Algorithm 2 Regression(g̃i, T1, Zi ∈ T2)

1: nn←k-NN(T1, Zi, k)

2: Ĉi ←

∑k
i=1

nni × PDF(g̃i,nni)
∑k

i=1
PDF(g̃i,nni)

3: return Ĉi

Algorithm 2 provides pseudo-code for the rest of the

regression algorithm. Once the GMM is built (Algorithm 1)

and updated using the inputs from the neighbors as described

above, a couple of approaches are available, the most popular

of which consists in taking the weighted mean of the model

or drawing samples from the GMM with probability φ(j) and

computing the samples’ weighted mean. However, applying

regression directly on the model puts too much emphasis on

the RF classification results and does not provide a fail-safe

mechanism for misclassifications. Furthermore, our initial

assumption that similar images should be localized nearby

may not hold for all image pairs, especially when two images

are connected together due to perceptual aliasing, which

occurs when two different places are visually similar due

to shared objects or structural properties of the environment

such as repetitive hallways or rooms decorated with the same

type of furniture. In such special cases, edge-based GMM

updates introduce high probabilities at false locations and

the GMM’s direct usage causes higher estimation errors.

Consequently, instead of sampling from the GMM, our

regression algorithm uses a k Nearest Neighbor Search (line

1) to provide k samples that are not only dependent on

the observation Zi, but also come from a different model

5262

than the RF. Given an observation Zi, the Nearest Neighbor

Search returns the Cartesian coordinates of the k most similar

observations in T1. This is a crucial step that adds robustness

to the algorithm by combining two different classification

algorithms. Where and when one algorithm might fail, the

other might succeed. The returned Cartesian coordinate (line

3) is finally calculated as the weighted mean of the k nearest

neighbors, where the weight of each nearest neighbor is set

from the PDF of the updated GMM (line 2).

While it is evident that including information from cor-

rectly localized neighbors improves the accuracy, the contri-

bution of a misclassified neighbor to the aggregated GMM

still creates a negative impact on regression results. With the

same motivation that each image should not be localized far

away from its similar neighbors, we introduce an iterative

process that enforces local consistency among the images in

the appearance-based map. The refinement process described

in Algorithm 3 is based on the idea that any two correctly

localized neighbors should lie within a maximum distance

rmax of each other. To estimate this variable we compute

the distances between every pair of images using initial esti-

mations from the regression algorithm and set rmax = µ+3σ
where µ and σ are the mean and the standard deviation of

the resulting distance distribution, respectively. The iterative

algorithm is bootstrapped with the initial positions estimated

by applying regression for each image Ii (line 2-4). The

GMM g̃i associated with each image i in the appearance-

based map (line 5) takes into account all of its neighbors

(line 6). If any Gaussian mixture component’s mean (line 7)

is located at a distance of more than rmax away from i’s
estimated position, the mixture component of g̃i is removed

(line 8). Once all GMMs are pruned, a new set of locations is

computed by running the regression algorithm on the updated

GMMs (line 2-4). This iterative refinement process continues

until convergence (i.e., the mean difference between previous

and new location estimations drops below a threshold ε).

Algorithm 3 Refinement

1: repeat

2: for i← 1 to c2 do

3: Ĉi ←Regression(g̃i, T1, Zi ∈ T2)

4: for i← 1 to c2 do

5: for all In ∈ Neighbors(Ii) do

6: for j ← 1 to c1 do

7: if dist(Ĉj ,Ĉn) ≥ rmax then g̃i(φj) = 0
8: until convergence

9: return Ĉ

V. RESULTS

To evaluate the accuracy of proposed map merging algo-

rithm two P3AT robots were used. One was equipped with a

LMS200 laser range finder (LRF) and other with a webcam

as well as the LRF. The LRF on the second robot, however,

is only used to extract ground truth locations of images in

the appearance-based map to compute presented localization

accuracies. Both explored the first floor of the Engineering

X (m)

Y
 (

m
)

0 6 12 18 24 30
0

6

12

18

24

30

36

42

48

Ground Truth

Prediction

Fig. 4: An appearance-based map is merged with an oc-

cupancy grid map after OCC algorithm correctly estimated

100% overlap between two maps.

building at UC Merced in 3 independent runs covering a

total distance of over 1 km. Each robot generated either

an appearance-based map using the map building algorithm

presented in [4] or an occupancy grid map by employing the

SLAM algorithm [8]. Both robots collected WiFi observa-

tions Zi from a total of 75 unique APs (a = 75) using their

WiFi cards. Appearance-based maps are composed of 234

images in average where a single WiFi reading is attached

to each image. In the occupancy grid maps over 1000 WiFi

readings per map are partitioned into an average of 229

clusters whose centers’ Cartesian coordinates are used as

WiFi map labels. Each appearance-based map is merged

with each occupancy grid map after the map overlap is

computed using OC SVM algorithm with an accuracy of

over 99% in average. For the images that are classified as

a part of the occupancy grid map, a Cartesian coordinate is

assigned as described in Section IV. An illustrative example

of merged map with full overlap where all the images are

correctly assigned to a position estimate is shown in Figure 4.

To account for the randomness associated with RF training

process, we merged each map pair 10 times. The average

error of all 90 trials is 1.21 meters with σ = 1.09. The

overall heterogeneous map merging algorithm including the

map overlap computations takes in average 129 seconds to

merge an appearance-based map and an occupancy grid map

covering an area of over 300 m2 with around 250 vertices

and clusters, respectively.

5263

To demonstrate the true potential of the proposed merging

algorithm, we fused an appearance-based map MA with

two smaller non-overlapping occupancy grid maps M1

O

and M2

O created in addition to the ones described above.

Two grid maps with an unknown transformation between

their coordinate frames provide no additional information

when used together. For instance, a robot using these maps

cannot navigate from one to another. However, when the

appearance-based map is merged with these maps, it creates

the needed link between them so that the merged map carries

more value either to the operator or the robot utilizing it. This

representative example is illustrated in Figure 5 where on the

left the appearance-based map is drawn using the graphviz

software and grid maps created by navigating in the top and

bottom portions of the environment depicted in Figure 4

are presented on the right. Note that with no information

on relative transformations between their local coordinate

frames, the maps are placed at an arbitrary position while the

orientations are set by their corresponding drawing software,

gmapping and graphviz. To determine the overlap between

maps, OC SVM is trained for each occupancy grid map

and each image in MA is classified as either in-M1

O, in-

M2

O, or non-matching. The correct classification accuracies

for M1

O and M2

O are 97.54% and 99.01%, respectively.The

Cartesian coordinates of images are then computed and they

are placed to their estimated locations in their matching grid

map while still being connected to their appearance-based

map neighbors through their edges. The vertices of MA

shown in green in Figure 5 correspond to images captured in

the hallway connecting two grid maps which is not visible

in any of them. These vertices are successfully identified as

non-matching and constitute a critical part of the merged map

by holding all three individual maps connected. The accuracy

of localized images is 1.06 meters in average and merging

process takes less than 45 seconds. Interested readers should

also visit our website1, where they will have access to the raw

data, trained classifiers, generated maps, and code presented

in this paper. Moreover, the companion video associated with

this paper shows how the described merging process evolves

in time.

VI. CONCLUSIONS

In this paper we have presented a system that, to the best

of our knowledge, is the the first that can successfully merge

together heterogeneous spatial models, i.e., occupancy grid

maps and appearance based maps. To remedy the lack of a

common representation, we use WiFi signals as a common

substrate. Our method uses contemporary machine learning

algorithms to determine overlap between maps, establish

correspondences, and refine the result. Our proposed system

has been experimentally evaluated with various maps we

produced with our and third party mapping algorithms. In

the future, we plan to extend the system to include also

topological and feature based maps.

1https://robotics.ucmerced.edu/Robotics/IROS2013/MapMerging

Fig. 5: A representative example showing an appearance-

based map (left) merged with two occupancy grid maps

(right) is presented.

REFERENCES

[1] B. Balaguer, G. Erinc, and S. Carpin. Combining classification and
regression for WiFi localization of heterogeneous robot teams in
unknown environments. In IROS, pages 3496–3503, 2012.

[2] A. Birk and S. Carpin. Merging occupancy grids from multiple robots.
Proceedings of the IEEE, 94(7):1384–1397, 2006.

[3] S. Carpin. Fast and accurate map merging for multi-robot systems.
Autonomous Robots, 25(3):305–316, 2008.

[4] G. Erinc and S. Carpin. Anytime merging of appearance based maps.
In ICRA, pages 1656–1662, 2012.

[5] B. Ferris, D. Fox, and N. Lawrence. WiFi-SLAM using Gaussian
process latent variable models. In IJCAI, pages 2480–2485, 2007.

[6] S. Saeedi Gharahbolagh, L. Paull, M. Trentini, M. Seto, and H. Li. Ef-
ficient map merging using a probabilistic generalized voronoi diagram.
In IROS, pages 4419–4424, 2012.

[7] S. Saeedi Gharahbolagh, L. Paull, M. Trentini, M. Seto, and H. Li.
Map merging using Hough peak matching. In IROS, pages 4683–4688,
2012.

[8] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transac-

tions on Robotics, 23(1):34–46, 2006.
[9] A. Howard, S. Siddiqi, and G. Sukhatme. An experimental study of

localization using wireless ethernet. In International Conference on

Field and Service Robotics, 2003.
[10] W.H. Huang and K.R. Beevers. Topological map merging. Interna-

tional Journal of Robotics Research, 24(8):601–613, 2005.
[11] A. Ladd, K. Bekris, A. Rudys, D. Wallach, and L. Kavraki. On the

feasibility of using wireless ethernet for indoor localization. IEEE

Transactions on Robotics and Automation, 20(3):555–559, 2004.
[12] J. Nieto, J.E. Guivant, and E.M. Nebot. The HYbrid Metric Maps

(HYMMs): a novel map representation for DenseSLAM. In ICRA,
pages 391–396, 2004.

[13] L. Schwardt and J. du Preez. Clustering. Technical Report PR414 /
PR813 - 2005, University of Stellenbosch, 2003.

[14] D. Tax. One-class classification; Concept-learning in the absence of

counter-examples. PhD thesis, Delft University of Technology, 2001.
[15] D. Tran and T. Nguyen. Localization in wireless sensor networks

based on support vector machines. IEEE Transactions on Parallel

and Distributed Systems, 19(7):981–994, 2008.
[16] K.W. Wurm, C. Stachniss, and G. Grisetti. Bridging the gap between

feature- and grid-based SLAM. Robotics and Autonomous Systems,
58(2):140–148, 2010.

5264

