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Abstract— In this paper, the problem of set-point control
for flexible-joint robotic manipulators with input/output time
delays is investigated. By utilizing scattering transformation
with an input-output passive controller, it is demonstrated
that the flexible-joint robotic control system can be stabilized
when there are time delays in the communication channels.
Although stabilization is achieved, the flexible-joint robot can-
not be regulated to the desired configuration when utilizing the
scattering variables. Hence, a new control framework without
scattering transformation is subsequently studied in this paper
to guarantee both stability and position regulation provided
that the control gain is appropriately selected based on a
bound on the time delays. The proposed control algorithms are
validated via numerical examples on a two-link flexible-joint
robotic manipulator.

I. INTRODUCTION

Due to the advantages of increased flexibility and mod-

ularity [1], [2], [3], [4], [5], control of robotic systems

over a communication network has attracted the attention

of several researchers. In contrast to wired interconnections,

by transmitting input and output signals of robots and

controllers through communication networks, manipulators

can implement various tasks without being constrained by

wired connections. However, possible time delays in the

communication networks should be taken into account in

order to ensure stability and performance of the closed-

loop control system [6]. Therefore, several control algorithms

have been developed for set-point control of rigid-joint robot

with input/output delays [2], [5], [7].

The idea of scattering transformation, which was originally

developed to stabilize a bilateral teleoperation system under

constant communication delays [8], [9], has been widely

applied for the studies of networked systems [3], [5], [10]. By

invoking the fundamental passivity theorem [11], scattering

transformation has been exploited for set-point control for

rigid-joint robot by utilizing the passivity of the controller

and robotic manipulator. The stability of controlling nonlin-

ear robotic systems with non-collocated controller has been

studied in [2] for constant delays. However, the aforemen-

tioned robotic control system was developed for rigid robots.

Due to practical considerations, the presence of joint flex-

ibility in a robotic manipulator is inevitable. If the controller
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is designed without taking into account the joint flexibility,

instability can occur due to the non-collocated nature of the

control action [12]. Even though the problem of controlling

flexible-joint robots has been studied for decades [13], [14],

[15], [16], [17], the signals were assumed to exchanged via

a perfect communication between the robotic manipulator

and the controller. This assumption limits the application of

flexible-joint robot where the controller is not collocated with

the robot.

The objective of this paper is to develop control algorithms

for flexible-joint robotic manipulator to ensure both stabil-

ity and position regulation in the presence of input/output

delays. We first demonstrate that with the use of scattering

transformation for a position regulation controller [18], the

closed-loop control system with input/output constant delays

is stable. However, due to the gravity compensation term in

the controller and joint flexibility in the robotic manipulator,

the robot is unable to achieve position regulation. Hence,

an alternative controller without utilizing the scattering

transformation is studied under the assumption of internal

damping. It is demonstrated that the flexible-joint robot is

stable and can be regulated to the desired configuration. The

proposed control architecture does not require utilization of

the scattering transformation, and can guarantee stability by

adjusting the control gains.

The rest of this paper is organized as follows. A brief back-

ground on flexible-joint robotic manipulator and the set-point

controller is presented in Section II. Subsequently, the main

results of the paper are detailed in Section III. Numerical

studies of the proposed control algorithms are accomplished

in Section IV. Finally, the results are summarized and the

future work is discussed in Section V.

II. PRELIMINARIES

The flexible-joint robotic manipulator considered in this

paper is modeled as an Euler-Lagrange system [15], [19],

and the equations of motion in the absence of friction and

disturbances are given as
{

M(q1)q̈1 +C(q1, q̇1)q̇1 +g(q1)+K(q1 −q2) = 0 (1)

Jmq̈2 +K(q2 −q1) =−τm + τe = τt (2)

where q1, q2 ∈ Rn are the vector of joint angles and the

vector of motor shaft angles, τm ∈ Rn is motor torque acting

on the system, τe ∈ Rn is the external torque acting on the

system, M(q1) ∈ Rn×n is the positive definite inertia matrix,

C(q1, q̇1)q̇1 ∈ Rn is the vector of Coriolis/Centrifugal forces

where C(q1, q̇1) ∈ Rn×n, Jm ∈ Rn×n is the actuators’ inertia

matrix, K ∈ Rn×n represents the positive diagonal matrix
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of the joint stiffness, and g(q1) =
∂Ug(q1)

∂q1
, where Ug(q1) is

the gradient of the potential energy due to gravity. For the

gravitational potential energy, there exists a global minimum

such that Ugmin := minq1
Ug(q1). The above equations ex-

hibit several fundamental properties due to their Lagrangian

dynamic structure [14], [19].

Property 2.1: Under an appropriate definition of the ma-

trix C(q1, q̇1), the matrix Ṁ(q1)− 2C(q1, q̇1) is skew sym-

metric.

Property 2.2: The matrix M(q1) is symmetric positive

definite, and considering revolute joints in the robot, there

exist positive constants λm and λM such that λmIn ≤M(q1)≤
λMIn, where In ∈ Rn×n is an identity matrix.

Property 2.3: For q, q̇, ξ ∈ Rn, there exists a positive

constant kc such that the matrix of Coriolis/Centrifugal

torques is bounded by ‖C(q, q̇)ξ‖ ≤ kc‖q̇‖‖ξ‖.

Property 2.4: A positive constant β exists such that

‖∂g(q1)/∂q1‖ ≤ β , q1 ∈ Rn. The above inequality implies

that ‖g(q1)−g(q̄1)‖ ≤ β‖q1 − q̄1‖, ∀q1, q̄1 ∈ Rn.

In this paper, the notations λmin(·) and λmax(·) denote

the minimum and maximum eigenvalue of the enclosed

matrix. The norm of vector x ∈ Rn is defined as ‖x‖ =
(∑n

i=1 x2
i )

1/2, and the norm of matrix A ∈ Rn×n is defined as

‖A‖=
(

λmax(A
T A)

)1/2
, which implies that if A is symmetric

positive definite, we have ‖A‖ = λmax(A). In addition, for

the sake of simplicity the notation ξ [i] = diξ/dt i is used as

required.

The problem of position regulation for flexible-joint robots

has been studied in [15], [20] in the absence of time delays.

The control law for (1) and (2) was proposed in [20] that

τm = kp(q2 −q2d)+ kd q̇2 −g(q1d), (3)

where kp and kd are positive constant gains, q1d ∈ Rn is

the desired configuration of the links, and q2d = q1d +
K−1g(q1d)∈ Rn is given as the desired position of the motor.

By defining the positive matrix K̄ ∈ R2n×2n as

K̄ =

[

K −K

−K K + kpIn

]

,

it has been demonstrated that using the controller (3) under

perfect communication channels and provided the control

gain satisfies λmin(K̄)> β [20], the equilibrium configuration

(q1,q2, q̇1, q̇2)= (q1d ,q2d ,0,0) is globally asymptotically sta-

ble.

However, if the control of flexible-joint robots is subjected

to input/output delays, then the closed-loop control system is

unstable (as shown in Section IV). Therefore, the objective

of this paper is to study the closed-loop control system in the

presence of communication delays. The control architecture

for such a system with input/output delays is illustrated in

Fig. 1, where T1 and T2 are time delays in the communication

network. In order to deal with the stability issue, two control

algorithms and architectures are presented in the subsequent

section.
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Fig. 1. Control of flexible-joint robot with input/output delays.

III. STABILITY AND POSITION REGULATION

It is first demonstrated in this section that the flexible-joint

robot with the use of scattering transformation can stabilize

an otherwise unstable system under unknown constant in-

put/output delays. However, position regulation of flexible-

joint robot cannot be guaranteed by using the scattering vari-

ables. Therefore, another controller is proposed subsequently

to ensure stability and ensure regulation performance without

utilizing the scattering transformation.

A. Control Architecture with Scattering Transformation

The idea of scattering or wave-variable transformation

was proposed in [8], [9], [21] to stabilize teleoperation

system with communication delays. Encoded from the input

and output signals of the robotic system, wave-variables

are transmitted through delayed network instead to passify

the communication block with constant delays. Therefore,

by invoking the fundamental passivity theorem [11], the

closed-loop teleoperation system interconnecting with pas-

sive robotic systems, human operator, and remote environ-

ment is stable. Since the flexible-joint robotic manipulator

is passive with (τt , q̇2) as the input-output pair [14], the

use of scattering representation is considered in this paper

to stabilize the position control of flexible-joint robots with

input/output delays.

The control architecture utilizing scattering representation

is shown in Fig. 2, where T1, T2 ≥ 0 are both constant

and bounded delays. By considering the scattering variables

as [8], [9]

vr =
1√
2b
(τm +bq̇2) , zr =

1√
2b
(τm −bq̇2)

vc =
1√
2b
(yc +buc) , zc =

1√
2b
(yc −buc)

(4)

where the wave impedance b is a positive constant, the

controller (3) can be modified and given as
{

ẋc = uc

yc = kp(xc −q2d)+ kduc −g(q1d)
(5)

where the control gains kp, kd and the desired configurations

q1d , q2d are the same as in (3), xc is the state of the

controller, uc is the input of the controller that is obtained

from decoding the scattering variables vc, and yc is the output

of the controller that is fed back to the flexible-joint robot.

If there exists no time delays in the communication

channels (T1 ≡ T2 ≡ 0) such that vc = vr and zr = zc, we have

uc = q̇s and τm = yc from the scattering transformation (4).

Therefore, the controller (5) is identical to (3) if xc(0) =
q2(0). However, in the presence of constant input-output
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Fig. 2. Control of flexible-joint robot under input/output delays with the
utilization of scattering transformation.

delays, the transmission equations between the robot and the

controller become

vc(t) = vr(t −T1) , zr(t) = zc(t −T2). (6)

It is worth noting that the constant time delays are unknown

to the controller when utilizing the scattering transformation.

Before stating the result using the scattering transforma-

tion, defining an auxiliary function H(xc) given by

H(xc) =
kp

2
(xc −q2d)

T (xc −q2d)− xT
c g(q1d). (7)

The extremum points of the auxiliary function occur at

∇H(xc) = 0, which gives xc = q2d + k−1
p g(q1d) := x̄c. Since

∇2H(xc) = kp > 0 and is independent of xc, the function

H(xc) has a global minimum at xc = x̄c.

The following proposition demonstrates that the closed-

loop system can be stabilized with the use of scattering

transformation in the presence of constant input/output com-

munication delays.

Proposition 3.1: Consider the closed-loop system de-

scribed by (1), (2), (4), (5), and (6) with τe ≡ 0. The signals

of the system are bounded independent of the constant

communication delays, and limt→∞ q̇1(t) = limt→∞ q̇2(t) = 0,

limt→∞ q̈1(t) = limt→∞ q̈2(t) = 0.

Proof: Consider a positive-definite storage functional

for the closed-loop system as

S =
1

2
q̇T

1 M(q1)q̇1 +
1

2
q̇T

2 Jmq̇2 +
1

2
(q1 −q2)

T K(q1 −q2)

+Ug(q1)−Ugmin +H(xc)−H(x̄c)+
1

2

∫ t

t−T1

‖vr(σ)‖2dσ

+
1

2

∫ t

t−T2

‖zc(σ)‖2dσ ≥ 0,

where Ugmin is the minimum potential energy of Ug(q1)
for the flexible-joint manipulator, and H(xc) is the auxiliary

function defined in (7). Taking the derivative of the storage

functional and using the transmission equations (6) yields

Ṡ = q̇T
1 (−Cq̇1 −g(q1)−K(q1 −q2))+

1

2
q̇T

1 Ṁq̇1

+q̇T
2

(

− τm −K(q2 −q1)
)

+(q̇1 − q̇2)
T K(q1 −q2)

+q̇T
1 g(q1)+ kpẋT

c (xc −q2d)− ẋT
c g(q1d)+

1

2
(‖vr‖2 −‖zr‖2

+‖zc‖2 −‖vc‖2).

By utilizing Property 2.1, the scattering variables (4), and

the output of controller (5), Ṡ becomes

Ṡ =−q̇T
1 g(q1)− q̇T

1 K(q1 −q2)− q̇T
2 τm − q̇T

2 K(q2 −q1)

+(q̇1 − q̇2)
T K(q1 −q2)+ q̇T

1 g(q1)+uT
c

(

yc − kduc

+g(q1d)
)

−uT
c g(q1d)+ τT

m q̇2 −uT
c yc

=−kduT
c uc ≤ 0. (8)

Therefore, the storage functional S is bounded which implies

that signals q̇1, q̇2, q1 − q2, xc ∈ L∞, and from (8) uc ∈
L2. Using the scattering variables (4) and the transmission

equations (6), the relationships between signals are

yc(t)+buc(t) = τm(t −T1)+bq̇2(t −T1), (9)

yc(t −T2)−buc(t −T2) = τm(t)−bq̇2(t). (10)

Substituting the control output yc(t), the above equations

become

kp(xc(t)−q2d)+ kduc(t)−g(q1d)+buc(t)

= τm(t −T1)+bq̇2(t −T1), (11)

kp(xc(t −T2)−q2d)+ kduc(t −T2)−g(q1d)−buc(t −T2)

= τm(t)−bq̇2(t). (12)

By letting kd = b to avoid wave reflections [9], (11) and (12)

can be rewritten as

2buc(t)+kp(xc(t)−q2d)−g(q1d)=τm(t−T1)+bq̇2(t−T1)(13)

kp(xc(t−T2)−q2d)−g(q1d)=τm(t)−bq̇2(t). (14)

Since xc, q̇2 are bounded and q2d , g(q1d) are constant,

from (14) we get that τm is bounded. Utilizing the result

in (13) yields that uc ∈L∞, and further using the result in the

dynamic model (2) implies that q̈2 ∈L∞. Differentiating (14)

yields that τ̇m is bounded, and this result additionally implies

that u̇c is bounded by differentiating (13).

As a square integrable signal with a bounded derivative

approaches the origin [19], uc ∈L2 and u̇c ∈L∞ implies that

limt→∞ uc(t) = 0. Delaying the transmission equation (14) by

T1 and subtracting from (13) yields

2buc(t)+ kp(xc(t)− xc(t −T1 −T2)) = 2bq̇2(t −T1). (15)

Taking the limit of the above equation for t → ∞ with

limt→∞ uc(t) = 0, we get limt→∞ kp

(

xc(t)−xc(t−T1−T2)
)

=
limt→∞ 2bq̇2(t −T1). As ẋc = uc, the previous equation can

be rewritten as limt→∞ kp

∫ t
t−T1−T2

uc(τ)dτ = limt→∞ 2bq̇2(t−
T1). Thus, we obtain that limt→∞ q̇2(t) = 0 as limt→∞ uc(t) =

0. Since q̇1, q̇2, τ̇m ∈L∞, differentiating (2) yields that q
[3]
2 ∈

L∞. As limt→∞ q̇2(t) = 0 and q̈2 is uniformly continuous, by

invoking Barbalat’s Lemma [22] we have limt→∞ q̈2(t) = 0.

By differentiating (14) twice, we get kpẍc(t − T2) =

τ̈m(t)− bq
[3]
2 (t). Since u̇c, q

[3]
2 ∈ L∞ and ẍc = u̇c, we have

τ̈m ∈ L∞. As q̇1,q1 − q2 ∈ L∞, from observing (1) with

Property 2.2 and Property 2.3, we get q̈1 ∈ L∞. Then, dif-

ferentiating (2) twice with q̈1, q̈2, τ̈m ∈ L∞ yields q
[4]
2 ∈ L∞.

Since limt→∞ q̈2(t) = 0 and q
[3]
2 is uniformly continuous, by

invoking again Barbalat’s Lemma, we have limt→∞ q
[3]
2 (t) =

0. Taking the time derivative of (14) gives τ̇m = kpẋc(t−T2)+
bq̈2(t) = kpuc(t −T2)+bq̈2(t). Substituting τ̇m to the deriva-

tive of (2), we have Jmq
[3]
2 +K(q̇2 − q̇1) =−τ̇m =−kpuc(t −

T2)−bq̈2. From the above equation, since q̇2, q̈2,q
[3]
2 , and uc
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Fig. 3. Control architecture for flexible-joint robots without utilizing
scattering transformation.

converge to zero as t →∞, we conclude that limt→∞ q̇1(t)= 0.

Differentiating (1) with q̈1, q̇1, q̇2 ∈L∞ implies that q
[3]
1 ∈L∞

(note that the derivative of M(q1) and C(q1, q̇1) are bounded

because q̈1, q̇1, q̇2 ∈ L∞). Since q̈1 is uniformly continuous

and limt→∞ q̇1(t) = 0, from Barbalat’s Lemma it can be

obtained that limt→∞ q̈1(t) = 0.

The above result demonstrates that the flexible-joint robot

with constant input/output communication delays can be

stabilized with the use of scattering transformation. Addi-

tionally, the convergence of q̇1, q̇2, q̈1, q̈2 to the origin is

guaranteed. Even though Proposition 3.1 provides a simple

method to stabilize the proposed system, the robot is not

guaranteed to be regulated to the desired configuration. The

inability to achieve position regulation will be validated via

simulations in Section IV.

B. Control Architecture without Scattering Transformation

Since the control architecture with the use of scattering

transformation is unable to guarantee position regulation for

flexible-joint robots with input/output delays, an alternative

control algorithm without using the scattering transformation

is developed in this section. We consider the same robotic

model (1) and (2) but assume that there exists innate dissipa-

tion in the model of motor shaft. Thus, the dynamic model

for flexible-joint robot becomes
{

M(q1)q̈1 +C(q1, q̇1)q̇1 +g(q1)+K(q1 −q2) = 0 (16)

Jmq̈2 +bmq̇2 +K(q2 −q1) =−τm + τe = τt (17)

where bm denotes the internal damping in the robotic system

and is assumed to be a constant.

The control architecture is shown in Fig. 3, where only the

angle of motor shaft q2 is transmitted to the controller. In the

absence of scattering transformation, the controller output is

yc = kp(q2(t −T1)−q2d)−g(q1d). (18)

The controller output yc is transmitted to the flexible-joint

robot directly via the communication channel with time

delays T2. Thus, the control input applied to the robot is

τm = kp(q2(t −T1 −T2)−q2d)−g(q1d). (19)

Since the desired configuration q2d and gravitational com-

pensation g(q1d) are constant, there is no influence of delays

on these signals.

The next lemma is exploited in this paper to prove the

stability and position regulation of the proposed control

system shown in Fig. 3.

Lemma 3.2: [23] Given signals x,y∈Rn,∀T such that 0<
T < ∞ and α > 0, the following inequality holds

−
∫ t

0
xT (σ)

∫ 0

−T
y(σ +θ)dθdσ ≤ α

2
‖x‖2

2 +
T 2

2α
‖y‖2

2

where ‖ · ‖2 denotes the L2 norm of the enclosed signal.

By denoting T̄ > T1+T2 the upper bound of the round-trip

delays, the next result follows.

Proposition 3.3: Consider the closed-loop system de-

scribed by (16), (17), and (18) for τe ≡ 0. If bm > kpT̄ , then

the signals of the system are bounded, and limt→∞ q̇1(t) =
limt→∞ q̇2(t) = 0, limt→∞ q̈1(t) = limt→∞ q̈2(t) = 0. Addi-

tionally, if the control gain kp satisfies λmin(K̄) > β ,

limt→∞ q1(t) = q1d and limt→∞ q2(t) = q2d .

Proof: Consider a storage function for the closed-loop

robotic system as

S =
1

2
q̇T

1 M(q1)q̇1 +
1

2
q̇T

2 Jmq̇2 +
1

2
(q1 −q2)

T K(q1 −q2)

+Ug(q1)−Ugmin +H(q2)−H(q̄2)≥ 0, (20)

where H(q2) is given as (7) by substituting xc for q2 with

q̄2 := q2d + k−1
p g(q1d). Taking the time derivative of the

storage function, we get

Ṡ = q̇T
1 (−Cq̇1 −g(q1)−K(q1 −q2))+

1

2
q̇T

1 Ṁq̇1

+q̇T
2 (−τm −bmq̇2 −K(q2 −q1))+(q̇1 − q̇2)

T K(q1 −q2)

+q̇T
1 g(q1)+ kpq̇T

2 (q2 −q2d)− q̇T
2 g(q1d). (21)

By utilizing Property 2.1 and control input (19), Ṡ becomes

Ṡ ≤−bmq̇T
2 q̇2 + kpq̇T

2

∫ 0

−T̄
q̇2(t +σ)dσ . (22)

Integrating the above equation from 0 to t with the use of

Lemma 3.2 yields

S(t)−S(0)≤−‖q̇2‖2
2

(

bm − kpα

2
− kpT̄ 2

2α

)

. (23)

It is noted that the sign of the second term in (22) does

not affect the calculation in (23) when utilizing Lemma 3.2.

Hence, if

bm − kpα

2
− kpT̄ 2

2α
> 0, (24)

then the storage function S is a non-increasing function

from observing (22). Since α is a positive constant resulting

from Lemma 3.2, the inequality (24) leads to the condition

that bm > kpT̄ . Therefore, if the control gains kp, internal

damping bm, and the upper bound of round-trip delay T̄

satisfy bm > kpT̄ , then q̇1, q̇2, q1, q2 ∈ L∞ and q̇2 ∈ L2.

As q̇2 ∈ L∞ and T1, T2 are bounded constants, we have

τm ∈L∞ from the joint input (19). The robot dynamics (17)

with bounded τm results in q̈2 ∈ L∞. Since q̈2 ∈ L∞ and

q̇2 ∈ L2, we have limt→∞ q̇2(t) = 0 by invoking Barbalat’s

Lemma [22]. By taking the time derivative of τm (19) with

q̇2 ∈ L∞, we obtain that τ̇m is bounded. Differentiating (17)

leads to q
[3]
2 ∈L2. As

∫ t
0 q̈2(σ)dσ exists and q̈2 is uniformly

continuous, by invoking Barbalat’s Lemma again, we con-

clude that limt→∞ q̈2(t) = 0.
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Taking the time derivative of the the control input (19)

twice with q̈2 ∈ L∞ results in τ̈m ∈ L∞. Thus, it is ob-

tained by differentiating (17) twice that q
[4]
2 ∈ L∞. Again,

since
∫ t

0 q
[3]
2 (σ)dσ exists and q

[3]
2 is uniformly continuous,

limt→∞ q
[3]
2 (t) = 0 by invoking Barbalat’s Lemma. The time

derivative of (17) gives

Jmq
[3]
2 +bmq̈2 +K(q̇1 − q̇2) =−τ̇m = kpq̇2(t −T1 −T2). (25)

Since limt→∞ q̇2(t) = limt→∞ q̈2(t) = limt→∞ q
[3]
2 (t) = 0, from

the above equation, limt→∞ q̇1(t) = 0. By observing (16) with

Property 2.2 and Property 2.3, we get q̈1 ∈ L∞. Therefore,

differentiating (16) with q̇1, q̇2, q̈1 ∈ L∞ yields q
[3]
1 ∈ L∞.

As q̈1 is uniformly continuous and q̇1 has finite limit, we get

limt→∞ q̈1(t) = 0 by Barbalat’s Lemma. Consequently, the

system is stable with limt→∞ q̇1(t) = limt→∞ q̇2(t) = 0 and

limt→∞ q̈1(t) = limt→∞ q̈2(t) = 0.

We next prove the position regulation of the control

system. Taking the limit t → ∞ for (16) and (17) yields

lim
t→∞

g(q1(t))+K lim
t→∞

(q1(t)−q2(t)) = 0 (26)

K lim
t→∞

(q2(t)−q1(t)) =−kp

(

lim
t→∞

q2(t)−q2d

)

+g(q1d). (27)

Adding the relationship K(q2d −q1d) = g(q1d) to both equa-

tions (26) and (27), the above equations can be written as

K̄

[

limt→∞ q1(t)−q1d

limt→∞ q2(t)−q2d

]

=

[

g(q1d)−limt→∞ g(q1(t))
0

]

(28)

The left term of (28) has the relationship that
∥

∥

∥

∥

K̄

[

limt→∞ q1(t)−q1d

limt→∞ q2(t)−q2d

]∥

∥

∥

∥

(29)

≥ λmin(K̄)(‖ lim
t→∞

q1(t)−q1d‖+‖ lim
t→∞

q2(t)−q2d‖).

Based on Property 2.4, the right term of (28) becomes
∥

∥

∥

∥

[

g(q1d)− limt→∞ g(q1(t))
0

]∥

∥

∥

∥

≤ β‖ lim
t→∞

q1(t)−q1d‖

≤ β (‖ lim
t→∞

q1(t)−q1d‖+‖ lim
t→∞

q2(t)−q2d‖). (30)

If choosing the control gain kp such that λmin(K̄) > β , the

unique solution of (29) and (30) is limt→∞ q1(t) = q1d and

limt→∞ q2(t) = q2d [20]. Therefore, the flexible-joint robot

achieves position regulation in the presence of input/output

time delays.

IV. SIMULATION RESULTS

A two-link flexible-joint robotic manipulator is considered

in this paper to validate the proposed control algorithms. The

dynamics of the two-link robot with flexible and revolute

joints are given as [19] with the consideration of gravitational

torques. The physical parameters are given as m1 = 7.848kg,

m2 = 4.490kg, I1 = 0.176kgm2, I2 = 0.041kgm2, l1 = 0.8m,

l2 = 0.6m, l1c = 0.4m, l2c = 0.3m, g = 9.8, Jm = diag{6,1},

and K = diag{1000,1000}. According to Property 2.4 and

the robotic model, we have ‖ ∂g(q)
∂q

‖ < 82 = β . In the fol-

lowing simulations, the desired configuration for the joint

is given as q1d = [π/2, π/3]T rad, which leads to q2d =
[1.559, 1.036]T rad.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−30

−20

−10

0

10

20
Simple PD control with input/output delays

Time (sec)

J
o
in

t 
P

o
s
it
io

n
 C

o
n
fi
g
u
ra

ti
o
n
s
 (

ra
d
)

Fig. 4. Simple set-point control for flexible-joint robot becomes unstable
with small input/output time delays.
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Fig. 5. The flexible-joint robot can be stabilized by employing scattering
transformation but with degradation of position regulation.

In the first simulation, we demonstrate that the control

system introduced in [20] becomes unstable if the robot

is subjected to input/output communication delays. By se-

lecting control gains kp = 200 and kd = 100 with relatively

small time delays T1 = T2 = 0.01sec, the simulation result

is illustrated in Fig. 4. It can be observed that the closed-

loop control system for flexible-joint robot is unstable under

input/output time delays. Subsequently, the control architec-

ture shown in Fig. 2 is utilized to stabilize the control system.

The control gains are given the same as in the previous case,

and the wave impedance is chosen by b = kd = 100. For

larger input/outout delays T1 = 0.1sec and T2 = 0.3sec, the

simulation results with the use of scattering transformation

are shown in Fig. 5. Even though the control gains kp satisfies

λmin(K̄) = 95 > β = 82, the flexible-joint robot can not be

regulated to the desired configuration, which are the dashed

lines in the figure.

In order to ensure position regulation, the architecture

without utilizing scattering transformation is validated sub-

sequently. The innate dissipation bm is assumed to be 100.

Following the same control gains kp = 200 and time delays,

the simulation results is shown in Fig. 6 (a). The flexible-

joint robot is stable as the control gains kp and time delays T̄

satisfy the condition bm = 100 > kpT̄ = 200×0.4 = 80 that

was addressed in Proposition 3.3. In addition, the control

gain kp satisfies the condition λmin(K̄) = 95 > β = 82, hence

the position regulation is guaranteed. If kp decreases to 120,

the robotic manipulator can still be regulated to the desired
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(b) For kp = 120, λmin(K̄) = 58 and kpT̄ = 48.
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(c) For kp = 50, λmin(K̄) = 24 and kpT̄ = 20.

Fig. 6. Simulation results of the proposed control architecture without
utilizing scattering transformation.

position even if the control gain fails the sufficient condition

λmin(K̄) > β , as shown in Fig. 6 (b). However, if kp is

too small, the flexible-joint robot can not achieve position

regulation as shown in Fig. 6 (c).

V. CONCLUSIONS

The problem of controlling flexible-joint robotic manipu-

lators under input/output delays was presented in this paper.

With the utilization of scattering transformation, we first

demonstrated that the closed-loop control system is stable,

but position drift occurs due to the joint flexibility. In order to

improve regulation performance and reduce the complexity

of the control system, another control architecture was de-

veloped without using the scattering transformation and with

transmission of only the position signals to the controller.

Provided that the control gain kp is contingent to the innate

dissipation in the robotic system bm > kpT̄ , the closed-loop

control system is guaranteed to be stable. Additionally, if the

condition λmin(K̄) > β is satisfied, the flexible-joint robot

can be regulated to the desired configuration. The efficacy

of the proposed control systems was demonstrated through

numerical examples with a two-DOF flexible-joint robotic

manipulator. Future work in this research topic includes not

only time-varying communication delays but also trajectory

tracking with non-collocated controller.
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