
  

 

Abstract— Recently, the Brain-Machine Interface (BMI) has 
been expected to be applied to robotics and medical science field 
as a new intuitive interface. BMI measures human cerebral 
activities and uses them directly as an input signal to various 
instruments. The future goal of our research is to design a 
practical BMI system that can be used reliably in daily lives. In 
this paper, we will discuss a design method of a BMI system 
using a portable Near-InfraRed Spectroscopy (NIRS) device 
and then we will consider improving the performance of the 
learning vector quantization (LVQ) classifier by using the 
independent component analysis (ICA) and the 
self-proliferating function of neurons. The effectiveness of the 
proposed method is investigated in human imagery 
classification experiments. 

 

I. INTRODUCTION 

Recently, the Brain-Machine Interface (BMI) has been 
expected to be applied to robotics and medical science field as 
a new intuitive interface. BMI measures human cerebral 
activities and uses them directly as an input signal to various 
instruments as shown in Fig.1. If a practical and intuitive BMI 
system is realized, it could have pioneering applications in 
various new fields, e.g., human-robot interaction, supportive 
care for amyotrophic lateral sclerosis (ALS) patients and other 
persons with special needs. Various researches have been 
conducted to develop effective BMI systems. For example, in 
invasive and less-invasive measurement methods, M. D. 
Serruya et al.[2] and L. R. Hochberg et al.[3] measured the spike 
activity of neurons by inserting electrodes and translated brain 
signals into cursor movement on a PC monitor. Hirata et al. [3] 
applied ECoG to control a robotic arm. With regard to 
noninvasive measurement methods, Kamitani et al. [4] studied 
an fMRI-based method for decoding visual and subjective 
contents in a human brain. Q. Zhao et al. [5] used the scalp EEG 
to drive a car in a 3D virtual reality environment. Honda 
Research Institute Japan Co., Ltd. (HRI-JP), Advanced 
Telecommunications Research Institute International (ATR), 
and Shimadzu Corp. demonstrated a BMI system using both 
EEG and NIRS in which human body motion images of  “right 
hand”, “left hand”, “foot”, and “tongue” are classified as 
commands to be used for robot control. RIKEN, Toyota Motor 
Corp., Toyota Central R&D Labs, Inc., and Genesis Research 
Institute, Inc. have demonstrated an EEG-based BMI system 
that classifies the motion images of “walking”, “right arm 
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movement”, and “left arm movement” to control a powered 
wheelchair. Although research on BMI has been progressing 
rapidly, it is not yet sufficient clear that to what extent BMI 
can classify human thoughts and imageries and emotions etc.  

In this research, we aim to design a practical BMI system 
using a Near-InfraRed Spectroscopy (NIRS) device. NIRS is 
one of the non-invasive measuring methods for cerebral 
activities and it enables to measure the cerebral blood flow by 
using a headset fitted with optical probes. NIRS has various 
potential applications, because it is intrinsically safe and easy 
to equip and realize the relatively high spatial resolution and 
multi-channel simultaneous measurement. But the relationship 
between blood flow patterns and cerebral activities 
corresponding human physical motions or mental imagery is 
not yet sufficiently clear. So, we will focus on the design and 
application problem of NIRS-based BMI system. 

In our previous research[7], we proposed a LVQ-based 
cerebral state classifier for NIRS-measured cerebral blood 
flow patterns and we succeeded in classifying not only human 
physical motions but also mental imageries (mental motions, 
mental commands to robots and emotions.) In [7], we used a 
large size NIRS instrument for medical use and measured 
blood flow data in an ideal medical lab room. But in the 
practical use of BMI, users are limited to utilizing a simpler 
NIRS device with lower sampling rate and fewer measuring 
points. Additionally, in the daily living environment, the 
measurement suffers from the influence of various conditions 
and human blood flow patterns tend to fluctuate according to 
the changes of conditions such as the human mental and 
physical condition, the environmental condition (e.g. 
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surrounding noises, the temperature, the variation and the 
uncertainty of the fitted probe position) and so on. Therefore, 
we need to develop a robust cerebral state classifier for a 
portable NIRS device. In our previous paper in MHS2012[8], 
we showed the possibility of 1) the disturbance removal based 
on the independent component analysis (ICA) and 2) the 
imagery evoking training and additional learning. So, in this 
paper, we will define new performance indices to evaluate the 
classification stability and robustness and we will confirm the 
ICA-based performance improvement through the imagery 
classification experiment. In addition to that, we will also 
improve the classification performance by modifying the 
LVQ-based classifier to have the self-proliferating function of 
LVQ neurons and will confirm the validity thorough the 
additional learning experiment in the daily living 
environment. 

In the following, we will explain the proposed portable 
NIRS-based BMI system, at first (Chapter II). Then, we will 
describe a LVQ-based online cerebral state classifier for a 
portable NIRS device which enables to classify several 
categories of human mental imageries (e.g., motion imagery, 
mental commands to a robot, human emotions) in Chapter III 
and IV. After that, we will discuss the performance 
improvement problem in the daily living environment. In 
Chapter V, the performance indices will be revised to indicate 
the stability and robustness of the classification, at first 
(Section A), and then we will confirm the performance of the 
ICA-based disturbance removal through the imagery 
classification experiments in which the influence of the 
subject’s breath hold will be removed from the measured 
blood flow data (Section B). Next, in Section C, we will 
modify the LVQ-based classifier to have the neuron 
self-proliferating function and we will investigate the effect of 
the additional learning with the modified classifier. 

II. MEASUREMENT OF HUMAN CEREBRAL BLOOD FLOW AND 

EXPERIMENTAL IMAGERY CLASSIFICATION TASKS 

A. Portable NIRS-based Measurement of Cerebral Blood 
Flow (Experimental System) 

We will explain the experimental system to measure and 
classify the human cerebral blood flow. Fig.2 shows a 
schematic overview of our experimental BMI system. A 
portable NIRS-based optical topography device (OEG-16 
manufactured by Spectratech, Inc,) is used in the system and it 
can noninvasively measure the concentrations of oxygenated 
hemoglobin and  reduced hemoglobin and total hemoglobin in 
the cerebral blood flow at 16 different measurement points on 
the prefrontal cortex. OEG-16 consists of a headset with 
optical probes and a data acquisition box as shown in Fig.3. It 
is very compact and can be driven by built-in batteries, so we 
can measure human cerebral activities under various 
experimental conditions in the living environment. Its 
sampling interval is 0.65 s. The measured blood flow data are 
transmitted to a laptop through USB. Then, the proposed 
LVQ-based online state classifier analyzes the human blood 
flow pattern and classifies the human thought and imageries 
online. A LCD is used for displaying the various information. 
In experiments in this paper, the LCD was used to display the 

experimental instructions and directions to the subject 
persons. 

B. Cerebral State Classification Tasks and Experimental 
Setting in this Paper 

In this paper, we conducted cerebral state classification 
experiments to verify the performance of the NIRS-based BMI 
system. In this section, the details of experimental tasks and 
measurement settings will be described.  

We consider the following cerebral state classification 
problems of subjects’ mental imageries because the 
measurement area of OEG-16 is limited to the prefrontal 
cortex.  

Classification of Human Mental Motions 
When the human images his/her body parts movements, 

his/her brain becomes active and some transition pattern of 
cerebral blood flow appeared. So, we consider the online 
automatic classification of human motion images from his /her 
cerebral blood flow patterns. Motion images to be classified 
are following four states; 1) repetitive bending/extending of 
the right arm, 2) repetitive bending/extending of the left arm, 
3) stepping of lower legs, and 4) relax.  

Fig.2 Portable NIRS-based BMI system

Fig.3 Portable NIRS device (OEG-16) 

Fig.4 Classification of Mental commands to robot 
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Classification of Mental Commands to robot  
Next, we consider the classification problem of mental 

commands to a robot in order to check whether the BMI can 
recognize human mental commands toward another object 
(not toward himself/herself). In the classification experiment, 
a robot image (Fig.4) is displayed on the laptop monitor in 
order to help a human subject imagine steady mental 
commands. The subject mentally commands a robot to 1) go 
forward, 2) go backward, 3) turn right, 4) turn left, and 5) stop. 
Then, BMI recognize the subject’s mental command online 
based on the measured blood flow.  

Classification of Evoking Emotions 
Next, we consider the classification problem of human 

emotion in order to check whether the BMI can recognize 
human emotions from his/her cerebral blood flow patterns. 
Emotions to be classified here are following four types; 1) 
happy, 2) sad, 3) angry and 4) relax. The subjects were 
instructed to remember their specific “happy,” “sad,” “angry” 
situations that they had experienced in the past to evoke steady 
emotions. 

Now we will explain the experimental setting in this paper. 
Each subject is fitted a headset with optical probes and 
directed to perform image evoking tasks. The probe is 
positioned so as to cover his/her prefrontal cortex. The probe 
position is decided based on the ten-twenty electrode system 
of the International Federation [16], as shown in Fig.5. Then, 
14% from nasal root is selected as the central position of the 
probe. In each image evoking experiment, one trial consisted 

of multiple experimental tasks corresponding to the "actions 
(mental imageries)" to be classified. In a task, the subject 
performs only one action (imagery) at a time. The time span of 
each task was 60s. In the first and the last 20s, the subject does 
not perform any tasks but just wait and relax (no imagery). In 
the middle 20s, the subject performs a directed action. During 
the experiments, in order to avoid artifacts, we check that the 
subjects perform no body and head movement. 

III. CLASSIFIER FOR CEREBRAL BLOOD FLOW PATTERNS  

The proposed cerebral state classifier consists of a 
preprocessing part and a LVQ-based classification part. We 
will explain them in following sections. 

A.  Data Preprocessing Part 

In the proposed classifier [7], measured blood flow data are 
preprocessed by a frequency-based filter and a grouping 
/averaging method. The frequency filter is used to reduce 
biological fluctuations and noises in measured blood flow data. 
The biological fluctuations in relatively long time span are 
caused by human normal activities and measured as a drift 
behavior. And relatively high-frequency noises are caused by 
environmental factors such as the electric noise and the optical 
noise and so on. So, a numerical band-pass filter with cut-off 
frequencies of 0.005Hz and 0.05Hz is applied in the proposed 
portable NIRS-based BMI system. The grouping and 
averaging method is used to reduce the dimensions of the 
input vector space for the LVQ-based classifier and it is also 
effective against biological fluctuations and the uncertainties 
of the headset position etc. But, in this paper, we did not use 
the grouping/averaging method because the number of 
channels of the portable NIRS is relatively few. Measured data 
of all channels was used as an input vector for the classifier in 
this paper. 

B. LVQ-based Classification Part 

The classifier part is based on the learning vector 
quantization (LVQ[17]). LVQ is supervised learning method 
for clustering and quantizing the input vector space based on 
the affinity of input vector components as shown in Fig.6. It 
works as a vector classifier by tuning the reference vector 
neuron. In particular, LVQ learns the input-output 
relationships in the teaching data by using the competitive 
learning method. Then, it represents the relationships as a set 

Fig.5 Experimental position setting of headset 
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of finite number of reference vector neurons which is called 
the "codebook." As a result of learning, each reference vector 
neuron acquires one of the output labels and produces the 
desired output defined in the teaching data. After learning, 
when it is used as a classifier, LVQ searches the best matched 
reference vector neuron that has the shortest Euclidean 
distance to a newly given input vector. Then, the output label, 
that the best-matched neuron has, is selected as an output. 
Because each reference vector neuron represents the feature of 
an input vector associated with its output label, we can analyze 
the classification process of the blood flow patterns. 

In the proposed cerebral state classification, we define the 
feature values for LVQ learning in the vector form from the 
measured blood flow data. To classify the blood flow pattern 
effectively, we need to use not only raw measured data but 
also numerically processed data, such as the integrated and the 
differentiated and so on. In addition, effective classification 
requires data histories of the blood flow in the appropriate time 
window. So we searched appropriate feature values from 
various candidates through the learning experiment of LVQ. 
As a result, we selected the integrated data, the integrated data 
with basis, the maximum and minimum values of 
differentiated data, of the total hemoglobin concentration in 
the time window as feature values. The appropriate span of the 
time window was also searched and 15.6 s was selected. In 
Chapter V, a self-proliferating function of LVQ neurons will 
be added. 

IV. CLASSIFICATION EXPERIMENTS  

A.  Definition of the Evaluation Method 

Now, we will define how to evaluate the results of the 
classification experiments. Fig.7 shows the definition of the 
evaluation method. For the purpose of definition of the 
performance indices, we assume that the subject did not 
perform any action ("No imagery") in the first and last 20 s and 
he/she executed "Imagery 1" in the middle 20 s in Fig.7. And 
we also assume that the classifier output the incorrect label 
"Imagery 1" in the first "No imagery" period, and that the 
output of the correct label "Imagery 1" was delayed, and that 
the incorrect label "Imagery 2" was output in the last "No 
imagery" period, as shown in Fig.7. The LVQ-based classifier 
can output the classification label in real time. Therefore, we 
adopted the time ratio of the correct output to the whole 
measurement span as the index of the classification 
performance. In addition, because the blood flow change had 
inevitable biological delays, we subdivided the classification 
error into several categories, as shown below. 

Correct Output Rate 
This is the total time rate when the classifier output was 
correct.  

Incorrect Firing Rate 
This is the total time rate when the classifier fired incorrect 
imagery labels. For example, this includes the cases that the 
classifier outputs some “Imagery” label in the "No imagery" 
period, and that some incorrect “Imagery” label is output in the 
"Imagery" period. These are most undesirable behaviors in a 
BMI system because these result in incorrect operations.  

Delay Time Rate 
This is the rate of the delay time between the beginning of the 
imagery and the time when the classifier recognizes it.  

Persistent Time Rate 
This is the time rate from the end of the subject's imagery to 
the time when the classifier recognizes it.  

Others 
This is the time rate that does not belong to any of the above 
categories, for example, when the classifier output "No 
imagery" before the end of the subject's imagery. This 
category is revised in Chapter V in order to indicate the 
stability in the daily living environment.  

TABLE I.  EXPERIMENTAL RESULTS 

Human mental 
motions 

Subject 
A 

Subject 
B 

Subject 
C 

Correct output rate[%] 79.8 87.0 82.4 
Incorrect firing rate[%] 2.3 2.7 4.1 

Delay time rate[%] 
(Avg. delay time [s]) 

3.3 
(1.98) 

1.9 
(1.14) 

4.0 
(2.4) 

Persistent time rate[%] 
(Avg. Persistent time [s])

1.0 
(0.6) 

1.0 
(0.6) 

0.9 
(0.54) 

Others[%] 13.7 7.5 8.6 

Mental commands to 
robot 

Subject 
A 

Subject  
B 

Subject 
C 

Correct output rate [%] 77.5 79.2 77.8 
Incorrect firing rate [%] 3.0 2.7 3.4 

Delay time rate[%] 
(Avg. delay time [s]) 

5.7 
(3.42) 

4.2 
(2.52) 

3.1 
(1.86) 

Persistent time rate[%] 
(Avg. Persistent time [s])

0.5 
(0.3) 

0.6 
(0.36) 

1.6 
(0.96) 

Others[%] 13.3 13.2 14.0 

Evoking Emotions 
Subject 

A 
Subject 

B 
Subject 

C 
Correct output rate [%] 80.3 79.0 84.1 
Incorrect firing rate [%] 4.2 3.7 3.2 

Delay time rate[%] 
(Avg. delay time [s]) 

6.0 
(3.6) 

5.4 
(3.24) 

6.5 
(3.72) 

Persistent time rate[%] 
(Avg. Persistent time [s])

0.8 
(0.48) 

0.9 
(0.54) 

0.3 
(0.18) 

Others[%] 8.7 11.0 5.9 

 
 

Fig.7 Definition of performance indices 

Time

Output label

Imagery 1

Imagery 2

Imagery N

No-Imagery

・・・

No-imagery (20 s)Actual imagery No-imagery (20 s)imagery1 (20 s) 

Incorrect Firing

Delay Time Persistent Time

854



  

B.  Classification Experiments 

Imagery classification experiments were conducted. The 
results were shown in Table I. The categories of the 
performed imagery classification tasks were “Mental 
motions,” the “Mental commands to a robot” and “Emotions” 
as described in Chapter II. Three male subjects were engaged 
in the experimental tasks. They were students belonging to 
our laboratory and had no experience of portable NIRS 
measurement experiments. The average performance indices 
of ten trials for each subject were shown in the table I.  

In the category of human mental motion classification, the 
correct output rate scored about 80 to 87%. And in the mental 
command classification experiment and the emotion 
classification experiment, the scores were 77~79% and 
79~84% respectively. The scores of the incorrect firing rate 
were 2%~4% in each category. Although the incorrect firing 
rate is most undesired factor, they were low in all categories. 
The delay time rate was mainly caused by inevitable biological 
delay and scored about 2%~7% (1 ~ 4 seconds). Thus, the total 
performance of the proposed cerebral state classifier is 
considered to be sufficiently high. However, the rate of the 
others scored 6~14% in the experiments. This was caused by 
various influences of the biological fluctuation, the variation 
and uncertainty of the probe position in taking off and putting 
on the headset, the condition of the living environment, etc. So, 
we need to improve the classification performance in the daily 
living environment. Therefore, in the next chapter, we revise 
the evaluation method of “others” category and will discuss 
the improving method in practical use of BMI. 

V. IMPROVEMENT OF CLASSIFICATION PERFORMANCE               

IN LIVING ENVIRONMENT 

In this chapter, we will discuss the improving method of 
classification performance in the daily living environment. At 
first, we subdivide the “Others” category and define the 
stability of the classification. Then, we will discuss the 
influence of daily living activities and make an attempt to 
eliminate the disturbance caused by human breathing as an 
example. Finally, we add a self-proliferating function to the 
LVQ classifier and conduct additional learning experiments in 
order to reduce the influence of measuring conditions. 

A.  Revision of Evaluation Method 

“Others” category in the performance indices includes the 
cases of that 1) the classifier outputs "No imagery" before the 
end of the subject's imagery and that 2) the classifier outputs 
“No imagery” in the whole period of a trial. So, we define the 
former as “No reaction time” and the latter as “No reaction 
data”.  “No reaction time” is useful for defining the “Stability 
of classification” by calculating the ratio of the maintained 
time of correct imagery output (See Fig.8). “Stability = 1.0” 
indicates the most ideal classifier. On the other hand, the 
number of “No reaction data” provides clues about the 
classification failures caused by changing conditions, e.g. the 
human mental and physical condition, the environmental 
condition, the probe setting position, etc. So, it implies the 
robustness of the classification in the living environment. 

B.  Influence of Daily Living Activity to Blood flow pattern 

In the practical use of BMI, the cerebral blood flow suffers 
from the influences of daily living activities and 
environmental conditions. In this paper, we tried to design a 
disturbance removal method and remove the influence of 
human breathing experimentally as an example. Fig.9(a) 
shows a subject’s blood flow data in which he performed 
“breath hold” during the middle 20 seconds. Similarly, 
Fig.9(b) shows a blood flow data in which the subject 
performed “deep breathing in cycles of 5 seconds” during the 
middle 20 seconds. In the first and last 20 seconds, he just 
relaxed with normal breathing. We can find the facts that the 
breath hold decreases the hemoglobin concentration in the 
blood flow and that the deep breathing causes cyclic 
fluctuations. They may be the non-negligible disturbance in 
BMI classification. 

Fig.8 Modified Definition of Classification Stability 
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So, we considered to remove the influence of the breath by 
using the independent component analysis (ICA) because the 
fluctuations caused by breathing tend to give the influence 
widely and uniformly to whole NIRS channels. ICA [18]  is an 
algorithm which enables to find the independent sources from 
the measured data, as shown in Fig.10. By removing some 
components from the estimated independent sources, the 
measurement data can be reconstructed and revised based on 
the rest of components of independent sources. Fig.11 shows 
the procedure for the removal of breathing influences. At first, 
by using ICA analysis, we decompose the time-series blood 
flow data of all channels to independent components. Then, 
the uniformly-influenced components are deleted and finally, 
we reconstruct the time-series blood flow data from the 
remaining independent components. We used the coefficient 
of spatial uniformity (CSU) proposed by S.Kohno [19] to 
identify the uniformly-influenced component. As a result of 
experimental considerations, independent components with 
large CSU values indicated breathing, the high-frequency 
noise, the drift effect, etc. So, we removed independent 
components with the top 3 CSU values in the following 
classification experiments.  

To confirm the effectiveness of the proposed removal 
method, we conducted classification experiments for mental 
motions and emotions. In the experiments, a subject (Subject 
A in Table I) executed the above-mentioned mental motion 
evoking task and the emotion evoking task “with his breath 
held in the middle 20s.” The number of trials in each task was 
10. Table II and III show experimental results of classification 
of the mental motion evoking task and the emotion evoking 
task with and without ICA-based disturbance removal. In 
tables, we summarized the average performance of 5 different 
LVQ codebooks to indicate the performance in the practical 
use. It should be noted that the correct output rate and the 

incorrect firing rate were greatly improved by ICA-based 
removal method. This is because the disturbance caused by the 
breath hold, the high-frequency noise and the drift was 
removed effectively. The classification stability also increased 
significantly from 0.55 to 0.77 in the mental motion 
classification and from 0.56 to 0.77 in emotion classification. 
On the other hand, the number of no-reaction data increased 
from 0.5/10 to 1.5/10 in Table II and from 0.4/10 to 1.4/10 in 
Table III. This also contributed to the improvement of the 
incorrect firing rate. These results show the effectiveness of 
the disturbance removal. 

TABLE II.   RESULTS OF ICA-BASED DISTURBANCE REMOVAL   
(MENTAL MOTION CLASSIFICATION) 

Mental Motions 
Without 

ICA 
With 
ICA 

Correct output rate [%] 74.0 85.7 
Incorrect firing rate [%] 8.1 3.1 

Delay time rate[%] 
(Avg. delay time [s]) 

6.3 
(3.8) 

2.7 
(1.6) 

Persistent time rate[%] 
(Avg. Persistent time [s]) 

1.0 
(0.6) 

1.2 
(0.7) 

No reaction time rate[%] 11.8 7.6 
Stability 0.58 0.76 

Avg. number of  
no reaction data 

0.5 1.5 

TABLE III.  RESULTS OF ICA-BASED DISTURBANCE REMOVAL   
(EMOTION CLASSIFICATION) 

Evoking Emotions 
Without 

ICA 
With 
ICA 

Correct output rate [%] 70.8 86.2 
Incorrect firing rate [%] 15.3 3.2 

Delay time rate[%] 
(Avg. delay time [s]) 

3.3 
(2.0) 

3.3 
(2.0) 

Persistent time rate[%] 
(Avg. Persistent time [s]) 

0.9 
(0.53) 

2.2 
(1.3) 

No reaction time rate[%] 11.2 5.4 
Stability 0.55 0.77 

Avg. number of  
no reaction data 

0.4 1.4 

 

C.  Effect of LVQ-based Classifier with Self-proliferating 
Neurons and Additional Learning Experiments 

LVQ-based Classifier with Self-proliferating Neurons 

In the practical use of BMI, human blood flow patterns 
tend to fluctuate according to the changes of conditions such 
as the human mental and physical condition, the 
environmental condition, the variation and the uncertainty of 
the fitted probe position in taking off and putting on the 
headset and so on. Therefore, the classifier needs to learn 
various blood flow patterns in many conditions. But the 
learning capacity of a normal LVQ with the fixed number of 
neurons is limited and we cannot decide an optimal number of 
neurons for the given problem to be learned in advance.  

So, we added the self-proliferating function of neurons to 
the LVQ classifier. In a normal LVQ learning algorithm (i.e. 

Fig.11 Removal procedure of breathing 

Fig.10 Independent component analysis (ICA) 
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the competitive learning algorithm), the best matched 
reference neuron (i.e. the winning neuron) that has the shortest 
Euclidean distance to each teaching input vector is selected 
and tuned so as to represent the input-output relationship 
appropriately. Then, the learning coefficient of the selected 
winning neuron is reduced gradually and the neuron tuning 
converges finally. Therefore, in the modified LVQ classifier, 
we add a new reference neuron to the codebook when the 
Euclidean distance between the winning neuron and a given 
teaching input vector is long and the learning coefficient of the 
winning neuron is too small. 

 D win_neuron > D threshold 

 win_neuron < threshold 

D win_neuron  and  win_neuron represent the Euclidean distance and 
the learning coefficient of the winning neuron respectively.      
D threshold and  threshold are thresholds that represent the criteria 
of adding a new neuron. In an adding process, a new neuron is 
placed in an intermediate position of the codebook’s vector 
space between the winning neuron and a teaching input vector. 

Additional Learning Experiments 

In order to confirm the validity of the additional learning 
with self-proliferating neurons, we performed two types of 
experiments. 

At first, the additional learning was applied to the on-site 
calibration of the LVQ codebook. In the experiment, we 
prepared codebooks for two subjects, which were learned by 
the LVQ classifier over half a year ago. Because the cerebral 
blood flow tends to changes according to human metal and 
physical condition and the environmental condition, the 
performance of the old codebook will not be sufficient to use. 
So, we measured an additional teaching data (only 1 trial) for 
each subject on site and performed the additional learning to 
calibrate the codebook. Then, we compared the classification 
performance of old and new codebooks. TABLE IV shows 
performance indices of the mental motion classification 
against newly measured blood flow data (not teaching data). 
After the additional learning, the number of LVQ neurons in 
the codebook increased from 35 to 39 for Subject A and from 
35 to 40 for Subject B. It should be noted that the correct 
output rate and stability were improved by on-site calibration. 

Secondly, we performed the additional learning 
experiments in order to confirm whether the “day-by-day 
additional learning (repetitive tuning)” can improve the 
classification performance of the imperfect codebook gained 
from the initial few teaching data. Three male subjects 
engaged in this experiment. Subject A and B were the same as 
in Table I. Subject D is a new person who had no experience 
of the NIRS experiment. The subjects engaged in the mental 
motion classification experiment repetitively for 5 days and 
the codebook was learned additionally by using newly 
measured data. The “day-by-day repetitive tuning” is 
considered to improve the generalization ability of the 
classifier by using various teaching data measured in daily 
different conditions (e.g., environmental conditions, human 
mental and physical conditions, the probe position). 

TABLE IV.  ON-SITE CALIBRATION EXPERIMENT  

 
Subject A 

Old 
codebook 

New 
codebook

Number of neurons 35 39 
Correct output rate [%] 63.0 70.6 
Incorrect firing rate [%] 18.2 12.0 

Delay time rate[%] 
(Avg. delay time [s]) 

5.8 
(3.5) 

6.0 
(3.6) 

Persistent time rate[%] 
(Avg. Persistent time [s]) 

10.2 
(6.1) 

2.6 
(1.6) 

No reaction time rate[%] 3.3 8.8 
Stability 0.50 0.58 

Avg. number of  
no reaction data 

0.5 0.2 

 
Subject B 

Old 
codebook 

New 
codebook

Number of neurons 35 40 
Correct output rate [%] 67.3 76.6 
Incorrect firing rate [%] 6.2 10.8 

Delay time rate[%] 
(Avg. delay time [s]) 

0.7 
(0.4) 

3.5 
(2.1) 

Persistent time rate[%] 
(Avg. Persistent time [s]) 

0.0 
(0.0) 

1.0 
(0.6) 

No reaction time rate[%] 25.9 8.5 
Stability 0.33 0.53 

Avg. number of  
no reaction data 

0.5 0.0 

 

The detailed step of the experiment was as follows. At first, 
we prepared the initial codebook for each subject by learning 
the subject’s blood flow patterns of 5 trials in advance. On a 
different day, each subject engaged in the classification 
experiment and the blood flow data of 3 trials were measured 
and utilized for the additional learning of LVQ codebook with 
self-proliferating neurons. This was defined as “a section”. 
Every time the subject performed a trial, the headset was taken 
off and put on again in order to simulate the daily use of BMI 
in severe conditions. Each subject engaged 2 sections per day 
(in the morning and in the early evening) to simulate the 
change of environmental and human mental/physical 
conditions. The sections were carried out repetitively for total 
5days. 

TABLE V shows the change of the number of LVQ 
neurons during “day-by-day additional learning”. The number 
of neurons gradually increased and it was different with each 
subject. The result is considered to indicate the variations of 
blood flow data. TABLE VI and VII show the changes of the 
correct output rate and the incorrect firing rate. Both indices 
were improved gradually by “day-by-day repetitive tuning” in 
spite of severe experimental conditions.  TABLE VIII and 
VIX show the changes of the classification stability and the 
number of no reaction data, respectively. We can also see the 
gradual improvement. Thus, it was found out that the 
additional learning had a possibility to improve the 
classification performance in the daily living environment. To 
develop more efficient learning and classifying method with a 
better performance is our future work. 

857



  

VI. CONCLUSIONS 

In this paper, we developed a portable NIRS-based BMI 
system and performed the classification experiments for 
human mental motions, mental commands to a robot and 
emotions.  The experimental results show the effectiveness of 
the ICA-based disturbance and LVQ-based classifier with the 
self-proliferating function. To develop more efficient 
learning and classifying method with a better performance is 
our future work. 

 

TABLE V.  NUMBER OF LVQ NEURONS                                                             
(DAY-BY-DAY ADDITIONAL LEARNING) 

 
Number of LVQ neurons 

Initial Final Inclement
Subject A 35 68 33 
Subject B 35 72 37 
Subject D 35 79 44 

TABLE VI.  CORRECT OUTPUT RATE                                                             
(DAY-BY-DAY ADDITIONAL LEARNING) 

TABLE VII.  INCORRECT FIRING RATE                                                             
(DAY-BY-DAY ADDITIONAL LEARNING) 

TABLE VIII.  CLASSIFICATION STABILITY                                                             
(DAY-BY-DAY ADDITIONAL LEARNING) 

TABLE IX.  NO REACTION DATA                                                                
(DAY-BY-DAY ADDITIONAL LEARNING) 
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Correct output rate [%] 

Day 1 Day 2 Day 3 Day 4 Day 5
Subject A 64.4 69.9 69.0 71.6 70.9 
Subject B 54.7 76.7 66.3 60.2 70.1 
Subject D 64.3 64.3 65.3 71.1 69.7 

 
Incorrect firing rate [%] 

Day 1 Day 2 Day 3 Day 4 Day 5
Subject A 19.0 15.6 7.9 13.7 12.7 
Subject B 16.6 3.5 19.1 18.0 12.8 
Subject D 23.8 13.1 13.6 9.0 8.5 

 
Classification stability 

Day 1 Day 2 Day 3 Day 4 Day 5
Subject A 0.34 0.55 0.22 0.47 0.40 
Subject B 0.18 0.66 0.35 0.33 0.42 
Subject D 0.44 0.25 0.45 0.50 0.64 

 
Number of no reaction data 

Day 1 Day 2 Day 3 Day 4 Day 5
Subject A 0.5 0.3 0.5 0.0 0.0 
Subject B 0.8 0.8 0.5 0.3 0.2 
Subject D 0.2 1.0 0.2 0.5 0.3 
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