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Abstract— Electrooculogram (EOG) signals are potential re-
sponses generated by eye movements, and event related po-
tential (ERP) is a special electroencephalogram (EEG) pattern
which evoked by external stimuli. Both EOG and ERP have
been used separately for implementing human-machine inter-
faces which can assist disabled patients in performing daily
tasks. In this paper, we present a novel EOG/ERP hybrid
human-machine interface which integrates the traditional EOG
and ERP interfaces together. Eye movements like the blink,
wink, gaze, and frown are detected from EOG signals using
double threshold algorithm. Multiple ERP components, i.e.,
N170, VPP and P300 are evoked by inverted face stimuli
and classified by linear discriminant analysis (LDA). Based
on this hybrid interface, we also design a control scheme for
the humanoid robot NAO (Aldebaran robotics, Inc). On-line
experiment results show that the proposed hybrid interface can
effectively control the robot’s basic movements and order it to
make various behaviors. While normally operating the robot by
hands takes 49.1 s to complete the experiment sessions, using
the proposed EOG/ERP interface, the subject is able to finish
the sessions in 54.1 s.

I. INTRODUCTION

Brain-machine interface (BMI), also called brain comput-
er interface (BCI), can translate brain signals into control
signals without using muscles [1]. It is mainly designed
for assisting people with severe motor disabilities, helping
them re-establish communicative and environmental control
abilities [2]. It may also apply to able-bodied people in
some special situations where the other means of com-
munication are unavailable or occupied. Among a variety
of noninvasive BMI methods, electroencephalogram (EEG)
method has high time resolution, less environmental limits,
and requires inexpensive equipment [3]. Although nowadays
there are many researches about EEG-based BMI, they are
more theoretical than practical. One reason is because its
information transfer rate (ITR) is usually very low, and thus
the response time of system is unsatisfactory for most daily
tasks. Moreover, the patients may have various kinds of
needs, like using wheelchair to move around, and requesting
food/water/etc. from carers. Usually a BMI system can only
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manage one certain kind of task. It is rather difficult to have a
universally robust BMI system dealing with different kinds of
situations. Against these disadvantages of BMI, we propose a
new hybrid human-machine interface which combines EOG
(using eye movements) and EEG (using ERPs).

EOG is the electrical potential response generated by eye
movements. For EOG-based system, the response speed can
be very high. It is a highly desirable feature especially for
motion control, and there are a lot of studies about designing
EOG human-machine interface [4] [5] [6]. However, the
number of usable eye-movement patterns is usually quite
limited. That makes the system can only support a small
number of outputs, which does not satisfy a multi-task
situation. In order to realize large numbers of outputs, people
tried to use a menu-like interface, and let the user select
items by continuous eye movements. However, it is hardly
an optional choice since it is both time consuming and more
importantly, fatiguing, to repeatedly perform eye movements.

ERPs are brain activities time-locked to experimental
events of interest and contain typically N170, vertex positive
potential (VPP), N200 and P300 etc.. P300-based BMI has
relatively robust performance for target detection. One of
its representative applications is P300 speller which can
be used for inputting characters [7]. ERP interface can
naturally support large numbers of outputs. In the scenario
of “choosing a command from the list”, using ERP the user
is only required to focus on the desired target. This process
needs no effort but only slight mental concentration, which
is much more convenient than performing eye movements
repeatedly. In the respect of processing speed, ERP interface
may be even faster than the “cursor moving” approach
if the number of commands is large and the accuracy is
high enough. However, for frequently used commands, the
effectiveness of ERP interface will be unsatisfactory. Even
though the ITR of ERP interface is relatively high among
EEG-based BMIs, it is still not comparable to EOG/EMG-
based system.

The idea of hybrid BMI system is a relatively new topic.
In 2011, Postelnicu et al. adopted eye saccade to control a
robot arm to move towards 4 directions, and alpha band EEG
(evoked by eye closing) to make the robot arm grip [8]. It
is an interesting idea to add alpha band EEG component to
EOG-based control. However in that experiment, the change
of alpha band is also originated from eye movement, which
shows no concrete advantage of combining EEG and EOG
system.

In practice, a lot of control scenarios require multitask.
These tasks have different characteristics that some are suit-
able to be realized by EOG and others by ERP, as mentioned
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Fig. 1. The placement of EOG electrodes. A: vertical EOG electrode; B,
C: horizontal EOG electrode; REF: reference; GND: ground.

above. Combining EOG and ERP can potentially make full
use of the advantages of both systems and avoid the disad-
vantages. In additional, user experience like convenience is
also very important. For using EOG, frequent eye movements
will easily accumulate fatigue on muscles. Although ERP
casts no heavy burden on the user, continuously watching the
flashing signs on the screen inevitably leads to impatience
and weariness, and thus decrease the system performance.
Using two control methods alternately can potentially relief
user’s burden both on body and mind.

In this study, we take robot control as the application of
our proposed system. This is because our experiment robot
(NAO) can perform different tasks, from simple movements
to complex behaviors, which is good for showing the advan-
tages of the proposed system. By EOG we adopt various
eye movements to control the moving of robot with fast
response. The eye movements include blinks (double and
triple), winks (left and right), gazes (left and right), and
frowns. Specified algorithms have been designed for detect-
ing those different eye movements. By eye movement it also
realizes the switching between EOG mode and ERP mode.
ERP mode allows the user to select different behaviors from
an item list. A novel multi-ERP paradigm based on stimuli
of inverted faces is adopted, which has shown significantly
higher ERP classification and ITR than the traditional P300-
based BMI [9].

II. EOG ANALYSIS

A. EOG acquisition

In this study, we recognize various eye movements from
EOG signals to implement the control scheme of the robot.
The EOG electrodes are placed as shown in Fig. 1 where
position A is for vertical EOG; position B and C are for
horizontal EOG. Other two electrodes are ground and refer-
ence which are shared with EEG electrodes. The signals are
recorded by g.USBamp with g.GAMMAbox (g.tec medical
engineering GmbH, Austria).

The sampling rate of EOG is 32 Hz (down-sampled
from 256 Hz input), since high sampling rate causes more
vibration in the signal which is undesirable for our algorithm.
The filter is chosen as 0.1-30 Hz (built-in). We have tested
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Fig. 2. The waveform of a blink in vertical EOG and its differentiated
shape. The x-axis is time and y-axis is EOG (µV).

using 0.1-30 Hz filter, 0.01-30 Hz filter and no filter. Without
high pass filter, the baseline drift effect is extremely obvious
in the signal. The 0.1 Hz high pass filter can best suppress the
effect of baseline drift so we choose that. The 30 Hz low pass
filter can remove high frequency noise so it is also applied.
In fact, our algorithm is not sensitive to baseline drift so it
also works without filters. The reason of our choice is mainly
due to that the drifting signal is inconvenient to observe in
the scope.

B. Eye movement detection

Among various eye movements, blinks, winks, gazes, and
frowns are chosen to be the control commands of the robot.
We designed algorithms to detect these eye movements. Here
the algorithm of blink detection is explained as an example.

The blink detection algorithm is an improved version of
the double thresholds method which was also used in our
previous study [10]. Its key idea is to set two thresholds
which represent the eyelid’s closing speed and opening
speed, respectively. The two thresholds can locate blink
waveforms in EOG. This method is applied on the vertical
EOG signal after taking difference. Because it utilizes speed
information but not amplitude information, it has resistance
to baseline drift effect.

Figure 2 is a typical EOG waveform of blink, where the
black curve is the vertical EOG, and the blue curve is the
EOG after taking difference. When the black curve reaches
top the blue curve is just 0, which means its speed is equal
to 0 when the eyelid is completely closed. Vcl and Vop are
the two thresholds, where the former is for eyelid closing,
and the latter for eyelid opening.

The algorithm consists of the following steps:
Step 1: Calculate the first difference of the signal. The

result is the approximate speed of the eyelid.
Step 2: Apply the thresholds Vcl and Vop to the signal. A

blink event should consist of four successive points where
the first two are equal to Vcl and the last two are equal to
Vop (may be approximate to but not equal to since the data
is discrete). All matched point series will be taken as blink
candidates.

Step 3: For more accurately estimating the duration of
blinks, the start point and the end point should be properly
extended from {Vcl, Vop} to {Ecl, Eop}.
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Step 4: Combine the blink candidates which are very
closed to each other. In some cases two adjacent blink events
are so close that it is better to treat them as one blink. If the
distance from the end point of one blink to the start point of
another is not larger than a value combTH (set to 1/32 s),
we will combine them into a single blink.

Step 5: Verify the duration and amplitude of blink can-
didates. In most cases blinks should be shorter than 0.5 s,
so those longer than 0.5 s are removed. The amplitude is
calculated by (Amax − Ahead + Amax − Atail)/2, where
Amax is the maximal amplitude during a blink; Ahead and
Atail are the amplitudes at the start point and the end point
of the blink. If the calculated amplitude is smaller than a set
value Amin, the blink is removed.

A calibration process is to determine the value of parame-
ters (Vcl, Vop, and Amin) before on-line experiments. In the
process, the subject is asked to do 10 times of triple blink
(30 blinks in total). The system first use preset parameters to
detect those blinks, then update each parameter according to
the calibration result. Assume that the maximal speed during
each eye closing is V i

clmax, and the minimal speed during
each eye opening is V i

opmin, then

Vcl = 0.5 min
i=1...30

V i
clmax

Vop = 0.5 max
i=1...30

V i
opmin

Amin = 0.8 min
i=1...30

Ai
max

(1)

For detecting winks, gazes, and frowns the algorithms
are similar, but parameters need to be adjusted due to the
different features of eye movements.

III. ERP ANALYSIS

A. EEG acquisition

In this study, 8 electrodes are used to record EEG, which
are Fz, Cz, P7, P3, Pz, P4, P8, and Oz (Fig. 3). The device is
the same as EOG acquisition. The electrodes of ground and
reference are shared with EOG electrodes (placed in forehead
and ear lobe). These positions cover the areas where N170,
VPP, and P300 occur.

The sampling rate of EEG is 64 Hz (down-sampled from
256 Hz input). The filter is the same as that used in EOG. The
data collection, stimuli presentation and online processing
are controlled by Simulink and Matlab (Mathworks Inc.,
USA).

B. ERP paradigm

This study adopts a more advanced ERP paradigm based
on configural processing of human face, which combines
oddball presentation and inverted face perception [9]. This
paradigm mainly exploits three ERP components, namely
VPP, N170 and P300, instead of only P300, and hence
significantly improves the target detection performance in
contrast to the stimulus intensification pattern used in the
conventional P300-based BCI.

Among the ERPs, N170 and VPP are evoked by the
configural processing of facial image, and P300 is evoked by

Fig. 3. Electrode positions for EEG recording. (Ground and reference
electrodes are showed in Fig. 1.)

oddball event. The shapes of their waveforms are illustrated
in Fig. 4.

Our ERP interface has 8 items placed in 8 directions of
screen (N, W, S, E, NW, NE, SW, SE). The training phase
contains eight runs. Each run which consists of five trials is
to train one of the 8 direction. The test phase also contains
eight runs but each run consisting only two trials (see Fig. 5
for detailed timing of one run). Feedback is provided to the
subject in each run of the test phase.

C. ERP classification

Linear Discriminant Analysis (LDA) is used to classify
which target the subject is focusing on. Before the on-line
experiment, the subject needs to train the LDA classifier first.

For the input of LDA, each data segment has a length
of 700 ms which is calculated from the beginning of each
stimulus. A total of 320 such data segments consisting of 40
targets and 280 non-targets were derived from each subject
for classifier training. To reduce the length of input, the data
segment is further down-sampled to 15 points (approximately
21 Hz). So the length of input is 8×15 = 120 (for 8-channel
data), which means the feature vector has 120 dimensions.

To conduct the on-line experiment, the accuracy of test
phase should achieve at leat 50%, or the subject need to
redo the training.

IV. ROBOT CONTROL AND EXPERIMENT

A. Robot control strategy

In our proposed system, EOG mode and ERP mode can
be switched over at any time, so the hybrid system can
exert the advantages of both. In ERP mode, one output is
generated after 16 stimuli is given (8 items, 2 trials) where
each stimulus consists of 100 ms highlight and 100 ms dark,
so the total time to generate an output is at least 3.2 s,
whereas using eye movement to generate a command usually
takes less than 1 s. Considering this fact, when we design the
robot control policies we follow this principle: commands
which require fast response and high accuracy should be
assigned to EOG mode; commands which are infrequently
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Fig. 4. Grand average ERP waveforms derived from the target and non-target stimuli of the inverted face image. VPP, N170, and P300 can be clearly
observed from channel Cz, P8, and Oz.
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Fig. 5. The timing of one run. In the training phase, the number of trials K was 5 whereby each run consisted of 40 flash sub-trials (5 targets and 35
non-targets), and no feedback was provided to the subject. In the test phase, the number of trials K was 2 and feedback was provided. Each trial consisted
of eight sub-trials in each of which one stimulus was randomly presented in one of the eight directions for 100 ms with an inter-stimulus interval of 100
ms.

used and does not require fast response are are assigned to
ERP mode. In additional, the left/right eye movements should
respectively correspond to left/right movement of robots for
convenience.

Generally, The EOG mode controls the robot’s moving
as well as mode switching, and the ERP mode controls the
robot’s complex behavior. The control policies are described
in detail as follows.

1) EOG mode: In EOG mode, the system is asyn-
chronous, which means when the user performs an eye
movement, the robot will respond at once. The timing of
sending command is held by the user. If the user does not
send any command, the robot should make no action.

• blink related:
– double blink: robot stops the current behavior.
– triple blink: robot goes ahead.

For recognizing, double blink should be performed within
an 1 s interval, and triple blink should be performed in 1.5 s.
Generally, during a triple blink the system will first detects
a double blink, so the output will be like “stop” then “go
ahead”. This does not matter because in most cases we would
like to make the robot stop first before the next move.

• wink related:
– left wink: robot stops and turns 90◦ to the left.

– right wink: robot stops and turns 90◦ to the right.
The robot will rotate by its feet. In order to turn a smaller

angle, the user can stop the robot any time during the rotation
by double blink. This is a good example showing the fast
response of EOG.

• gaze related:
– look left: robot turns its head to left if it is at center,

to center if it is at right.
– look right: robot turns its head to right if it is at

center, to center if it is at left.
These commands are designed for the remote-control

scenario where the user observes through the head-mounted
camera of the robot. Because turning the whole body of
NAO is very time consuming but turning head is quick, these
commands are helpful for adjusting the robot’s view.

• frown related:
– frown: robot stops and enters ERP mode.

Every time the user switches to ERP mode, a new ERP
trial starts after a short preparation time (1.5 s).

2) ERP mode: In ERP mode, the system is synchronous,
which means the user have to follow the system’s predefined
pace. That is to say, in this mode the system cannot estimate
whether the user is receiving ERP stimuli or not. Even
the user does not look at the screen, the system will still
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analyze the EEG and output the result arbitrarily. So when
the user is idle, he should switch to EOG mode to stop the
stimuli and outputs. Asynchronous ERP, as well as other
asynchronous BMI systems, is still underdeveloped. But
since our system can avoid the disadvantage of synchronous
BMI by mode switch, we do not need to forcibly implement
an asynchronous ERP system at the cost of performance
decreasing.

Because the NAO is programmable thus can perform
infinitely possible behaviors, it is rather free to assign any
kind of behaviors to ERP mode. We can flexibly set it up to
conform to different practical scenarios. As our ERP paradig-
m has 8 outputs, we appropriately assigned 8 behaviors as an
example, which are: receiving object, handing over object,
dancing, sitting down, standing up, taking a picture, ask for
water, and ask for help.

The system does not further receive any ERP command
if there is already one being executed. Also, in order not to
influence the ERP mode, the system does not receive EOG
commands except “frown” (mode switching). This command
has another usage: when the ERP produces a wrong output
(this happens because its accuracy can hardly achieve 100%),
frown twice make the mode switch to EOG then switch back,
which stops the current behavior and restart a new ERP trial
(and the robot will also return to the standard pose).

Depending on different needs, we can also make more
EOG commands available in ERP mode and assign new
contents to them.

B. Real-time experiment

In the on-line experiment of this study, we design a
scenario in which the user controls the robot to complete
a complex task by EOG/ERP. The scenario is described as
follows (see Fig. 6 for the setup of experiment room).

• The robot starts from point S, and moves to point A by
provided route, then receives an object from the person
at point A.

• Holding the object, the robot moves to point B, and
gives the object to the person at point B.

• Then the robot moves to point C and performs a dance.
• Finally the robot moves back to point S and sits down.
This scenario can prove NAO, the multi-functional hu-

manoid robot (Fig. 7) is competent for complex tasks, and

Fig. 7. Humanoid robot NAO.

can also show the usefulness of our hybrid HMI system.
In the designed scenario, all the tasks are completed in

a single session, but this makes the session last too long.
Moreover, the execution time of each behavior of robot
(receiving, giving, dancing, sitting) is different, which makes
inconvenient to calculate the average time cost. In order
to simplify the experiment, we divided the experiment into
4 sessions. Each session includes similar tasks and costs
similar time.

Take the first session as an example, the detailed experi-
ment steps are:

• The robot gets ready at point S (standing, in EOG
mode).

• The robot moves ahead, until gets to the center point
(+), then stops.

• The robot looks left, then looks back to center.
• The robot turns 90◦ left, then moves ahead.
• The robot stops at point A, then switches to ERP mode.
• The robot performs a provided behavior by ERP com-

mand.
If the behavior is correctly selected by ERP, the session

ends up at once (no need to wait for the robot to complete
the behavior). If not correct, the user need to cancel the
command and redo the ERP trial.

For the second session, the robot starts from point A and
moves to point B in the same manner (the length of route
is also the same), and perform another ERP-mode behavior.
The third and fourth session are done in the same way.

We have tested four subjects. Their performance is shown
in Table I.

V. DISCUSSION AND CONCLUSION

From Table I we can see that the average completion time
of subjects. The ideal completion time which operated by
hands is 49.1 s (averaged by four runs). The 4th subject
gives an outstanding result. His average completion time is
54.1 s, only 5 s longer than the ideal time. Except for his first
session (in which he was unaccustomed to the experiment),
his session 2, 3, and 4 are completed quite perfectly. This
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TABLE I
THE TAKEN TIME (S) FOR THE ON-LINE EXPERIMENT

Subject Session No. of commands Time cost Time cost Avg.

1

1 16 62.9

70.2
2 11 57.0
3 13 58.3
4 13 102.6

2

1 12 57.2

72.6
2 11 52.0
3 14 59.1
4 25 122.2

3

1 18 78.3

67.5
2 12 56.2
3 15 78.2
4 11 57.3

4

1 17 62.7

54.1
2 11 52.2
3 11 52.5
4 11 49.0

result shows that our hybrid HMI can be potentially applied
to able-bodied people due to its good effectiveness.

According to the feedback of the subjects, our hybrid
HMI is easy to use. The first advantage is the fast response
speed of EOG commands. Using eye movements subjects can
send moving commands to the robot quickly and accurately.
Moreover, because each eye movement corresponds to one
certain movement of robot, it is a more direct way than
to select commands from a menu, and thus can achieve
better effectiveness. Secondly, the accuracy of ERP is another
significant factor. If the ERP trials fail frequently, the user
experience will be greatly harmed, and the HMI will not
work as well. Because the ERP paradigm we used adopts
inverted face stimuli which evoke N170 and VPP besides
the conventional P300, the overall accuracy of system is
increased.

Except for the multi-functional robot, this hybrid HMI can
be also used in any controlling case which requires both
moving and behaving. For example, traditional BMI based
wheelchair is relatively weak in mobility. Using the proposed
system, by EOG it can dexterously control the moving and
by ERP it can realize the user’s other demands (e.g. requiring
water). The control strategy we designed is suitable for both
direct control and remote control. In our experiment, the
result shows a good overall performance which indicates that
our hybrid HMI is not only applicable to the disabled people
like traditional BMI is, but may also satisfy the healthy
people.
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