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Abstract— This paper proposes a novel active target tracking
strategy for a team of cooperating quadrotors equipped with
3-D range-finding sensors. The work builds upon previous
research of the authors, and adopts a realistic nonlinear
dynamic model for the quadrotors. A hierarchical controller
is designed for the generation and tracking of the desired
optimal trajectories of the aerial vehicles, and a discrete-time
Kalman filter is used for fusing their local estimates of the
target position. Under suitable conditions, it is shown that the
cost function for the D-optimality criterion that the quadro-
tors aim at collaboratively reduce, possesses a single global
minimum and no local minima. Numerical simulations and
real-world experiments show the effectiveness of the proposed
control strategy.

I. INTRODUCTION

A. Motivation and related work

In the last few years, the number of applications in-
volving Unmanned Aerial Vehicles (UAVs) has steadily
grown [1], [2]: these applications include mapping of un-
known terrains, security enforcement, infrastructure inspec-
tion, espionage and entertainment, just to mention the
most representative. Several factors have contributed to the
present wide interest in UAVs: decreasing costs and in-
creasing miniaturization (cf., AR.Drone Parrot quadricopter
and KMeL Robotics’ latest products), enhanced sensing and
autonomy, as well as the ability to efficiently operate in 3-D
environments.

Three categories of (micro) UAVs are currently under
study or development: fixed-wing aircraft, avian-style flap-
ping wing aircraft and rotor craft [3]. Two configurations
of rotor craft have recently gained large acceptance: co-
axial rotor craft and multi-rotor aircraft, such as the popular
quadrotors which are considered in this paper.

Multi-agent systems research has been lately extremely
successful within the robotics and control communities [4].
Extensive work, in particular, has been done on the subject of
tracking targets with multiple static sensors [5] or on the op-
timal placement of fixed sensors [6]. Mobile sensor networks
are known to offer distinctive advantages over static sensor
arrays in terms of quality of sensing and estimation, area
coverage, adaptability to changing conditions, and robustness
against failures. Cooperative active sensing leverages the
mobility of a robotic sensor network in order to enhance the
target tracking performances [7]–[10]: here, n robots have
to fuse their local measurements and move in order to get
the best position estimate of a moving target. In practice,
this amounts to minimize a certain scalar-valued function
of the covariance matrix of the position estimates, which
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in optimum experimental-design theory [6] is typically the
determinant (D-optimality criterion).

In [7], a motion-planning algorithm has been presented
for tracking a 2-D moving target by using range-bearing
measurements. The control law is based on the gradient
of the determinant of the covariance matrix of the target’s
position estimate with respect to each of the robot’s coor-
dinates. In [8], by using a distributed Kalman filter based
on dynamic average consensus estimators for information
fusion, the controller in [7] has been made implementable
in a decentralized fashion. In [9], the authors have presented
a target tracking algorithm for a team of unicycle robots with
bounds on the positive forward velocity, and shown that the
associated optimization problem is in general NP-hard. Non-
trivial relaxations to this problem are then proposed for de-
termining the set of feasible locations that each robot should
move to in order to collect the most informative distance
measurements. More recently, in [11], the results in [9] have
been adapted to the case of range-bearing measurements.
In addition, constraints on the minimum distance between
the robots and the target have been incorporated into the
optimization problem, in order to avoid collisions.

B. Original contributions and organization

This paper takes its inspiration from [7], [8] and makes
several novel contributions. As it is evident from the pre-
vious literature review, a large body of research exists on
cooperative active target tracking for wheeled robots, but few
works in the literature (cf., [12], [13]) have dealt with UAVs.
In addition, oversimplified models (e.g., first- or second-
order integrators) are typically used for the aerial vehicles.
A new hierarchical controller is designed in this paper for a
team of quadrotor UAVs described by realistic discrete-time
nonlinear dynamic models, and equipped with 3-D range-
finding sensors. The hierarchical controller consists of a
trajectory planner, which generates optimal paths according
to a D-optimality criterion, and a tracker which computes
the actual control input for each quadrotor (i.e. the angular
velocity for the four propellers). Differently from [13], a
discrete-time Kalman filter is used here for fusing the local
estimates provided by each aerial vehicle. Under suitable
conditions, it is shown that the cost function for the D-
optimality criterion that the quadrotors aim at collaboratively
reduce, has a single global minimum and no local minima.
The effectiveness of our control strategy is demonstrated via
numerical simulations and preliminary experimental tests.

The rest of the paper is organized as follows. Sect. II deals
with the modeling of the mobile target and 3-D range-finding
sensors, and the Kalman filter fusion. Sect. III presents the
nonlinear dynamic model for the quadrotors and describes
our hierarchical control strategy. In Sect. IV, simulation and
experimental results are presented and discussed: finally,
Sect. V concludes the paper.
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II. MEASUREMENT MODEL AND INFORMATION FUSION

Fig. 1 presents a graphical representation of our setup
and introduces some useful notation. Consider a team of
n quadrotors, let us suppose that quadrotor i has a known
absolute position Wpi(k) ∈ IR3, i ∈ {1, . . . , n} in the world
reference frame {W} at the discrete time step k (through this
paper left superscripts will be used to denote the reference
frame in which a vector is expressed). The attitude of the i-
th quadrotor, W

QRi(k) ∈ IR3×3, corresponds to the orientation
of its body frame {Qi} w.r.t. {W}, and it is defined in
consecutive roll, pitch and yaw angles denoted by ϕi(k),
ϑi(k) and ψi(k) respectively, according to the Z−X−Y Euler
angles convention [14, Sect. 4.4.3]. Quadrotor i is equipped
with a 3-D range-finding sensor, which measures the position
of a target, Qx(k) ∈ IR3, moving in a 3-D obstacle-free
environment according to,

Qzi(k) = Qx(k) + Q
νi(k),

where Q
νi(k) ∈ IR3 is a zero-mean white Gaussian mea-

surement noise with covariance matrix QPi(k) ∈ IR3×3. The
position of the target, Qx(k), can be expressed in the world
reference frame as Wx(k) = W

QRi(k)Qx(k) + Wpi(k). Anal-
ogously, the position of the target measured by quadrotor i
can be expressed in the world reference frame as:

Wzi(k) = Wx(k) + W
νi(k) ,

where W
νi(k) = W

QRi(k)Qνi(k) is the measurement noise
expressed in {W}, and its covariance matrix is,

WPi(k) = W
QRi(k) QPi(k) W

QR⊤
i (k).

The 3-D range sensor on each quadrotor has a so-called
“sweet spot”, i.e., a spatial location where the measurement
uncertainty is minimized. At time k, the Active Target Track-
ing module reported in the block diagram in Fig. 2, outputs
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Fig. 1. Graphical description of our active target tracking strategy. From
time k to time k + 1, the quadrotor reduces the uncertainty on the position
measurement of the target (red shaded ellipse) by moving towards the sweet
spot of the range sensor (dashed circle).
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Fig. 2. Block diagram of our cooperative active target tracking strategy.
The Active Target Tracking module uses the measurements from each
quadrotor (and the corresponding covariances) to generate a reference point
in the 3-D space, which is used to determine a trajectory-tracking error.

the desired reference position Wp∗
i (k + 1) ∈ IR3 for which

a cost function, J(WP̂ (k|k)), is minimized, where WP̂ (k|k)
denotes the estimate of the overall measurement covariance,
which is obtained through the fusion of each quadrotor’s
measurement by means of a Kalman filter. The tracking
controller steers each quadrotor towards the desired position
by minimizing a tracking error, denoted by Wepi

∈ IR3 and
defined as:

Wepi
(k + 1) , Wp∗

i (k + 1) − Wpi(k + 1). (1)

As a consequence, the uncertainty in the measurement at the
next time step, Qzi(k + 1), will be reduced as qualitatively
illustrated in Fig. 1, by the shrinking of the covariance ellipse
from QPi(k) to QPi(k+1). The measurement model of each
quadrotor is illustrated in Fig. 3 (cf., [13]). A target frame,
denoted by {T }, is attached to the target and aligned with
the world reference frame, {W}, at all times.

The covariance matrix of measurement noise of a standard
3-D range-finding sensor in spherical coordinates, can be
written as:

TPi(k) = diag(σ2
γi

(k), σ2
βi

(k), σ2
ri

(k)).

The variance of the range-measurement noise, σ2
ri

, is typ-
ically represented by a function fr(ri) of the distance,
ri, from the i-th quadrotor to the target: the polar and
bearing measurement noise variances σ2

γi
and σ2

βi
can also be

modeled as dependent on the range ri through the functions
fγ(ri) and fβ(ri), respectively. A simple but representative
form for these functions is,

fr(ri) , a2(ri − a1)
2 + a0,

fβ(ri) , aβ fr(ri), fγ(ri) , aγ fr(ri),

where a0, a1, a2, aβ , aγ are strictly positive parameters.
This model, as aforementioned, assumes the existence of a
sweet spot located at a distance a1 from the target, where
uncertainty in measurements is minimal.

The covariance matrix TPi(k) is rotated to obtain the
covariance matrix of measurement noise in Cartesian coor-
dinates, WPi(k), as WPi(k) , Ti(k) TPi(k)T

⊤
i (k), where

Ti=Rz(βi)Ry(γi)=





cosβi cos γi − sinβi cosβi sin γi

sinβi cos γi cosβi sinβi sin γi

− sinγi 0 cos γi



,

being Rz(βi) and Ry(γi) the basic 3×3 rotation matrices
about the z- and y-axes of an angle βi and γi (see Fig. 3).
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Fig. 3. Measurement model for the 3-D range-finding sensor onboard
quadrotor i: The spherical coordinates (ri, βi, γi) are used, where ri ∈
(0, +∞) is the distance from quadrotor i to the target, βi ∈ (0, 2π)\{π}
is the bearing angle and γi ∈ (0, π] is the polar angle. {ex, ey , ez},
{eγ , eβ , er} are the Cartesian and spherical orthonormal bases.

A. Information fusion

All the measured target positions, Wzi(k), and their covari-
ances, WPi(k), i{1, . . . , n}, are centrally fused into a single
weighted least-squares estimate of target position, Wx̂(k),
with covariance WPfus(k):

WPfus(k) =
[
∑n

i=1
WP−1

i (k)
]−1

,

Wx̂(k) = WPfus(k)
∑n

i=1

[

WP−1
i (k) Wzi(k)

]

.

In order to exploit the past measurements as well, a Kalman
filter is employed, which provides Wx̂(k|k) and WP(k|k).
To this end, let us consider the following general model for
the target motion:

Wx(k) = F Wx(k − 1) + B Wu(k − 1) + W
ω(k) , (2)

where F, B ∈ IR3×3 are given constant matrices,
Wx(k − 1) ∈ IR3 denotes the position of the target at time
k − 1, Wu(k − 1) ∈ IR3 is a known exogenous input and
W
ω(k − 1) ∈ IR3 is a zero-mean white Gaussian noise with

covariance matrix Q ∈ IR3×3. The discrete-time Kalman
filter is then designed as:

WPfus(k|k − 1) = F WPfus(k − 1|k − 1)F⊤ + Q, (3a)
Wx̂(k|k − 1) = F Wx̂(k − 1|k − 1) + B Wu(k), (3b)

and

WPfus(k|k) = [I3 − K(k)] WPfus(k|k − 1), (3c)
Wx̂(k|k) = Wx̂(k|k − 1) + K(k)Wν(k), (3d)

where I3 is the 3 × 3 identity matrix, and the Kalman gain
and innovations are:

K(k) = WPfus(k|k − 1) [WPfus(k|k − 1) + WPfus(k)]
−1
,

W
ν(k) = WPfus(k) [y(k) − C(k)Wx̂(k|k − 1)] ,

with y(k) ,
∑n

i=1
WP−1

i (k) Wzi(k) and C(k) ,
∑n

i=1
WP−1

i (k).

III. HIERARCHICAL QUADROTOR CONTROL

A. Active target tracking

Our cooperative active target tracking strategy computes
an optimal trajectory for each quadrotor in order to minimize

the cost function,

J(k) = ln det (WPfus(k|k)) , (4)

according to the D-optimality criterion [6, p. 16]. Similarly
to [13], a desired control input Wa∗

i ∈ IR3 is computed for
each quadrotor as:

Wa∗
i (k)=−DWv∗

i (k) − ΓTi

[

1

ri sinβi

∂ J

∂ γi
,

1

ri

∂ J

∂ βi
,
∂ J

∂ ri

]⊤

,

(5)
where v∗

i (k) ∈ IR3 is the desired velocity of quadrotor i
at time k, D ∈ IR3×3, D ≻ 0, is a damping matrix and
Γ ∈ IR3×3, Γ ≻ 0, is a gain matrix. The desired position and
velocity trajectories at time k + 1 are computed by discrete
integration of the desired acceleration trajectory at current
time k. For an explicit expression of the partial derivatives
appearing on the right-hand side of (5) the reader is referred
to the Appendix.

Note that in general, the cost function (4) is not convex
w.r.t. the relative pose of the quadrotors and the target,
and they may possess, in general, multiple local minima.
However, we show in the following proposition that under
suitable conditions, the cost function J(K) has a single
global minimum and no local minima.

Proposition 1: Let us suppose that aβ = aγ = 1 and
consider the Kalman filter in (3). Then, the cost function
(4) has a single critical point, a global minimum at r ,
[r1, . . . , rn]T = [a1, . . . , a1]

T (the sweet spot).
Proof: If aβ = aγ = 1, then,

C ,

n
∑

i=1

WP−1
i =

[

n
∑

i=1

1

fr(ri)

]

I3 , η(r) I3,

i.e., C = C(r) depends only on the relative distance between
the vehicles and the target, and not on the relative orienta-
tions βi, γi. It is easy to verify by direct calculation that,

∂ η(r)

∂ ri
=

−2 a2 (ri − a1)
∑n

j=1,j 6=i fr(rj)

f2
r (ri)

∏n
j=1,j 6=i fr(rj)

, (6)

∇2 η(r)
∣

∣

r=[a1,...,a1]T
=

{

−2 a2/a
2
0, if n = 1,

− 2 a2 (n−1)
an

0
In, if n ≥ 2,

(7)

∂2 η(r)

∂ r21
=

2 a2 (3 a2 (r1 − a1)
2 − a0)

∑n
j=2 fr(rj)

f3
r (r1)

∏n
j=2 fr(rj)

. (8)

By using the second-order conditions for convexity and
Sylvester’s criterion, we deduce from (8) that the function
η(r) is not convex on r (in fact, the sign of 3 a2 (r1−a1)

2−
a0 in (8) is not fixed). However, since the gradient of η(r)
vanishes only at [r1, . . . , rn]T = [a1, . . . , a1]

T and since
the Hessian of η(r) (7) is negative definite at this point, we
conclude that r = [r1, . . . , rn]

T is a global maximum for
η(r). Note now that given two points r′, r′′ ∈ IRn, we have:

η(r′) ≤ η(r′′) ⇔ C(r′) � C(r′′) ⇒ WPfus(r
′′) � WPfus(r

′)

⇒ ln det(WPfus(r
′′)) ≤ ln det(WPfus(r

′)), (9)
where the second implication follows from the compari-
son theorem [13] applied to the Riccati recursion obtained
by combining (3a) with (3c), and the third from Weyl’s
inequality [15, Th. 8.4.9]. From (9), it then follows that the
cost function (4) has a single critical point, a global minimum
at r = [a1, . . . , a1]

T . �
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B. Modeling of the quadrotors and tracking controller

The dynamic model used for the quadrotor i is [1]:

Wai(k) = Wg − W
QRi(k)QFi(k)/mi, (10a)

Wvi(k) = Wvi(k − 1) + Wai(k)∆T, (10b)
Q
αi(k) = QI

−1
i (−QΩi(k) × QIi

QΩi(k) + Q
τ i(k)), (10c)

QΩi(k) = QΩi(k − 1) + Q
αi(k)∆T, (10d)

where ∆T is the length of the discrete time-step, Wvi(k) ∈
IR3 and Wai(k) ∈ IR3 are the translational velocity and
the acceleration of the quadrotor at time k respectively,
Wg = [0, 0, −g]⊤ is the gravity vector, mi is the mass of
the quadrotor, Q

αi(k) ∈ IR3 and QΩi(k) ∈ IR3 are the
vectors of angular accelerations and velocities respectively,
QIi ∈ IR3×3 is the moment of inertia of the quadrotor, and
QFi(k) = [0, 0, Fi(k)]

⊤ and Q
τ i(k) ∈ IR3 represent the

exogenous forces and the exogenous moments which are
generated by the propellers of the quadrotor and which act
on its airframe. In this work, for the quadrotors, we adopt the
nonlinear tracking controller introduced in [16], which has
been shown to be almost globally convergent (cf., Fig. 2)

The tracking controller consists of an upper-level transla-
tional controller and a lower-level attitude controller, which
maintains the quadrotor in a stable hovering mode. By lin-
earizing (10a) and (10c) around Wpi(k) = Wp∗

i (k), ψi(k) =
ψ∗
i (k), ϑi(k) = ϕi = 0, Wvi(k) = 0, ϑ̇i(k) = ϕ̇i(k) =
ψ̇i(k) = 0, the translational controller is obtained [1]:

[

ϕ∗
i (k)

ϑ∗i (k)

]

=
1

g

[

sin (ψ∗
i (k)) −cos (ψ∗

i (k)) 0

cos (ψ∗
i (k)) −sin (ψ∗

i (k)) 0

]

Wac
i(k),

Fi(k) = mi
W
Qb⊤

i3
(k) Wac

i(k),

where ϕ∗
i (k) and ϑ∗i (k) are the desired roll and pitch angles

respectively, which are passed to the lower-level attitude
controller as components of the desired attitude matrix,
W
QR∗

i (k + 1), (see equ. (11) below). Finally, W
Qbi3(k) is the

third column of W
QRi(k), projecting the control input onto

the z-axis of frame {Qi}, and the acceleration command is:

Wac
i(k) , Wa∗

i (k) + Kd(Wv∗
i (k + 1) − Wvi(k))

+ Kp(Wp∗
i (k + 1) − Wpi(k)) + Wg,

where Kd, Kp ∈ IR3×3 are derivative and proportional
control gains. The attitude error is defined as [16]:

eR×i
(k)=

1

2

[

W
QR∗⊤

i (k+1)WQRi(k) − W
QR⊤

i(k)
W
QR∗

i (k+1)
]

,

(11)
where W

QR∗
i (k + 1) is computed using the desired roll,

pitch and yaw angles ϕ∗
i (k), ϑ

∗
i(k), and ψ∗

i (k + 1), where
ψ∗
i (k + 1) is the one time-step ahead reference signal

to be tracked. The matrix attitude error eR×i
(k) is the

skew-symmetric representation of the orientation-error vector
eRi

(k) = [eϕi
, eϑi

, eψi
]⊤. Choosing zero desired angular

velocities, i.e. Ω∗
i (k + 1) = 0, and compensating for the

nonlinear inertial terms, the lower-level attitude controller is
then given by,

Q
τ i(k) = −QIi(KR eRi

(k) + KΩ eΩi
(k)) + QΩi(k)×

QIi
QΩi(k) − QIi(QΩi(k) × W

QR⊤
i (k)WQR∗

i (k)
Q
α

∗
i (k)),

where KR ≻ 0, KΩ ≻ 0 are gain matrices and eΩi
(k) is the

error on the angular velocities. The control input, ̟i ∈ IR4

(i.e. the vector of angular velocities of the four rotors), is

then computed as a solution to,

[

Fi(k)
Q
τ i(k)

]

=







cT cT cT cT
0 d cT 0 −d cT

−d cT 0 cT 0
−cQ cQ −cQ cQ






̟

2
i (k),

where cT and cQ are the aerodynamic thrust and reaction
coefficients related to the quadrotor airframe and rotors, and
d is the rotors’ arm length (i.e., the distance between the
center of mass of the vehicle and one of the rotors [1]).

IV. EXPERIMENTAL VALIDATION

A. Simulation results

Our cooperative active target tracking strategy has been
tested through numerical simulations. The spatial, temporal
and inertial dimensions considered in our simulations are
meters, seconds and kilograms, respectively: the discrete
time step is ∆T = 0.01 sec. For the sake of simplicity, the
parameters governing the target motion (see equ. (2)) are
F = B = I3, Q = σ2

QI3, where σQ = 3×10−3, and the

velocity input is Wu(k) = [0, 1, 0]⊤. The model parameters
for the quadrotors were selected according to [17]: mi = 4,
QIi = diag(0.082, 0.082, 0.149), i ∈ {1, 2}, cT = 1.3 ×
10−5, cQ = 1.1 × 10−7 and d = 0.315.

Fig. 4(a) illustrates the reference trajectories and the
actual trajectories of two quadrotors cooperatively tracking
the target (black). Some of the points on the reference
trajectories are marked with crossed circles in the figure.
The initial position of the quadrotors and the target are
Wp1(0) = [2.5, 5, 0]⊤, Wp2(0) = [−1.5, 5, 0]⊤, and
Wx(0) = [1, 5, 2]⊤ and they are marked by circles and
a square, respectively. The parameters of the measurement
model are a0 = 2.5×10−3, a1 = 0.5, a2 = 1.3×10−4,
aβ = αγ = 1, and the gain and damping matrices are
Γ = 6 I3 and D = 0.5 I3, respectively. The control gains
of the tracking controller are Kp = diag(250, 250, 10),
Kd = diag(100, 100, 8), KR = diag(200, 200, 10),
KΩ = 10 I3, and the desired yaw angles are ψ∗

1 = ψ∗
2 = 0.

Fig. 4(b) displays the time evolution of r1 and r2 which
reach the sweet spot located at a distance a1 = 0.5 m
from the target (black, dashed line) after about 10 sec.,
and Fig. 4(c) shows the time history of the cost function
J = ln det(WPfus). Finally, Fig. 4(d) reports the target’s
position estimation error Wx−Wx̂ and Fig. 4(e) presents the

VICON

Target

Quadrotor

VICON

Fig. 5. Experimental setup: reflective markers were used to track the target
and locate the Parrot quadricopter with the VICON motion capture system.
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Fig. 4. Simulation results: (a) Trajectory of the target and quadrotors: the initial positions are respectively marked with a square and a circle, respectively:
some points on the reference trajectories are marked with crossed circles; (b) Convergence of the quadrotors to the sweet spot located at a1 = 0.5 m from
the target. (c) Time evolution of ln det(WP) in the first 10 sec. of the simulation; (d), (e) Time history of the estimation and tracking errors, respectively.

control performance by displaying the tracking errors Wep1

and Wep2 (recall equ. (1)).

B. Experimental results

Two preliminary tests of our control strategy have con-
ducted using a Parrot AR-Drone quadrotor (see Fig. 5). In
the first experiment the quadrotor minimizes the uncertainty
on the measured position of a stationary target by moving
towards the sweet spot located at a1 = 1 m from it. In
the second experiment, instead, the quadrotor tracks a hand-
moved translating target. The parameters that we used in
the tests are the same as in Sect. IV-A, except for the gain
and damping matrices which are now Γ = diag(2, 1, 1),
D = 0 and mi = 0.42, d = 0.285. For the real-time
implementation of our control strategy we used the CVDrone
library to interface with the Parrot AR-Drone 2.0, and a
VICON motion capture system to precisely locate the target
and the quadrotor. Both experiments were carried out on a
laptop with an Intel i7-2.20 GHz CPU and 8GB of RAM.
Fig. 6(a) shows the trajectory of the quadrotor reaching the
sweet spot of the stationary target (black squared point)
in the first experiment, and Fig. 6(b) the time evolution
of r1 (solid line). Moreover, Fig. 6(c) shows the time history
of the cost function J = ln det(WPfus). Fig. 7(a) shows
the trajectory of the quadrotor (red) tracking the moving

target (black) in the second experiment. Note that the target
does not start moving until the quadrotor reaches the sweet
spot. Fig. 7(b) displays the time evolution of r1 (solid line),
and Fig. 7(c) the time history of the cost function J .

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new active target track-
ing strategy for a team of cooperating quadrotors equipped
with 3-D range-finding sensors. A hierarchical controller
is synthesized for the generation and tracking of desired
optimal trajectories for the aerial vehicles, whose motion is
described by a realistic nonlinear dynamic model. A discrete-
time Kalman filter is used for fusing the local estimates
of the quadrotors. Numerical simulations and preliminary
experiments have demonstrated the effectiveness of the pro-
posed cooperative active target tracking strategy. Work is in
progress to test our controller on multiple quadrotors and to
design suitable collision-avoidance modules.

APPENDIX

Using the formula in [6, Th. B.17], the partial derivatives
on the right-hand side of (5) can be computed as:

∂J(k)
∂ri

= tr
[

WP−1
fus (k|k) P̂ri

k

]

, ∂J(k)
∂βi

= tr
[

WP−1
fus (k|k) P̂βi

k

]

∂J(k)
∂γi

= tr
[

WP−1
fus (k|k) P̂γi

k

]

,
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Fig. 6. Experiment with a stationary target: (a) Trajectory of the quadrotor (red); (b) Time evolution of r1, reaching the sweet spot located at a1 = 1.0
m from the target (dashed line); (c) Time history of ln det(WP1).
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Fig. 7. Experiment with a moving target: (a) Trajectory of the target (black) and quadrotor (red): the initial positions are respectively marked with a square
and a circle; (b) Time evolution of r1, reaching the sweet spot located at a1 = 1.0 m from the target (dashed line); (c) Time history of ln det(WP1).

where

P̂ri

k ,
∂WPfus(k|k)

∂ri
, P̂

βi

k ,
∂WPfus(k|k)

∂βi
, P̂

γi

k ,
∂WPfus(k|k)

∂γi
, (12)

and tr[ · ] denotes the trace of a matrix. By taking the partial
derivatives of both sides of the Riccati recursion (obtained
by combining (3a) with (3c)) w.r.t. ri, βi and γi, we find
the following Lyapunov difference equations, which can be
solved by recursion to compute the matrices in (12):

P̂ri

k = (F − KkF) P̂ri

k−1(F − KkF)⊤

+ 2a2(ri − a1)Kk
WPk

fusTi
TP−2

i diag(aγ , aβ , 1)T⊤
i

WPk
fusK

⊤
k ,

P̂
βi

k = (F − KkF) P̂βi

k−1(F − KkF)⊤

− Kk
WPk

fus(Aβi
+A⊤

βi
)WPk

fus K
⊤
k ,

P̂
γi

k = (F − KkF) P̂γi

k−1(F − KkF)⊤

− Kk
WPk

fus(Aγi
+A⊤

γi
)WPk

fus K
⊤
k ,

where Kk = K(k), WPk
fus = WPfus(k), and Aγi

=
TiΥTP−1

i T⊤
i , Aβi

= ΘTi
TP−1

i T⊤
i with

Θ =

[

0 −1 0
1 0 0
0 0 0

]

, Υ =

[

0 0 1
0 0 0
−1 0 0

]

.
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