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Gangyuan Jing, Rüdiger Ehlers and Hadas Kress-Gazit

Abstract— A recent method to obtain correct robot con-
trollers is to automatically synthesize them from high-level
robot missions that are specified in temporal logic. In this
context, we aim for controllers that are optimal, i.e., do not
let the robot take unnecessarily costly paths to reach its
goals. Previous work on obtaining optimal synthesized robot
controllers either ignored interactions with the environment,
or assumed a cooperative environment.

In this paper, we solve the problem of obtaining optimal robot
controllers for adversarial environments. Our main observation
is that the quality of a path to a goal has two dimensions:
(1) the number of phases in which the robot waits for the
environment to perform some actions and (2) the cost of the
robot’s actions to reach the goal. Our synthesis algorithm can
take any prioritization over the possible cost combinations
into account, and computes the optimal strategy in a symbolic
manner, despite the fact that the action costs can be non-integer.
We show the scalability of the new algorithm by example of a
delivery problem.

I. INTRODUCTION
As the capabilities of autonomous systems and robots

are rapidly improving, methods for generating controllers
for robots that fulfill various complex missions are of wide
interest in many communities, such as planning, machine
learning, and control. Current work [1]–[3], [7], [9]–[11],
[13]–[15], [19] aims at generating provably correct con-
trollers from high-level mission requirements using formal
methods such as model checking and reactive synthesis. In
these methods, controllers are usually generated based on the
discrete abstraction of the problem and then implemented
continuously. The correctness of the robot’s behavior on
the discrete abstraction gives rise to the same guarantee in
the continuous sense. To specify the mission of the robot,
temporal logic is widely used as it enables us to reason about
the mission specification over time. We can formulate vari-
ous complex robot mission properties, such as safety (e.g.,
avoiding obstacles), reactivity (e.g., responding to events),
and progress (e.g., patrolling). For robot missions specified
in temporal logic, we can apply controller synthesis [16], [5]
to either compute controllers that fulfill the given missions
or show the non-existence of such discrete controllers.

Recently, the focus shifted towards optimizing the syn-
thesized controller based on some given cost functions to
improve the quality of continuous robot behaviors in ad-
dition to the correctness guarantee. A method by Smith
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et al. [17] automatically generates an optimal trajectory
that achieves a mission specified in Linear Temporal Logic
(LTL) [6], while minimizing the maximum time between
reaching states that satisfy some optimization subformula.
Wolff et al. [18] introduce a method for synthesizing an
optimal controller from a temporal logic specification that
minimizes the weighted average transition cost for a given
transition system. Work by Karaman et al. [9], [10] aims at
generating control laws that exhibit minimal control effort
and mission time from tasks specified in LTL by integrating
model checking with control optimization. In addition to
temporal logic, quantitative techniques can also be used
to provide “soft constraints” on the mission specifications.
Bloem at al. [4] present a technique to analyze games with
quantitative objectives. The reactive synthesis problem is
typically reduced to solving a game between two players, so
the introduction of quantitative objectives allows to naturally
extend this concept to synthesize controllers of good quality.

All of these approaches however are not fully suitable for
the optimization of continuous robot behavior in adversarial
environments. They either consider non-reactive robot mis-
sions, or optimize towards a cost metric that is unsuitable
for many robotics applications (e.g., the average cost per
transition in a quantitative game).

In this paper, we solve the problem of synthesizing op-
timal robot controllers for an adversarial environment. The
specification for the robot is expressed as an LTL formula.
We base our approach on a new cost metric that captures
desired robot behavior in such an environment. This metric
is two-dimensional. The first dimension describes the number
of phases in which the robot has to wait for the environment
to perform progress towards satisfying the governing LTL
formula. The second dimension is the cost of the actions
performed by the robot to reach its goal. Both cost dimen-
sions are considered per reaching a goal, rather than per
discrete transition, as typically the case in quantitative games.
We strive for minimizing both dimensions for an optimal
controller, but these two aims are typically in conflict. As a
remedy, we allow the user to choose an arbitrary preference
relation over such cost tuples, and to declare what optimality
means for the scenario under consideration.

Our starting point is the robot mission planning framework
by Kress-Gazit et al. [15], in which the environment and
robot behaviors are discretized and abstracted into sets
of propositions with Boolean truth values (Definition 2.2-
2.3). Whenever the existence of a correct controller is
determined from the LTL specification, a discrete controller
is synthesized. The discrete transitions of the controller
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are implemented with low-level continuous controllers to
yield the desired robot behavior. Since in that framework,
the continuous metric information is not considered when
synthesizing the controller, the resulting behavior can be
suboptimal in the continuous space. In previous work [8], we
argued two reasons for the suboptimality: (i) The efficiency
of the synthesis algorithm used in [5], [15] comes at the
price of constructing controllers in which the robot’s goals
are followed in a fixed order, and (ii) the discrete controller is
constructed by minimizing the number of discrete transitions
needed to reach each robot goal, which need not minimize
the cost in the continuous space. To address both points, we
presented an algorithm that incorporates continuous metrics
into controller synthesis [8]. Whenever environment proper-
ties change, a new controller is generated and then executed
to yield desired continuous trajectories. In settings with a
frequently changing environment, the robot might however
get into livelock due to switching paths, and thus this solution
is not well-suited for adversarial environments.

The combination of our new two-dimensional cost notion
and the corresponding synthesis algorithm that we present in
this paper solves all of these problems and in addition intro-
duces the notion of delay cost. In adversarial environments,
the strictest possible assumptions that we can make about the
environment behavior are often only liveness assumptions.
Whenever the robot has to rely on these being met, the
length of a waiting time is not under the control of the robot.
Assigning a cost to the action of waiting would thus lead to
all possible behavior of the robot having the same worst-
case cost (namely ∞), and thus rendering them effectively
equal, which would prevent us from performing any kind
of optimization of the robot’s behavior. By distinguishing
between waiting and transition cost, and only counting the
number of waiting phases for the robot, we can efficiently
optimize robot behavior in the continuous space in adversar-
ial environments. On a technical level, we synthesize optimal
controllers by a modification of the Generalized Reactivity(1)
synthesis algorithm by Bloem et al. [5]. Despite the fact that
we support non-integer costs for the actions of the robot,
our new algorithm still has the possibility to use symbolic
data structures such as binary decision diagrams (BDDs) for
reasoning about the game, which is the source of the good
scalability of Generalized Reactivity(1) synthesis.

The outline of this paper is as follows. In Section II, the
preliminaries are defined. In Section III we introduce the op-
timal reactive controller synthesis problem. Section IV des-
cribes the algorithm for solving the problem. Section V de-
monstrates and discusses the performance of the algorithm.

II. PRELIMINARIES

Definition 2.1 (Robot Workspace: P , τ ): For the scope of
this paper, we assume that a robot operates in some
workspace that consists of a set of regions P . The possible
transitions between the regions are given by an adjacency
relation τ ⊆ P × P .

Definition 2.2 (Environment Input: X [8]): The status of
the environment is abstracted with a set of binary en-

vironment propositions X = {x1, ..., xn} sensed by the
robot’s physical sensors. An environment input X ⊆ X
is defined by the subset of environment propositions that
are true. For example X = {DoorClosed, PathBlocked}
is the set of environment propositions corresponding to a
closed door and a blocked path in the environment that
can be detected by a camera. X = {DoorClosed} means
that the robot senses a closed door, but not a blocked path.
It is assumed that the robot’s physical sensors provide the
correct representation of the environment behavior, i.e. the
low-level sensor processing routines eliminate any noise or
non-determinacy in perception.

Definition 2.3 (System Output: Y [8]): The actions of
the system are represented by the valuations of a set of
binary system propositions Y , which indicate the position,
action, and status of the robot. Based on the partition of the
workspace, the robot position is discretized using a set of
binary region propositions Reg = {R1, ..., Rm}. We define
Ri to be true if and only if the robot is inside some region pi.
We define a mapping function M(Ri) = pi and its inverse
M ′(pi) = Ri. Notice that exactly one Ri is true at any time.
Robot actions, such as raising a flag, are also abstracted with
a set of binary propositions Act = {a1, a2, ...}. ai is true
if the robot is performing the action and false otherwise.
In addition, a set of auxiliary propositions Aux is used to
represent all other properties of the robot such as whether the
robot is carrying an item or not. We define the set of system
propositions to be Y = Reg ] Act ] Aux . A system output
Y ⊆ Y is defined by the subset of system propositions that
are true. For example Y = {R3,Wave} means that the robot
is in region M(R3) = p3 and is waving.

Definition 2.4 (LTL Syntax and Semantics [5], [6], [8]):
The syntax of Linear Temporal Logic (LTL) is defined over
a set of atomic propositions AP = X ∪Y , a set of Boolean
operators {¬ (“not”), ∧ (“and”)}, and a set of temporal
operators {© (“next”), U (“until”)}. The syntax for the
logic is then defined recursively as follows.

ϕ ::= true | z ∈ AP | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕUϕ

The additional Boolean operators ∨ (“or”), → (“implies”)
and↔ (“if and only if”) are defined using ¬ and ∧. We also
define the temporal logic operators � ϕ (“eventually ϕ”) as
trueU ϕ, and �ϕ (“always ϕ”) by ¬ �¬ϕ.

A word σ = σ0σ1σ2 . . . over the alphabet 2AP is an
infinite sequence of truth assignments to propositions of AP .
We call σ a model of an LTL formula if it satisfies the LTL
formula at position i = 0. The formula©ϕ is true at position
i of σ if the formula ϕ is true at position i+ 1. The formula
�ϕ is true at position i if ϕ holds in at least one position
≥ i for σ. In addition, �ϕ holds at position i if ϕ is true for
all positions ≥ i in σ. All sub-formulas without a temporal
operator are interpreted propositionally on σi.

Definition 2.5 (Mission Specification: ϕ): The specifica-
tion of the robot is given as an LTL formula over propositions
AP = X ∪ Y:

ϕ = (ϕe
i ∧ ϕe

t ∧ ϕe
g)→s (ϕs

i ∧ ϕs
t ∧ ϕs

g)

4797



In this formula, ϕe
i , ϕs

i are conjunctions of initialization
properties, ϕe

t , ϕs
t are the transition constraints, and ϕe

g and
ϕs
g are conjunctions over properties of the form � �Bi,

where Bi is a Boolean formula over AP . The property Bi

is called a robot goal if � �Bi is a conjunct in ϕs
g; if

� �Bi is a conjunct in ϕe
g , then we call Bi an environment

goal assumption. For the definitions of the other formulas,
the reader is referred to Bloem et al. [5]. In the mission
specification, the operator →s is an implication with strict
semantics [5].

Definition 2.6 (Finite State Automaton: A): As computa-
tion model for the robot controllers that we synthesize, we
define a discrete controller to be a finite state automaton
A = (X ,Y, Q,Q0, δ, L) where:
• X is the set of environment propositions
• Y is the set of robot propositions
• Q is the set of states
• Q0 ⊆ Q is the set of initial states
• δ : Q× 2X → Q is a transition function.
• L : Q→ 2X × 2Y is the labeling function of the states

We require that a finite state automaton is input-preserving,
i.e., for every q ∈ Q and X ⊆ X , we have L(δ(q,X))∩X =
X . Given a finite state automaton A, an initial state q0 ∈ Q0,
and a sequence of environment inputs λX = X0, X1, ...,
there exists a unique sequence π = π0π1 . . . ∈ Qω with
π0 = q0 and δ(πj , λj) = πj+1 for all j ∈ N. We call
π the run of A for λX and q0. The run induces a word
σ = σ0σ1 . . . with σi = L(πi) for all i ∈ N. A finite
state automaton A satisfies a given LTL formula if all words
that are induced by some combination of initial state and
input sequence are models of the LTL formula. A mission
specification over some atomic proposition set AP is said to
be realizable if there exists a discrete controller that satisfies
the given specification for the given partitioning of AP into
X and Y . We call a subset of states S ⊆ Q a strongly
connected component (SCC) if for every q, q′ ∈ S, there
exists a finite sequence of inputs λX = X0, X1, ..., Xk such
that δ(δ(. . . δ(δ(q,X0), X1), . . . , Xk−1), Xk) = q′. We call
S maximal if no strict superset of S is an SCC in A.

Definition 2.7 (Game Structure [5]): In order to decide
whether there exists a finite state automaton (Definition 2.6)
that satisfies some given specification ϕ = (ϕe

i∧ϕe
t∧ϕe

g)→s

(ϕs
i ∧ ϕs

t ∧ ϕs
g), the Generalized Reactivity(1) synthesis

approach [5] reduces the problem to finding a winning
strategy in a two-player game between a system (robot) and
an environment.

Formally, we define a game structure (GS) to be a tuple
G = (AP ,X ,Y, ϕe

i ∧ϕs
i , ρe, ρs, ϕ

′), where AP = X ∪Y is
the set of atomic propositions, X is the set of environment
input propositions (as in Definition 2.2), Y is the set of
system output propositions (as in Definition 2.3), ϕe

i ∧ϕs
i is

the initial condition, and ρe ⊆ 2AP×2X and ρs ⊆ 2AP×2AP

are the transition relations of the environment and system
over the positions 2AP in the game, respectively. We call ϕ′

the winning condition.
Bloem et al. [5] show how to build a game structure

from a mission specification as described in Definition 2.5
with the winning condition ϕ′ = ϕe

g → ϕs
g . At each round

(transition) in the game, the two players take turns, with
the environment moving first and then the system, to set
the value of their corresponding propositions based on their
transition relations. This process results in the an (infinite)
play. Plays can be winning or losing for the system. The aim
of the system player is to ensure that the play is a model of
the LTL formula ϕ′. The set of positions in the game from
which the system player has a strategy to ensure that every
possible play satisfies ϕ′ is the winning set of positions. For
realizable specifications, positions that satisfy ϕe

i ∧ ϕs
i are

winning for the system.

Definition 2.8 (µ-calculus [12], [5]): The winning set of
positions of a two-player game can be captured with a
formula in modal µ-calculus, which extends propositional
modal logic with least and greatest fixpoint operators µ and
ν [12]. Given a Boolean formula ψ over a set of propositions
AP and a set Π ⊆ AP , we say that Π satisfies ψ, denoted by
Π |= ψ, if setting each variable in Π to true and each variable
in AP \Π to false leads to a valuation that satisfies ψ. The
semantics of µ-calculus formulas over some game structure
G = (AP ,X ,Y, ϕe

i ∧ϕs
i , ρe, ρs, ϕ

′) is defined recursively as
described by Bloem et al. [5]:

• A Boolean formula ψ is interpreted as the set of posi-
tions JψK in which ψ is true: JψK = {v ∈ 2AP | v |= ψ}.

• The modal operator �© is defined as:
J �©ψK = {v ∈ 2AP | ∀X ⊆ X ∃Y ⊆ Y : ((v,X) ∈
ρe) → (((v, (X,Y )) ∈ ρs) ∧ ((X ∪ Y ) ∈ JψK))}. In
words, this is the set of positions v from which the
system can force the play to reach a position in JψK
without violating ρs, no matter which valid move the
environment player makes from v.

• Let Ψ(U) denote a µ-calculus formula Ψ with free
variable U . We set JµU.Ψ(U)K = ∪iUi where U0 = ∅
and Ui+1 = JΨ(Ui)K. For monotone functions Ψ, this
is a least fixpoint operation, computing the smallest set
of positions U satisfying U = Ψ(U).

• JνU.Ψ(U)K = ∩iUi where U0 = 2AP and Ui+1 =
JΨ(Ui)K. For monotone functions, this is a greatest
fixpoint operation, computing the largest set of positions
U satisfying U = Ψ(U).

By the results of Bloem et al. [5], for the winning
condition ϕ′ = ϕe

g → ϕs
g = (� �Be

1 ∧ . . .� �Be
m) →

(� �Bs
1 ∧ . . .� �Bs

n), the set of winning positions for
the system in a game structure can be characterized by
the µ-calculus formula ϕwin = νW.

∧n
j=1 µV.

∨m
i=1 νU.Nij ,

where Nij = (Bs
j ∧ �©W ∨ �©V ∨ ¬Be

i ∧ �©U).
For i ∈ {1, ...,m} and j ∈ {1, ..., n}, the greatest

fixpoint νU.Nij characterizes the set of positions from which
the system player can force the game to either (1) stay
indefinitely in positions satisfying ¬Be

i , thus falsifying the
left-hand side of the implication ϕe

g → ϕs
g , or (2) to

reach a position in the set Qwin = JBs
j ∧ �©W ∨ �©V K.

The two outer fixpoints extend this idea to arbitrarily long
sequences of steps and the requirement that along the way,
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Fig. 1: The workspace of the motivating Example 3.1 and a graph-
ical representation of the non-optimal robot behavior of a robot
controller that the synthesis framework in [15] would compute.

we must stay within the set of positions that we did not
yet find to be losing. The disjunction over the environment
goal assumptions and the conjunction over the system goals
makes sure that they are all taken into account. If the initial
positions are winning, it is possible to extract an automaton
that realizes the specification from the prefixpoints of this
formula. Details of this process are given by Bloem et al.
[5].

III. PROBLEM FORMULATION

In this section we formalize our cost metrics for which
we solve the optimal reactive controller synthesis problem
in the next section. Our cost definition is two-dimensional.
The delay cost due to potentially adversarial environment
behavior captures the situation in which the robot is tem-
porarily prevented from achieving its goals. The transition
cost, as in earlier work [8], is used to represent the distance
traveled by robot, energy consumption, or some other cost
that accumulates over time.

Example 3.1 (Motivating Example): Figure 1 shows a
map that defines a robot workspace. The regions of interest
are labeled by R1, R2, R3, R4, D1, H1, H2, and H3. The two
regions with checkers are obstacles. An environment propo-
sition “close” captures the behavior of a door represented by
the region D1. The robot is asked to visit the regions R1,
R2, R3, and R4 infinitely often, and to not go through region
D1 if close is true. The goal assumption on the environment
is that it always eventually sets close to false so that the
robot can go through region D1. The following LTL formula
defines part of the safety and goal requirements for the
mission specification. The safety requirement that constrains
the robot to only perform transitions between regions of the
workspace that are adjacent is omitted.

ϕ = � �(¬close)→ (� (¬ (D1 ∧ close))∧ (1)

� �R1 ∧� �R2 ∧� �R3 ∧� �R4)

Definition 3.1 (Modified Mission Specification: ϕ̂): For
some formula ϕs

g = � �B1 ∧ � �B2 ∧ ...� �Bn that
represents the robot goals in a specification, a controller
synthesized from the specification using the Generalized
Reactivity(1) synthesis approach [5] achieves its goals
in the order of B1, B2, ..., Bn, B1, .... To avoid this
inherent ordering, we translate a mission specification

ϕ = (ϕe
i ∧ ϕe

t ∧ ϕe
g) →s (ϕs

i ∧ ϕs
t ∧ ϕs

g) with the set of
robot goals Φg = {B1, B2, ..., Bn} to a modified mission
specification ϕ̂ with only one robot goal. For this, we add
some propositions Pmem = {mB1 ,mB2 , ...,mBn ,mBall

}
to the system’s output propositions and define the modified
mission specification as follows:

ϕ̂ =
(
ϕe
i ∧ ϕe

t ∧ ϕe
g

)
→ϕs

i ∧ ϕs
t ∧ ϕm ∧

 ∧
Bi∈Φg

ϕBi

 ∧� �mBall

 (2)

In this formula, we have:

ϕm = �

 ∧
mBi

∈Pmem

mBi

↔ mBall


∀Bi ∈ Φg, ϕBi

= �(Bi ∧ ¬mBall
→©mBi

)∧
�(mBall

→©¬mBi
)∧

�(mBi
∧ ¬mBall

→©mBi
)∧

�(¬mBi
∧ ¬Bi →©¬mBi

)

The modified specification allows us to express multiple
robot goal requirements with only one goal, at the expense
of more propositions and a larger state space. As specified
by ϕm, all memory propositions in Pmem need to be true
at the same time for mBall

to be true, indicating that all
robot goals have been satisfied once. However, the order in
which the robot goals are satisfied is not specified. Once all
of the goals have been reached, ϕBi sets the propositions
mB1 ,mB2 , ...,mBn to false. All robot goals have to be
satisfied infinitely often in order to satisfy � �mBall

.

A. Delay Cost Due to Adversarial Environment Behavior

For some mission specifications, the environment can
choose a behavior such that the robot is temporarily pre-
vented from achieving its goals. In Example 3.1, when the
robot decides to go from R1 to R2, one possibility for doing
so is to take the left-most path, while waiting in front of
the door if close is true. Since it is an environment goal to
always eventually set close to false, and the robot only needs
to work correctly in environments that satisfy their goals, the
robot can assume to be able to travel from R1 to R2 through
this path. However, the time it takes for the robot to wait for
the door to open could be arbitrarily long.

In scenarios in which waiting is to be minimized, such a
path may not be the best path for the robot. This is captured
by the delay cost of a finite state automaton that we give
in Def. 3.2. We use the simplified finite state automaton
shown in Fig. 2 for illustration. Each state in the automaton
is labeled by a state name as well as some associated region
proposition that is true in that state. The transitions are
labeled with constraints over the environment proposition
blocked. The grey state represents an m-state. We call a state
in which the proposition mBall

is true an m-state. Other
labels are omitted for clarity. In this example, there are two
doors that can temporarily prevent the robot from proceeding.
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s0
R1

s1
R2

s2
R3

s3
R4

s4
R5

s5
R6

s6
R7

blocked

¬blocked

blocked

blocked

¬blocked

¬blocked

Fig. 2: A simplified finite state automaton

Definition 3.2 (Delay Cost: JD): Let π = π0, π1, . . . , πk
or π = π0, π1, . . . be a finite or infinite sequence of states.
We define a delay cost that captures the number of phases
in which the robot may have to wait for the environment
to fulfill its goal assumptions along π. Given a finite state
automaton A satisfying a modified mission specification, we
find the delay cost JD(π) by the following steps. We first
remove the outgoing transitions from all m-states, shown
as the dashed transitions in Fig. 2. Then we find the set
QA

D = {QD1
, QD2

, ..., QDk
} of maximal strongly connected

components in A. Intuitively, every element QDi
captures a

set of states in which the automaton can wait for some exter-
nal event an indefinite number of steps. For the automaton
shown in Fig. 2, we have QA

D = {{s1}, {s3, s4}}. The delay
cost of π is then the number of elements in QA

D through
which π leads. For the automaton in Fig. 2, for a sequence
of states π from s0 or s1 to s6, we have JD(π) = 2, for
π from s2, s3, or s4 to s6, we have JD(π) = 1, and for π
from s5 or s6 to s6, we have JD(π) = 0.

B. Transition Costs in the Continuous Space

In order to obtain robot behavior that is efficient when
implemented continuously, we need to take the cost of
performing actions (such as motion) by the robot into ac-
count. The default optimization criterion of the Generalized
Reactivity(1) synthesis algorithm [5] is to minimize the
number of discrete steps towards the goal, where waiting
periods as defined above are counted as a single step. In
the example workspace in Figure 1, in order to go from
R2 to R3, since the path through H3 has fewer discrete
transitions (four transitions) than the path through H1 and
H2 (five transitions), the former path is chosen even though
it is longer. To counter this problem and in addition allow
assigning a cost to non-motion actions by the robot (such as
raising a flag), we introduce a transition cost notion below.
Our synthesis algorithm can take it into account and thus
optimize towards low-cost executions of the robot controller.

Definition 3.3 (Action Cost Map: w): Given a set of
atomic propositions AP , we call a function w : 2AP ×
2AP → R≥0 an action cost map.

Thus, an action cost map assigns to transitions between
valuations of the variables AP a cost value. As AP includes
the environment input and also Reg , this definition is very
flexible: it allows to assign cost values to region changes by

the robot and to make the cost of an action dependent on the
input.

After defining the action cost for a single step in the
execution of a robot controller, we turn towards summing
these up for the execution of the controller. This leads to the
transition cost notion that we optimize for in our synthesis
algorithm.

Definition 3.4 (Transition Cost: JT ): Let π = π0, π1,
. . . , πk or π = π0, π1, . . . , be a finite or infinite sequence of
states. We define the accumulated transition cost of π to be:

ct(π) =

b∑
i=0

w(πi, πi+1), (3)

where b = k − 1 if π is finite and b =∞ otherwise.

C. Cost Preference Relation

As our cost metric in this paper is two-dimensional, in
order to synthesize one optimal controller, it needs to be
defined which cost tuple values for executions of the robot
controller to be synthesized are preferred over others. Our
delay costs are from the domain N, the transition cost is
from the domain R extended by ∞ to allow denoting an
unbounded transition cost. We say that some comparator ≤c

is sane if and only if:
1) it respects the standard orders ≤ over N and (R∪{∞}),

i.e., for all (a, b) and (a′, b′) ∈ N × (R ∪ {∞}), we
have that (a, b) ≤c (a′, b′) if a ≤ a′ and b ≤ b′, and

2) it respects the standard order ≤ for the transition
cost in the limit, i.e., if we have some cost tu-
ple (a, b) and an infinite set of cost tuples C =
{(a′, b1), (a′, b2), (a′, b3), . . .} such that for all i ∈ N,
we have (a, b) ≤c (a′, bi) and there is no upper
bound on the transition cost in C, then we also have
(a, b) ≤ (a′,∞).

For the scope of this paper, we assume that some sane
cost preference relation is defined by the user, and we will
define a concrete relation in Section V for our example.

D. Optimal Reactive Controller Synthesis Problem

Given some finite-state state automaton A = (X ,Y, Q,
Q0, δ, L) that satisfies some modified specification ϕ̂, we
define a cost annotation g : Q → N × (R ∪ {∞}) to
map every state q to a cost tuple (cd(q), ct(q)) such that
no path π starting from q and ending at the first m-state
after starting in q (or being infinite if no m-state is visited
along π after starting in q) has some cost tuple (cd(π), ct(π))
such that (cd(π), ct(π)) 6≤c (cd(q), ct(q)). Intuitively, a cost
annotation declares the worst case cost that may be observed
along a path from a state q to the next m-state.

To simplify the controller synthesis process in the next
section, we use a slightly modified version of the cost map-
ping for our optimal controller synthesis problem definition
below. In particular, we let the robot change the environment
goal that it is currently waiting for free of charge, i.e., we do
not count switching between SCCs if this only changes what
the robot is waiting for without making progress towards the
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goal, provided that this change does not induce some non-
zero transition cost. As it is not observable at runtime which
environment goal the robot is waiting for, this modification
is justified from a practical point of view.

We call a finite-state automaton A and a cost annotation
g optimal for ϕ̂ if for all q ∈ A, there exists no other finite-
state automaton A′ = (X ,Y, Q′, Q′0, δ′, L′) that also satisfies
ϕ̂ and a corresponding cost annotation g′ such that for some
state q′ ∈ Q′, we have L(q) = L′(q′), but g(q) 6≤c g

′(q′).
We define the optimal controller synthesis problem as

follows. Given a modified specification ϕ̂ and an action cost
map w, we search for an automaton that satisfies ϕ̂ and is
optimal for some cost annotation, or get the result that no
such automaton exists.

Note that with this optimization criterion, we ask for a
controller that greedily optimizes towards the next m-state
(i.e., towards reaching all of the goals). The intuition for not
optimizing for the time after that is that we do not know
when the robot will go out of service – asking the robot
to reach its goals infinitely often, as we do when applying
Generalized Reactivity(1) synthesis for robotics applications,
after all serves as abstraction for this unknown time instant,
and greedily optimizing towards reaching the next m-state
is reasonable under this uncertainty.

IV. SYNTHESIS ALGORITHM

In this section, we outline how to incorporate our two-
dimensional cost definition into a synthesis algorithm. We
start from the classical Generalized Reactivity(1) synthesis
algorithm [5] and extend it accordingly.

Let G := (AP,X ,Y, ϕe
i ∧ ϕs

i , ρe, ρs, ϕ
′) be a game

structure with ϕ′ = (� �ϕe
1∧ . . .∧� �ϕe

m)→ (� �ϕs
1∧

. . . ∧ � �ϕs
n) being the winning condition for the system

player in this game structure. By the results of [5], we can
compute the set of winning positions for the system player
in the game structure by the following formula, which has
been simplified for the case of having joined all goals into
one (see Definition 3.1):

νW.µV.

m∨
i=1

νU.(ϕs ∧ �©(W ) ∨ �©(V ) ∨ (¬ϕe
i ) ∧ �©(U))

In the outermost fixpoint operator application, we shrink a set
of positions in the game until only those remain from which
the system player can enforce to win. The µV.(. . .) part of
the formula computes, step-by-step, the set of positions from
which the system player can ensure that it either eventually
reaches the goal and can enforce that the successor position
from there is winning (i.e., is in W ), or eventually some
liveness assumption on the environment is not satisfied. The
analysis of the game is mainly performed by the �© operator,
which takes a set of positions O and computes another set
of positions O′ from which the system can enforce visiting
O after one move of each player without violating the
system player’s safety guarantees, as long as the environment
satisfies its safety assumptions. As positions in V are found
in increasing distance to the goal, we are guaranteed to obtain

a winning strategy if we always let it move to positions that
are found as early as possible in V after W has stabilized.

Adding cost information does not change the set of win-
ning positions in the game, as it does not influence whether
the system can satisfy its specification or not. However, it
does change the strategy that we want to obtain, and thus
the finite-state automaton to be computed from the strategy.

We incorporate our two-dimensional cost metric in the
synthesis step by letting the fixpoint computation in the for-
mula above work over pairs of positions and corresponding
cost annotations. The �© operator then updates the transition
cost to the goal along with the position from which we can
get closer to the goal. The delay cost is incorporated by
adding one to it whenever taking a transition that is found
by the (¬ϕe

i ) ∧ �©(U) part of the formula (but not by the
others). This case corresponds to waiting for the environment
to satisfy ϕe

i . As transitions that can be used in such a
waiting period are found at the same time, the delay cost
is only added once per waiting period, instead of adding
it for every transition. By preferring transitions to positions
for which smaller cost annotations exist, we then ensure the
optimality of the implementation that we are getting during
the automaton building phase of the synthesis process.

V. EXAMPLE AND RESULT

An example of a robot delivering milk in a neighborhood
is used to demonstrate the performance of the synthesized
controller. The map of the robot workspace is shown in
Fig. 3. Moving from one region to another is considered to be
a discrete transition. The area with checkers is an obstacle.
The robot is equipped with sensors to detect whether the
milk bucket is empty or not. The robot can also detect if the
bridge (red region B1) is blocked. The mission of the robot
is to visit all four households (blue regions H) to deliver
milk as long as the milk bucket is not empty. If it is, the
robot must go to one of the stations (green regions S1, S2)
to fill up the bucket and continue delivering. In addition,
the robot cannot go through the bridge if it is blocked,
which does not happen all the time. In this example, we
prioritize minimizing delay cost over minimizing transition
cost. Formally, (c1d, c

1
t ) ≤c (c2d, c

2
t ) if (i) c1d < c2d or, (ii)

c1d = c2d and c1t ≤ c2t . We define the action cost map to
assign cost to motion between regions by taking the metric
centroid distance between the adjacent regions from/to which
the robot moves.

We implemented our approach using binary decision dia-
grams (BDDs) as symbolic reasoning engine and integrated it
into the Linear Temporal Logic Mission Planning (LTLMoP)
toolkit [7]. We performed robot controller synthesis for the
milk delivery example using both the algorithm introduced
in this paper and the standard Generalized Reactivity(1) Syn-
thesis algorithm [5] on a computer with an Intel i5@2.60GHz
processor and 8GB of RAM. The computation time is 98.0
seconds for synthesizing an optimal robot controller using
the algorithm from this paper, and 72.6 seconds for standard
GR(1) synthesis.
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We demonstrate the behavior of the robot using a sim-
ulated environment. The milk bucket can be empty at any
house region and is filled up instantaneously as long as it is in
one of the station regions. Fig. 3a and 3b show the situation
in which the robot is in H1 and detects the empty bucket.
Without the work in this paper, the robot in Fig. 3a goes to
a further station with fewer discrete transitions. The optimal
trajectory in Fig. 3b illustrates that the robot chooses to go to
S1 which is closer in continuous space. In Fig. 3c and 3d, the
robot detects an empty bucket while in H3. Fig. 3c shows the
robot tries to drive to S1 through B1. However, the bridge
(B1) is blocked, so the robot has to wait for the bridge to
open, which could take a long time. The trajectory in Fig. 3d
demonstrates that the desired optimal behavior is to go to S2

instead of S1 when one prefers fewer delays at the expense
of possible longer continuous trajectories. Fig. 3e shows the
trajectories for the robot visiting all four house regions with
a non-empty bucket and returning to the first visited house
region. The trajectory is highly non-optimal due to the fixed
goal order. In Fig. 3f, the robot visits all four house regions
once (solid line) and then revisits all of them again in the
reversed order (dashed line).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a two-dimensional cost metric
that consists of delay cost and transition cost. We allow
the user to define a preference relation over tuples of these
cost values and presented an algorithm to synthesize optimal
controllers for this cost notion. The synthesized controller
induces robot behavior that minimizes both the dependency
on the environment behavior and the distance traveled,
energy consumption, or whatever the user wishes to define
the continuous transition cost over. Whenever these two aims
are in conflict, the preference relation resolves the conflict,
leading to a controller that is optimal with respect to the user
preferences. Our experimental evaluation that we performed
using a symbolic implementation of our algorithm shows the
practical applicability of the approach.
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