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Abstract— Stable locomotion indicates a stable limit cycle
generated in the dynamic system. Although quadrupedal bound
gait models have been investigated, there is no research which
shows the generation of limit cycle and its dynamic properties.
In the present study, we analyze a quadrupedal bound gait
model which goes down slope and has back and front bodies
with spring-damper joint between the bodies. We found the
periodic bound gait which achieves a stable limit cycle and
convergence property against perturbations.

I. INTRODUCTION

Legged animals show diverse locomotor behaviors to adapt

to various environments, where they show not only static

locomotion but also dynamic locomotion. For example, they

run and jump on cliffs which have limited footholds, and they

jump over obstacles while running on grassland. Based on

their locomotion, various legged robots have been developed

[1], [2], [3], [4]. However, no robot can realize highly

dynamic locomotion as legged animals.

Legged animals utilization of flexion and extension of their

bodies suggests the importance of these functions. Although

previous legged robots often had one rigid body, Refs. [5]

and [6] used more than one rigid body and Ref. [7] used

a wobbling mass body. In this study, we focus on the pitch

movement of flexion and extension of the body in the sagittal

plane during a bound gait, where the left and right legs

simultaneously kick the ground. We construct a quadrupedal

bound model in the sagittal plane which has two rigid bodies

with spring-damper joint. Using this, we conduct computer

simulations to investigate its dynamic properties.

II. BACKGROUND

A. Researches of the bound gait

According to Full and Koditscheck [8], “In humans, dogs,

lizards, crabs, cockroaches and even centipedes, the center

of mass falls to its lowest position at midstance as if com-

pressing a virtual leg spring and rebounds during the second

half of the step as if recovering stored elastic strain energy.”

Based on this, a Spring Loaded Inverted Pendulum (SLIP)

model has been developed, which is a spring-mass system

in the sagittal plane to model the locomotion of running

animal. Poulakakis et al. [9] created a periodic bound gait

using springs and rigid links based on the SLIP. They show
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that although the gait is neutrally stable, it can tolerate some

perturbations. Recent investigations use two rigid bodies for

a bound gait model with spring joint between the bodies [10],

[11], [12]. In [10], the body joint was controlled by PID and

vibrates as designed. In [11], the quasi passive bound gait

was produced by locking the joint at the appropriate timing.

In [12], the periodic bound gait was generated by using a

passive and conservative system.

We can summarize the previous studies about quadrupedal

bound gait as follows.

1) Ref. [9] used one rigid body model and realized a

periodic bound gait which is neutrally stable.

2) Refs. [10] and [11] used two rigid bodies with a spring

joint and generated the bound gait.

3) Ref. [12] used two rigid bodies with a spring joint

and produced the periodic bound gait. This gait was

neutrally stable. It did not achieve a limit cycle and

was not asymptotically stable.

B. Purpose of this study

It is useful to apply dynamic characteristics in the lo-

comotion of legged animals to legged robots. To clarify

their features, passive dynamics is important. From such a

point of view, Refs. [9] and [12] generated a periodic bound

gait, as described above. However, due to their limitation of

conservative system, asymptotic stability and limit cycle have

not been discussed. Therefore, in this paper, we construct

a quadrupedal bounding gait model, which has two rigid

bodies with a spring-damper joint and goes down a slope.

In contrast to their models, our model has a damping at the

body joint, which allows the model to produce asymptotically

stable locomotion. The purpose of this paper is to find a

stable periodic bound gait of our planar model and to analyze

the features of the periodic gait.

III. SIMULATION

A. Model

In this paper, we use a planar model (Fig. 1) based on the

model of Poulakakis et al. [9], where we added a spring-

damper body joint. We refered to [14] to build a dynamics

simulator. Tables I and II show the variables and parameters

of the model. The body consists of two rigid bodies, which

are connected by a spring-damper joint to simulate the

flexibility of the body. Mass of back and front bodies are

m1 and m2, their moments of inertia around the center of

mass are I1 and I2. Spring and damper coefficients of the

body joint are kc and cc. The rotational spring is at the

equilibrium position where the front and back bodies are

parallel (θ2 = 0). We assume that back and front legs have
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Fig. 1. Quadrupedal bounding gait model with articulated body and a
spring-damper body joint

TABLE I

DEFINITION OF PARAMETER

cartesian coordinates of the robot COM (xg (t) ,yg (t))
pitch angle of the back body θ1(t)
relative angle of the front body from back body θ2(t)
length of back, front leg lb(t), l f (t)
angle of back, front leg γb(t), γ f (t)

gravity acceleration g

slope angle α
mass of back, front body m1, m2

moment of inertia about COM of back, front body I1, I2

length of back, front body 2l1 , 2l2

nominal length of back, front leg l̄b , l̄ f

spring stiffness of back, front leg kb, k f

rotational spring stiffness (between bodies) kc

damping coefficient of body joint cc

mass of back, front leg 0

no mass, and their stiffness are kb and k f , respectively. The

leg tip becomes a frictionless pin joint when it is on the

ground. In other words, the tip does not move when it is on

the ground and the leg rotates freely. The leg is attached to

the body by a frictionless pin joint. This model goes down

a slope whose angle is α .

TABLE II

MODEL PARAMETERS

Parameter Value

g 9.8 m/s2

m1, m2 10.4 kg
2l1 , 2l2 0.55 m

l̄b, l̄ f 0.32 m

I1 , I2 0.64 kg m2

hb , h f 0.33 m

df bs fs ds

Double Leg Flight Back Leg Stance Front Leg Stance Double Leg Stance

Fig. 2. Four stance conditions

B. Bound gait

In this paper, two types of bound gaits are considered.

One gait contains a phase where the front and back legs

are simultaneously on the ground. The other gait doesn’t

have such a phase. Details of the bound gaits and governing

equations of motion are shown below:

1) Classification of stance condition of bound gait: There

are four types of stance conditions as shown in Fig. 2.

When the back and front legs are floating, we named this

condition as df (Double Leg Flight). When only back leg

is on the ground, we named this condition as bs (Back Leg

Stance). When only front leg is on the ground, we named

this condition as fs (Front Leg Stance). When the back and

front legs are on the ground, we named this condition as ds

(Double Leg Stance).

2) Conditions of switching the stance phase: The

y−coordinate of the center of mass of the back body, y1,

is given by

y1 = yg −
m2

m1 +m2

(l1 sinθ1 + l2 sin(θ1 +θ2)) (1)

We denote γtd
b and γtd

f for the touch down angles of the

back and front legs. Conditions of switching the four stance

conditions (df, bs, fs and ds) are shown below:

1) Double Leg Flight to Back Leg Stance (df ⇒ bs)

• y1 − l1 sinθ1 − l̄b cosγtd
b = 0

2) Back Leg Stance to Double Leg Flight (bs⇒df)

• lb − l̄b = 0

3) Double Leg Flight to Front Leg Stance (df⇒fs)

• y1 + l1 sinθ1 + 2l2 sin(θ1 +θ2)− l̄ f cosγtd
f = 0

4) Front Leg Stance to Double Leg Flight (fs⇒df)

• l f − l̄ f = 0

5) Back Leg Stance to Double Leg Stance (bs⇒ds)

• y1 + l1 sinθ1 + 2l2 sin(θ1 +θ2)− l̄ f cosγtd
f = 0

6) Double Leg Stance to Front Leg Stance (ds⇒fs)

• lb − l̄b = 0

3) Classification of bound gait: Bound gait of our model

is classified into two types. One does not have Double Leg

Stance (ds) and the stance conditions are changed through

1⇒2⇒3⇒4⇒1... The other has Double Leg Stance (ds)

(1⇒5⇒6⇒4⇒1...).

C. Equations of motion

Eight variables [xg yg θ1 θ2 γb lb γ f l f ] determine the state

of this model. However, when the back leg is floating, γb and

lb have no effect on the motion, and when the front leg is

floating γ f and l f have no effect on the motion because of

the assumption that legs have no mass. When the back leg
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is on the ground, γb and lb are described by four variables

xg, yg, θ1 and θ2. When the front leg is on the ground, γ f

and l f are described by four variables xg, yg, θ1 and θ2

because of the assumption that leg tip is a frictionless pin

joint. Therefore, we can describe equations of motion by

four variables: qqq = [xg yg θ1 θ2]
T

. We define Vσ as potential

energy (σ = df, bs, fs, ds), T as kinetic energy, and ∆ as

dissipation function, which are given by

Vσ = (m1y1 +m2y2)gcosα − (m1x1 +m2x2)gsinα (2)

+
1

2
{kc

(

θ2 − θ̄2

)2
+ kb

(

lb − l̄b
)2

+ k f

(

l f − l̄ f

)2
}

T =
1

2
{m1

(

ẋ2
1 + ẏ2

1

)

+m2

(

ẋ2
2 + ẏ2

2

)

+ I1θ̇ 2
1 + I2

(

θ̇1 + θ̇2

)2
}

(3)

∆ =
1

2
ccθ̇ 2

2 (4)

where (x1, y1) and (x2, y2) are the coordinates of center of

mass of the back and front bodies and are given by

x1 = xg −
m2

m1 +m2

(l1 cosθ1 + l2 cos(θ1 +θ2)) (5)

y1 = yg −
m2

m1 +m2
(l1 sinθ1 + l2 sin(θ1 +θ2)) (6)

x2 = xg +
m1

m1 +m2

(l1 cosθ1 + l2 cos(θ1 +θ2)) (7)

y2 = yg +
m1

m1 +m2

(l1 sinθ1 + l2 sin(θ1 +θ2)) (8)

lb and l f depend on the stance condition as follows.

• Double leg flight (σ =df)

lb = l̄b, l f = l̄ f (9)

• Back leg stance (σ =bs)

lb =
√

A2 +C2, l f = l̄ f (10)

• Front leg stance (σ =fs)

lb = l̄b, l f =
√

B2 +D2 (11)

• Double leg stance (σ =ds)

lb =
√

A2 +C2, l f =
√

B2 +D2 (12)

where,

A = xtoe
b + l1 cosθ1 − x1, B = xtoe

f − l2 cos(θ1 +θ2)− x2

(13)

C = y1 − l1 sinθ1, D = y2 + l2 sin(θ1 +θ2) . (14)

xtoe
b and xtoe

f are x coordinates of back and front toe on the

ground.

From Lagrangian equation, the equations of motion are

given by

d

dt

(

∂Lσ

∂ q̇qq

)

−
∂Lσ

∂qqq
=−

∂∆

∂ q̇qq
, (15)

where

Lσ = T −Vσ . (16)

The four equations of motion obtained by equation (15) are

switched according to the conditions in I-B.2 to conduct

dynamics simulation.

D. Searching for periodic bound gait with body joint oscil-

lation

1) Periodic bound gait: In a periodic bound gait, one state

and the state after one cycle are identical. In this section, we

solve a discrete problem to generate a periodic stable bound

gait. We define Poincaré section Sapex when the center of

mass of the robot reaches the highest point at the Double

Leg Flight (df) condition.

Sapex = {zzz ∈ R6 | ẏg = 0,σ = d f} (17)

Leg angles γb and γ f move instantly when the leg lifts

off the ground. Therefore, γb and γ f have always the same

value on the Poincaré section. Therefore, we define variables

on Sapex as zzz = [yg θ1 θ2 ẋg θ̇1 θ̇2]
T to solve the discrete

problem. We define Poincaré map PPP as mapping zzz0 to zzz1,

which is given by

zzz1 = PPP (zzz0) (18)

The condition for a periodic bound gait is zzz∗0−PPP (zzz∗0)= 0. So,

we find a fixed point zzz∗0 on the Poincaré section to produce

a periodic bound gait.

2) Stability of periodic bound gait: We estimate the

stability of a periodic bound gait by the maximum eigen-

value of Jacobian matrix of Poincaré map [13]. We denote

perturbation from zzz∗ by ∆zzz.

zzz∗+∆zzz1 = PPP(zzz∗+∆zzz0) (19)

= PPP(zzz∗)+ [∇PPP(zzz∗)]∆zzz0 +O
(

‖∆zzz0‖
2
)

(20)

where ∇PPP(zzz∗) is a 6×6 matrix called the linearized Poincaré

map at zzz∗. Since zzz∗ = PPP(zzz∗), we get

∆zzz1 = [∇PPP(zzz∗)]∆zzz0 (21)

We denote λ j ( j = 1, ...,6) for eigenvalues of ∇PPP(zzz∗). If

and only if | λ j |< 1 for all j, periodic bound gait is

asymptotically stable. ∇PPP(zzz∗) is approximated by

∇PPP(zzz∗) =
∂PPP

∂ zzz
=

[

∂PPP

∂yg

∂PPP

∂θ1

∂PPP

∂θ2

∂PPP

∂ ẋg

∂PPP

∂ θ̇1

∂PPP

∂ θ̇2

]

(22)

where

∂PPP

∂ zi

=
PPP(z∗1, ...,z

∗
i + dz, ...,z∗6)−PPP(z∗1, ...,z

∗
i − dz, ...,z∗6)

2dz
(23)

In this paper, we used dz = 10−6.
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3) Damping ratio: We determine the damping ratio of the

body joint based on the equation of motion of the oscillation

of the body joint between two rigid bodies, which is given

by

θ̈2 + 2ζωnθ̇2 +ω2
n θ2 = 0 (24)

where,

ωn =

√

k(I
′

1 + I
′

2)

I
′

1I
′

2

, ζ =
cc

2

√

I
′

1 + I
′

2

I
′

1I
′

2kc

(25)

I
′

1 = m1l2
1 + I1, I

′

2 = m2l2
2 + I2 (26)

We determine the damping ratio ζ from (25).

4) Method of searching periodic bound gait: We used the

following process to find the condition [kc, kb, k f , γb, γ f , zzz∗]
of a fixed point on the Poincaré section Sapex for small

rotational spring stiffness kc. This process starts from a

certain initial condition [ki
c, ki

b, ki
f , γ i

b, γ i
f , zzzi

0] and we repeat

this process to find sets of fixed points depending on kc.

A Use the condition of previous fixed point as an

initial parameter.

B Decrease the rotational spring stiffness kc.

C Find a slope angle α to produce a periodic bound

gait (see details in I-D.5). Specifically, using an

updated slope angle, we simulate 100 steps and

evaluate the error of each state variable between

zzz99 and zzz100. If the error is less than 10−5, the state

variable zzz100 and the other variables are regarded

to be the condition of fixed point. → back to B

D Otherwise, update an initial state zzz0 by Newton-

Raphson method → back to C

E If any fixed point isn’t found after updating 100

times by Newton-Raphson method, the touch down

angle γtd
b or γtd

f is changed by ±0.5 deg at a time.

→ back to C

F If any fixed point isn’t found after changing the

touch down angle ±4 deg, a set of leg stiffness

(kb, k f ) is changed by ±100 N/m each at a time.

→ back to C

5) Determination of slope angle: In the process C, we

determined the slope angle to balance total energy by the

following method: we set initial slope angle as α0, then

simulate 100 steps. We defined the energy error between the

initial state of 100th step and the final state as ∆E0. We set

the first updated slope angle as α1, then simulate 100 steps,

and define the energy error between the initial state of 100th

step and the final step as ∆E1. After that, we changed the

slope angle αk at k th step (k ≥ 2) based on the energy errors

by

αk = αk−2 −∆Ek−2

(

αk−1 −αk−2

∆Ek−1 −∆Ek−2

)

(27)

IV. RESULT

A. Periodic bound gait

First, based on the periodic bound gait of one rigid body

model [9], we produced a periodic bound gait of our model,
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Fig. 3. Fixed points of state variables on the Poincaré section for various
spring stiffness with ζ = 0.2

where the body joint doesn’t vibrate using a large rotational

spring stiffness. Then, we changed the periodic gait by

decreasing the spring stiffness step by step using the process

of Section I-D.4.

Fig. 3 shows the state variables of the periodic bound gait

on the Poincaré section using ζ = 0.2. White cicle ◦ does

not have Double Leg Stance (ds), whereas white square �

has Double Leg Stance (ds). Fig. 4 shows the maximum

eigenvalue of the linearized Poincaré map about each fixed

point (namely, maximum value of eigenvalues of ∇PPP(zzz∗)
explained in I-D.2, we define this as emax), touch down angle,

leg spring stiffness, and slope angle. In the figure of the touch

down angle γtd
b and γtd

f , white circle ◦ and white square �

are for the back leg touch down angle, while black circle

• and black square � are for the front leg touch down angle.

B. Periodic bound gait with body vibration

We found a periodic bound gait whose body vibra-

tion had an amplitude of about 5 deg by using kc =
295, ζ = 0.2, α = 1.93, γb = 46.7, γ f = 44.6 and kb =
k f = 2420, where zzz∗ = [y∗g θ ∗

1 θ ∗
2 ẋ∗g θ̇ ∗

1 θ̇ ∗
2 ] =

[0.2536 m 0.6303 deg −1.152 deg 2.840 m/s 293.2 deg/s

−143.7 deg/s]. In this section, we focus on this periodic

bound gait.

1) Periodic solution of each state valuable: Fig. 5 shows

the periodic solution of each state variables. Vertical dotted

lines show the time when the stance condition was changed.

The lines mean df→bs, bs→df, df→fs, fs→df and ẏg = 0 in
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Fig. 4. Parameter values of periodic bound gait for spring stiffness kc with
ζ = 0.2

order. Because bs→df and df→fs occurred in a short interval

(0.002 s), these two lines are difficult to be distinguished. θ2

shows that this periodic bound gait has two body oscillations

during one gait cycle. Body bent after the back leg touched

down, and bent again after the front leg touched down. We

did not find a periodic solution with single body oscillation

during one step in this simulation.

2) Existence of limit cycle: Maximum eigenvalue of lin-

earized Poincaré map was close to 1 at a large rotational

spring stiffness kc, but it became smaller to be around

0.9 when the rotational spring stiffness kc decreased to

some extent. Therefore, this periodic bound gait is expected

to be asymptotically stable. This stability is examined by

perturbing each state variable on the Poincaré section.

Fig. 6 shows the time evolution of each state variable when

yg of the fixed point was perturbed ±1% from y∗g while kc,

α , and other parameters were not changed. ∆z indicates the

disturbance from the fixed point of z. The state variables

converged to their fixed point in about 40 steps. When other

variables ẋ, θ1, θ2, θ̇1 and θ̇2 were perturbed, the state

variables also converged to the original fixed point. From

these results, we can conclude that this system has a stable

limit cycle.

3) Properties of periodic gait with body vibration: To

investigate the properties of the periodic gait with body

oscillation, we changed the slope angle α or kc and found

periodic gaits by

1) Increase or decrease α or kc

2) Estimate convergence after 100 steps. Specifically, if
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Fig. 5. Periodic solution of bound gait with kc = 295 and ζ = 0.2
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Fig. 6. Convergence of state variables against perturbation of yg with
α = 1.9343, kc = 295 and ζ = 0.2

the error between the initial state of 100th step and

the final state of this step is less than 10−5 for all state

variables, we decide the state variables converged to a

fixed point.

3) Examine the maximum eigenvalue of the fixed point.

Fig. 7 shows the maximum eigenvalue when we changed

the slope angle α while the other parameters are fixed.

This resulted in zzz∗ = [y∗g θ ∗
1 θ ∗

2 ẋ∗g θ̇ ∗
1 θ̇ ∗

2 ] =
[0.2536 m 0.6303 deg −1.152 deg 2.840 m/s 293.2 deg/s

−143.7 deg/s]. Fig. 8 shows the maximum eigenvalue when

we changed the spring stiffness kc. When we did not change

α or kc (α = 1.93, kc = 295), the periodic bound gait did not

have Double Leg Stance (ds) condition, as shown by blue

circles •. When we changed α or kc, the state variables

were converged to a periodic gait with Double Leg Stance

(ds) condition, as shown by green squares �. We found that

this model can keep a stable bound gait in the range of 1.92
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- 2.05 deg for the slope angle α and 294 - 308 Nm/rad for

the rotational spring stiffness kc. If the slope angle or the

rotational spring stiffness exceeds a certain value, the gait

was changed from the gait without Double Leg Stance (ds)

to the gait with Double Leg Stance (ds). However, in this

result, the duration of Double Leg Stance (ds) was so short

that the locomotion behavior did not change remarkably.

V. CONCLUSION

To understand natural mechanical property of bound gait

we used a bound gait model with two bodies and a spring-

damper joint and analyzed the dynamic properties. We got

the following results.

• Periodic gaits were found for various rotational spring

stiffness kc.

• The maximum eigenvalue of linearized Poincaré map

was less than one. The gait has a stable limit cycle.

• By changing slope angle α or rotational spring stiffness

kc, stability and gait pattern were changed.

For future works, we would like to find a periodic bound

gait where the body joint has one oscillation in one step

and analyze its effect on the gait. While we showed the

system becomes unstable by changing slope angle or rota-

tional spring stiffness, we would like to investigate stability

characteristics for various parameters such as bifurcation.
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