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Abstract— In this work, we address the problem of simul-
taneous clasp and motion planning on unknown objects with
holes. Clasping an object enables a rich set of activities such
as dragging, toting, pulling and hauling which can be applied
to both soft and rigid objects. To this end, we define a
virtual linking measure which characterizes the spacial relation
between the robot hand and object. The measure utilizes a set
of closed curves arising from an approximately shortest basis
of the object’s first homology group. We define task spaces to
perform collision-free motion planing with respect to multiple
prioritized objectives using a sampling-based planing method.
The approach is tested in simulation using different robot hands
and various real-world objects.

I. INTRODUCTION

Robots need to be able to interact with both known and

previously unseen objects. This problem has been studied

extensively which has resulted in state of the art methods for

grasp synthesis and planning. In addition to simply fixing

an object in the end effector, we would however also like

to equip robots with a richer repertoire of grasps affording

both in-hand manipulation and additional activities such as

dragging, toting, pulling and hauling of soft and rigid objects.

These activities may require more force and grip than a

point contact-based precision grasp provides and a grasps

involving the complete robot hand may be required instead.

To address this, we present work on simultaneous grasp

and motion planning, where we concentrate in particular

on the clasping of unknown objects. A clasp is a type of

enveloping grasp that affords pushing, dragging and alike. In

our work, it is formalized using the Gauss linking integral for

closed curves. Clasp planning is performed simultaneously

with motion planning using a Task Space Rapidly-exploring

Random Tree (TS-RRT) approach. Our approach uses task

space control, sampling-based search and a topological repre-

sentation of objects. Furthermore, we rely solely on a rough

object reconstruction from point clouds and a representation

that builds on a definition of virtual linking.

The main contribution of our work is to address the

problem of clasp and motion planning in an integrated

manner. In addition, the approach can be used on previously

unseen objects without the need for an exact mesh model.

Our approach defines and utilizes multiple task objectives

to control the motion of the robot. These objectives have

different priorities and we show how to design a controller

taking different and altering priorities into consideration.
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Fig. 1. A few examples of our approach for clasp planning with various
robotic hands. Here, the topological feature describes the purse’s handle.

II. RELATED WORK AND CONTRIBUTIONS

Rapidly-exploring Random Trees (RRTs) are commonly

used for motion planning [1]–[3], manipulation planning

[4]–[6] and the planning of grasping motions [7]–[9]. For

complex robots, planning of collision-free trajectories is a

PSPACE-hard problem in general [10]. The constraints orig-

inate mainly from configuration space (C-space) complexity

and from representing the collision-free region, Cfree . To

avoid a time consuming explicit representation of Cfree , [11]–

[13] and others have proposed sampling-based algorithms

which implicitly cover Cfree , namely RRTs [13].

In [4], a novel kind of goal bias is introduced by adopting

workspace heuristic functions implicitly defining the C-space

goal region. A workspace distance is used for selection of

expansion nodes which are then randomly extended. Manip-

ulation involving inverse kinematics and complex objects is

addressed in [5]. There, the search is directed towards the

goal in a subspace of the manipulator’s C-space. Workspace

bias is realized using transpose Jacobian control to produce

locally optimal expansions. Similarly to our approach, they

iteratively apply control until a collision occurs in order to

reach a goal. We also consider goal bias in a space different

from the original C-space; however, we do not work with a

subspace of the C-space.

RRT-based planning of grasping motions commonly relies

on a set of pre-defined grasp poses that are computed

offline [7]–[9]. Thus, these approaches consider the problem

in two separate phases and could analogously be transferred

to clasping. However, we are interested in an integrated

approach for clasp and motion planning similar to the works

of [14], [15]. For grasping, such an integrated approach

is presented in [16] for single and dual arm problems.

During random exploration of the robot arm’s C-space,

the Grasp-RRT algorithm computes approach movements
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towards heuristically selected points on the object followed

by grasp scoring. The idea is similar to ours, although the

Grasp-RRT plans contact-level grasps. The main difference

is that Grasp-RRT considers objects of known geometry and

uses grasp quality evaluation while our approach uses a rough

object reconstruction from point clouds and virtual linking.

Both approaches integrate motion planning and do not rely

on pre-calculated hand poses. The Grasp-RRT searches only

in the robot arm’s C-space while our approach searches

in a task space and considers both the arm and the hand

simultaneously.

While the approaches of [4], [5] consider subspaces of

the C-space to realize goal bias, the concept of task spaces

from feedback control design has been proposed to reduce

planning space dimensionality [17]. The Task Space RRT

(TS-RRT) samples and builds the tree only in the task space

and entirely avoids non-trivial constraints in C-space. The

use of a TS-RRT is demonstrated by planning for the end

effector position of a 1500 DOF robot arm in [17] and by

planning legged locomotion over rough terrain in [18]. The

hybrid motion planning approach of [19] uses TS-RRT and

adapts the C-space trajectory to avoid obstacles. In [20], the

task space path is modified and secondary motion objectives

in the form of cost functions are employed. For our approach,

we add another extension procedure to the TS-RRT and also

use secondary objectives. However, our secondary objectives

lie in the task space and we additionally use altering task

priorities.

For many object interaction tasks, objects do not need

to be completely immobilized in the hand. Instead, caging

grasps may be enough. Thus, our work focuses on the

generation of clasping grasps that fall into the category

of caging grasps [21]–[24] to form a chain consisting of

the object and the robot hand. The notion of stretching

and squeezing cages was introduced for the analysis of

caging mobile rigid bodies by [25] and was later extended

to more than two fingers [26]. Caging configurations can be

considered as a waypoint towards immobilizing grasps [26]

and as a method to deal with uncertainty [27].

Applications in manipulation planning related to caging

grasps are proposed by [28]. They consider motion planning

for tasks such as opening and closing doors, drawers, etc.

Exploring an initial set of caging grasps using a RRT,

they ensure caging at each expansion by a random motion

escaping test. In our approach, we plan caging configurations

along with robot motions that could be used by a system such

as the one mentioned above. To show that the resulting clasps

are secure, we also perform random movements trying to

separate the robot from the object in a rigid body simulation.

In our recent work [29], we use winding numbers to

describe how much a robot hand is wrapped around a given

point. However, this representation is merely 2-dimensional

and requires a projection onto a plane. This projection results

in a loss of the 3-dimensional relationship. In this work,

we will instead use the notion of the Gauss linking integral

described in Sec. III-A which can be used to characterize the

linking of curves in three dimensions.

III. PRELIMINARIES

We now formalize the concept of clasping using two

closed non-intersecting curves and explain how it is inte-

grated with motion planning.

A. Gauss Linking Integrals

Given two closed non-intersecting curves γ1, γ2 in R
3,

their linking number Lk (γ1, γ2) ∈ Z provides an invariant

which describes a spacial relation between the two curves.

If it is non-zero, the two curves cannot be separated without

breaking the loops. If γ1, γ2 : [0, 1] → R
3 are smooth closed

curves, Lk can be computed using the Gauss linking integral:

Lk (γ1, γ2) =

1

4π

∫

1

0

∫

1

0

〈

γ1(s)− γ2(t)

‖γ1(s)− γ2(t)‖3
, γ′

1
(s)× γ′

2
(t)

〉

ds dt. (1)

The above integral also leads to a formula for the case of

piecewise linear curves [30] and has also been used when

γ1, γ2 are not closed [31], [32]. However, in the latter case

the resulting real valued quantity is then not a topological

(isotopy) invariant anymore.

B. Shortest Loops and Homology

Informally, the first homology group H1(U) [33] of a

closed surface U ⊂ R
3 describes equivalence classes of

closed curves (1-cycles) up to curves that form the boundary

of parts (2-cycles) of U . H1(U) yields an Abelian version

of the well-known first fundamental group π1(U) which de-

scribes equivalence classes of closed curves up to continuous

deformations. Importantly, H1(U) is a topological quantity

which stays invariant under certain continuous deformations

(homotopies) of U itself. When computed over a finite field,

H1(U) is a vector space. In our work, we will not work

directly with a surface U , but with a simplicial complex

approximation Kd of U for which H1(Kd) is also well-

defined. We are interested in a basis for H1(Kd) correspond-

ing to curves which are approximately of shortest length

and use the software ShortLoop [34], [35] to approximately

determine such curves given Kd.

C. Task Space Planner Outline

To avoid high-dimensionality in motion planning, we fa-

cilitate a low-dimensional approach commonly used in feed-

back control design that has been brought to RRT planning as

Task Space RRT (TS-RRT) [17]. A sampling-based search in

task spaces is often appropriate since, for systems with many

degrees of freedom, no closed-form solution exists to map

task spaces to C-space. Most importantly, TS-RRT operates

on the task space and combines a projection from C-space to

the task space with Moore–Penrose pseudoinverse Jacobian

local control. Usual RRTs instead search the C-space directly,

possibly using different types of goal bias [4], [5].

We search for a collision-free trajectory and secure clasp-

ing grasps simultaneously using a TS-RRT framework with

multiple tasks objectives of altering priorities. Two tasks

form a joint task space searched by the TS-RRT, while a

3008



3009



Fig. 4. From left to right: the Armar III, DLR 1, iCub and Schunk SDH

hands in clasping pre-shape. Orientation vectors are depicted in blue and
green. Finger curves (red) run from the fingertips to the tip of the “thumb”.
A virtual chord (orange) completes each finger curve to a virtual loop.

C. Virtual Linking

For sampling-based search, the description of the goal

states—in this case caging grasps—is essential. Utilizing the

closed loops γ ∈ S that describe potentially claspable parts

of an object and the finger curves α ∈ C that model the

fingers’ shape, it is plausible to consider the Gauss linking

integral Lk (γ, α) to estimate the linking of a loop γ and a

pair of fingers even if α is not closed. The larger the value of
∣

∣Lk (γ, α)
∣

∣, the more linked one could consider the fingers

and the loop. However, the Gauss linking integral, when ap-

plied to a non-closed curve α neglects the fingertip distances

and two curves with absolute linking close to 1 can still be

untangled in certain cases, even if one of the two curves is

a closed loop. Additionally the value of
∣

∣Lk (γ, α)
∣

∣ does not

necessarily increase monotonically when the open curve α is

increasingly closed which constitutes an unpleasant property

from the control point of view.

For this reason, we propose a novel linking measure

compliant with the representations stated above and based on

the Gauss linking integral. Connecting the first and the last

node of a non-closed finger curve α ∈ C with a virtual cord

results in a virtual finger loop α̂. Fig. 4 exemplifies the idea

of virtual cords (orange) for different robot hands. If a virtual

finger loop α̂ and a loop γ ∈ S have
∣

∣Lk (γ, α̂)
∣

∣ ≥ 1, the

loop γ “runs through” the hand. Closing the hand at this state

could result in a caging configuration but the closing process

of the hand might be obstructed (see Fig. 8). However,

reducing the length of the virtual cord to a minimum by

closing the opposing fingers will cage the closed loop γ. The

following definitions specify this notion mathematically.

Let |α̂| denote the length of a virtual finger loop α̂ and δα
the Euclidean distance of the first and last node of the finger

curve α, measuring the length of the virtual cord connecting

the finger tip and the tip of the “thumb”. We define the virtual

linking of the closed curve γ and non-closed curve α by

VLk (γ, α) =
(

1− δα
|α̂|

)

Lk (γ, α̂) . (2)

The virtual linking of α and γ assumes the value of 0 as long

as the loop does not “run through” the fingers. Otherwise it

describes the “closing” of the finger curve taking the value

Lk(γ, α) when the tips of the finger and the “thumb” meet.

If the virtual linking value is continuously increased until the

fingertips meet, or until the fingers are obstructed, the hand

is closed around the object. This makes the virtual linking a

suitable projection for task space control.

D. Exploration

Alg. 1 describes the basic planning procedure of our TS-

RRT framework. Starting at a C-space pose qinit ∈ Q,

a tree T in the task space X is build. To maintain the

correspondence between a C-space configuration q and its

task space mapping x, they are always jointly appended to

the tree. In each iteration, either an undirected random explo-

ration towards xrand ∈ X or goal directed iterative control

is performed. By using task space control and sampling-

based C-space collision checking, the tree is ensured to

contain only reachable and collision-free configurations. The

search terminates in the procedure TS-CONNECT-GOAL

when a task space goal has been reached up to a pre-defined

tolerance. Thereafter, fingers are closed until contact occurs

and the solution sequence is post-processed in configuration

space using a randomized path pruning technique also used

by [16] to produce a smooth C-space trajectory.

Algorithm 1 BUILD-TS-RRT
(

qinit , γ,Gγ

)

Require: qinit ∈ Q, γ loop, Gγ positions on loop with tangents
1: xinit ← TS-PROJECTION(qinit)
2: T .init(qinit ,xinit)
3: for k = 1 to K do
4: if with some probability P then
5: xrand ← RANDOM-TS-SAMPLE() ∈ X
6: TS-EXTEND(T ,xrand , γ,Gγ)
7: else
8: for all

(

p,p′
)

∈ Gγ do

9: xgoal ← (p1,p2,p3, 1.0)
T

10: TS-CONNECT-GOAL(T ,xgoal , γ,Gγ)
11: end for
12: end if
13: end for

Two different procedures are applied to extend the task

space tree T . TS-EXTEND [17] in Alg. 2 selects the L2-

nearest neighbor xnear in task space as a starting point.

Instead of connecting C-space positions, local task space

control at qnear is used to generate a new C-space position

qnew . If the path from qnear to qnew is collision-free, the

tree is extended. The goal bias is realized by the procedure

TS-CONNECT-GOAL in Alg. 3, which is proposed here as

the TS-RRT equivalent of a similar function in JT-RRT [5].

Stepwise control is iterated until the task space goal x is

reached up to a pre-defined tolerance. TS-CONNECT-GOAL

ends when a collision appears or when the task space distance

to the goal is small enough. In the latter case, the last node,

qnew , and its ancestors define the solution sequence. A node

in T is only selected once for extension towards a certain

goal which has been omitted in Alg. 3 for clarity.

E. Control

The process of clasping an object loop using both one’s

arm and hand conceptually consists of the actions (a) moving

the hand towards some segment of the loop, (b) turning the

opened hand towards the loop segment and (c) closing the

hand while maintaining the loop segment centered between

the actuated fingers. While the first two actions need to be
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Algorithm 2 TS-EXTEND(T ,x, γ,G)

Require: x ∈ X , γ loop, G positions on loop with tangents
1: (qnear ,xnear )← TS-NEAREST-NEIGHBOR(T ,x)
2: qnew ← TS-CONTROL(qnear ,xnear ,x, γ,G)
3: xnew ← TS-PROJECTION(qnew )
4: if COLLISION-FREE(qnear ,qnew ) then
5: T .append(qnear ,qnew ,xnew )
6: end if

Algorithm 3 TS-CONNECT-GOAL(T ,x, γ,G)

Require: x ∈ X , γ loop, G positions on loop with tangent
1: (qnear ,xnear )← TS-NEAREST-NEIGHBOR(T ,x)
2: loop
3: qnew ← TS-CONTROL(qnear ,xnear ,x, γ,G)
4: xnew ← TS-PROJECTION(qnew )
5: if COLLISION-FREE(qnear ,qnew ) then
6: T .append(qnear ,qnew ,xnew )
7: if TS-TOLERANCE(x,xnew ) then
8: TERMINATE-SEARCH(qnew )
9: end if

10: (qnear ,xnear )← (qnew ,xnew )
11: else
12: return
13: end if
14: end loop

coordinated to position the loop segment between the fingers,

the last action has to be performed only when it is already

within reach of the fingers. Still, the hand’s position needs

to be adjusted while the fingers close to clasp. This is most

important for asymmetric hands where the center point of

the fingers shifts notably when closing. Using a TS-RRT,

we can describe each of these three actions by its own task

space and mediate them using priorities and gain functions.

To capture the change of hand shape during different

stages of the closing, action (a) is described by the center

point of the axis-aligned bounding box (AABB) of all finger

curves. The task space projection Πpos : Q → Xpos = R
3

is defined by Πpos (q) = pAABB . Action (b) is described

by a task space, Xalign , that considers alignment of the

unit vectors vfwd and vswd with the nearest clasping target
(

pnear ,p
′
near

)

∈ Gγ :

Πalign : q 7→
(

|vswd ·p
′

near |
vfwd ·tnear

)

, (3)

where tnear = pnear−pAABB

‖pnear−pAABB‖ describes the normalized direc-

tion vector pointing from the hand towards the nearest clasp-

ing target. The task space projection satisfies Πalign (q) =

(1, 1)
T

if and only if the hand is pointing towards the target

section of the loop and is aligned with the loop’s local

tangent. The action of closing the fingers around the loop,

(c), is described by the average virtual linking of all finger

curves in task space Xvlink :

Πvlink : q 7→ 1

|C|

∑

α∈C VLk (γ, α) . (4)

TS-EXTEND can be considered as a randomized search for

a good starting configuration from which iterated stepwise

local control can be applied to reach the nearest clasping

target. Consequently, every extension step should try to align

the end effector with the nearest clasping target. This implies

that the TS-RRT should only search X = Xpos × Xvlink

randomly, but the goals in Xalign should not be random. A

controller that governs the high-dimensional joint C-space of

arm and hand joints, Q, is described in Alg. 4. The task space

goals cpos and cvlink are extracted from dimensions 1 to 3

and 4 of the given target x ∈ X while calign is always set to

(1, 1)
T

. The use of a sigmoid-shaped gain function results

in a smooth change from controlling position with alignment

as a secondary task to prioritizing hand shape control. To

limit conflicts and to focus control from different task spaces

to either the arm or the hand joints, gain matrices Mhand

and Marm are used. The values are defined such that either

all control for the hand or the arm is diminished and the

variable influence of the joints depending on their kinematic

chain position is accounted for. This controller essentially

performs a reaching and then closing motion and is actually

capable of clasping an unobstructed clasping goal point by

itself.

Algorithm 4 TS-CONTROL
(

q0,x0,x1, γ,Gγ

)

Require: q0 ∈ Q, x0,x1 ∈ X , γ loop, Gγ positions on loop with
tangents

1: cpos ←
(

(x1)1, (x1)2, (x1)3
)T

2: upos ←
(

cpos −Πpos (q0)
)

3: Jpos ← COMPUTE-JACOBIAN
(

Πpos (.) ,q0

)

4: calign ← (1, 1)T

5: ualign ←
(

calign −Πalign (q0, Gγ)
)

6: Jalign ← COMPUTE-JACOBIAN
(

Πalign (., Gγ) ,q0

)

7: cvlink ← (x1)4
8: uvlink ←

(

cvlink −Πvlink (q0, γ)
)

9: Jvlink ← COMPUTE-JACOBIAN
(

Πvlink (., γ) ,q0

)

10: q̇arm ← J+
posupos +

(

I− J+
posJpos

)

J+

alignualign

11: q̇hand ← J+

vlinkuvlink

12: α←GAIN
(

‖upos‖
)

13: q̇← αMarm q̇arm+

14: (1− α)

(

Mhand q̇hand +
(

I− J+

vlinkJvlink

)

q̇arm

)

15: return q0+ LIMIT-STEP-SIZE(∆tq̇)

V. EXPERIMENTAL EVALUATION

We consider a KUKA KR5 R850 arm equipped with

either an Armar III, DLR 1, iCub or Schunk SDH hand.

The number of joints for the hands is 10 (Armar III), 12

(DLR 1), 15 (iCub), 6 (Schunk SDH) and 6 for the arm.

Unless stated otherwise, the goal tolerance in the task space

only considers virtual linking with a threshold of 0.85–0.65

for the DLR 1 and Schunk SDH hands, 0.8–0.65 for the

Armar III and 0.75–0.65 for the iCub hand—depending on

the shape of the object. Hand representations and finger

curves are depicted in Fig. 4. The five real-sized experiment

objects are displayed in Fig. 3 along with their representation

created from 2000 points sampled on the object’s visible

surface. From the detected shortest loops, only the loop

marked in red is used for clasping. The numbers of equally

spaced clasping targets on the used loops are 9 (Purse), 23

(Bag), 17 (Chair), 24 (Lawn Mower) and 10 (Travel Bag).
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The TS-RRT is programmed to randomly expand for 20,

50, 100 or 200 cycles before entering the loop in Alg. 1 to

speedup the search—depending on the size, complexity and

pose of the object. The value P is set to 0.1. The Simox

[36] software is used for robot simulation and object mesh

models are taken from [37], [38].

A. Varying Object Poses

To be viable, a motion and clasp planning approach needs

to handle different robot hands, objects and object poses.

Therefore, in this experiment, we position each of the objects

in three different poses for each robot hand. The number of

pre-expansions, n ∈ {20, 50, 100, 200}, is selected as low

as possible so that a clasping goal is reached within the

first few attempts to connect. The stability of the resulting

clasping poses is tested in rigid body simulation by trying to

separate the robot and object with 10 separate sequences of

500 random translations and rotations. Each transformation

is pursued until collision. A subset of the 60 final poses

is shown in Fig. 5, a comprehensive chart of all figures

can be found at http://www.csc.kth.se/˜jastork/

iros2013/. Each of the resulting configurations passed the

stability test and therefore provides a secure clasping pose.

In all cases, the goal was found within 52 cycles after

the initial phase, while in 37 of the 60 cases the search

terminated less then 10 cycles after the initial phase. The

comparably low amount of cycles for a RRT approach shows

that the proposed controller is suitable for clasping. The three

poses of the Bag and the first two poses of the Travel Bag

turned out to be the simplest clasping problems. In both

cases, many kinematically easily reachable clasping goals

are placed in the robot’s workspace, so that n = 20 and n =
50 pre-expansions are sufficient. The Purse and the Chair

object are more difficult to clasp. For the Purse, the loop

is small compared to the DLR 1 and Schunk SDH hands.

Additionally, the number of 9 clasping goals is comparably

small and about half of them are obstructed by the object

shape. All hands but the iCub hand require at least n = 100
pre-expansions to find a secure clasp. While the DLR 1

hand could quickly find clasps on the Chair object with

n = 20 and n = 50, all the other hands needed n = 50 to

n = 200 pre-expansions. The large fingers of the DLR 1 hand

can easily link the loop without being precisely positioned.

Despite its shape, the Lawn Mower is difficult to clasp. This

can be explained by the fact that only a few clasping goals at

the middle of the handle are easily reachable with a tangent-

perpendicular pose.

The distribution of the minimal and maximal Gauss link-

ing integrals for the finger curves of the individual final poses

is depicted in Fig. 6. In all cases, the maximal Gauss linking

is larger than 0.5 while most values are higher than 0.8. The

minimal Gauss linking ranges from ca. 0.5 to 1.5. The largest

spread of values occurs for the DLR 1 hand. The results show

that a large range of Gauss linking integrals for finger and

object curves corresponds to secure clasps.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.6

0.8

1

1.2

1.4

1.6

1.8
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M
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iCub

Armar III

DLR 1

SDH

Fig. 6. Evaluation of the absolute values of the Gauss linking integral
between object loops and robot hand for each successful clasping pose. For
each final configuration, the minimal value for the hand’s control curves is
plotted against the maximal value.

B. Grasping an Obstructed Loop on a Chair

The advantage of planning is that local obstructions can

be bypassed to reach a goal. To show that our approach is

capable of clasping loops that cannot directly be reached

from the initial position, the robot arm is placed over the

chair’s seat and a loop under the seat is chosen to be clasped

(see Fig. 7). After 606 cycles, the search terminates. The

search tree nodes are displayed in red showing the grasp

center point. Blue markers are used for the solution nodes.

The search tree spans from the initial position to the open

space right of the robot, eventually connecting to a clasping

goal. Poses at 20%, 40%, 60% and 80% of the optimized

solution shown in green are displayed in the right of Fig. 7.

C. The Influence of Virtual Linking Tolerance

In our approach, a pre-defined task space goal tolerance

is used to implicitly define the goal regions. Instead of

increasing virtual linking, the TS-RRT could be used to only

find configurations with virtual linking larger than 0 and

execute automatic closing of the robot hand to grasp a loop

segment. Here, we show the impact of the goal tolerance for

the minimally accepted virtual linking. Different thresholds

imply that different goal regions are considered. Fig. 8 shows

possible results if a virtual linking of 0.5, 0.65, 0.70 or 0.75

is required to terminate the search. As can been seen clearly,

larger values lead to increasingly tighter clasps. While for 0.5

the clasp might be obstructed, a value of 0.75 makes sure that

a high virtual linking can be reached without any collision.

Therefore it is clear that this tolerance has to be adjusted

and that a low tolerance increasingly guarantees better final

linking.

Fig. 8. From left to right: possible final configurations for increasing
values of accepted minimal virtual linking (0.5, 0.65, 0.70, 0.75) for search
termination. Higher values of virtual linking correspond to more secure
clasps.
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Fig. 5. A subset of the final poses generated for four hands and five objects is displayed. The small figures show details of the clasping pose. Each of
the depicted poses is a secure clasping pose in the sense that it passes our pulling and turning test.

Fig. 7. Our approach can clasp loops that are not directly reachable from the robot’s initial configuration. Here, the RRT spans from the initial configuration
to the free space in front of the chair, visualized by the grasp center point in red. The solution’s 30 nodes are shown in blue and the optimized solution is
shown in green. The search terminated after 606 cycles and with 248 nodes in the tree.
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Fig. 9. Left to right: a representative grasp generated by the Grasp-RRT
approach, a rare Grasp-RRT grasp remotely similar to a caging grasp and
a representative clasping configuration as it is achieved by our approach.

D. Comparison to Grasp-RRT

In this experiment, we investigate whether a dedicated

clasp planner is a necessity to generate clasping configu-

rations. For comparison, the Grasp-RRT approach of [16] is

used several times on Purse.

Most of the time, a grasp as displayed on the left of Fig. 9

is generated. The hand does not envelop the handle-part of

Purse and has approached the object from the side or from

below. In less then 5% of the experiments a grasp somewhere

on the handle-part is generated and those grasps rarely

envelop the handle-part. Compared to that, our approach

reliably produces clasps as shown on the right of Fig. 9 every

time. Our approach, which uses global topological object

information and which generates caging rather than precision

grasps, hence provides a complementary strategy for grasp

synthesis.

VI. CONCLUSIONS

We have presented an integrated approach to clasp and

motion planning based on the novel concept of virtual linking

which applies to objects with holes. A clasp is a grasp that

falls into the category of caging grasps and which extends

the repertoire of a robot to actions that do not necessarily

immobilize the manipulated object. We have defined multiple

task spaces and employed a priority based control technique

together with sampling-based motion planning. We have

demonstrated the viability of our approach in simulation

using several robot hands and objects. In future, we plan

to evaluate our approach on a real robot and would like

to deduce currently predefined parameters using a further

analysis of the objects. Additionally, we would like to

incorporate task constraints to select optimal handle-parts

and clasping positions.
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