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Abstract— We consider the problem of incrementally learning
different strategies of performing a complex sequential task
from multiple demonstrations of an expert or a set of experts.
While the task is the same, each expert differs in his/her way
of performing it. We assume that this variety across experts’
demonstration is due to the fact that each expert/strategy is
driven by a different reward function, where reward function
is expressed as a linear combination of a set of known features.
Consequently, we can learn all the expert strategies by forming
a convex set of optimal deterministic policies, from which one
can match any unseen expert strategy drawn from this set.
Instead of learning from scratch every optimal policy in this set,
the learner transfers knowledge from the set of learned policies
to bootstrap its search for new optimal policy. We demonstrate
our approach on a simulated mini-golf task where the 7 degrees
of freedom Barrett WAM robot arm learns to sequentially putt
on different holes in accordance with the playing strategies of
the expert.

I. INTRODUCTION

Inverse reinforcement learning, or rewards-driven imita-

tion learning, is a paradigm for learning reward function from

expert demonstrations [1], [2], [3], [4], [5], [6], [7]. Expert

demonstrations provide a powerful means to bootstrap the

learning process, subject to two notions of prime importance:

‘what-to-imitate’ and ‘how-to-imitate’, i.e., what is the inten-

tion of the expert in the demonstration and how to replicate

the intended policy of the expert [8]. Inverse reinforcement

learning assumes that the expert’s intent is driven by rewards

in a demonstration and aims to recover the control policy that

can yield the same rewards as that of the expert. Rewards

here are obtained by a linear combination of a set of known

features representing the task.

It is well-known that humans vary widely in perform-

ing sequential decision-making tasks, possibly differing in

their intentions or ways of gauging task-dependent features.

This difference is a fundamental trait of natural selection

that contributes to fitness and survival of an individual in

changing environments. Consequently, there are often several

useful ways of performing a task and how one assesses

multiple criteria in a given situation yields the goodness

of a decision. Despite this, most of the previous work in

inverse reinforcement learning assumes single expert having

the same intention in all the demonstrations – albeit with

a few exceptions. In [9], the authors use an expectation-

maximization approach to cluster similar strategies in the

demonstrations where the number of clusters defined apriori

represent the number of reward functions. Dimitrakakis and

Rothkopf [10] generalize the Bayesian approach to learn

multiple reward functions by considering two types of joint

priors on reward functions and policies. Following above,

Choi and Kim in [11] present a non-parametric Bayesian

approach using the Dirichlet process mixture model to learn

multiple reward functions. In this paper, we take a direct

geometric approach to learn a convex set of optimal policies

enclosing all expert strategies. This helps us to efficiently

match any previously unseen expert strategy drawn from this

set. Moreover, our method of learning multiple strategies is

incremental and allows transfer of knowledge; contrary to all

the batch learning approaches described above.

In this work, we are interested in learning multiple strate-

gies of performing a task by observing several experts’

demonstrations. We seek to endow our learner with the

ability to mimic a variety of experts, irrespective of how

different these experts are in their actions. We believe this

ability is crucial to adapt to different situations/environments

in an optimal way. Moreover, we exploit the fact that all the

strategies share the same transition dynamics and only differ

in the underlying reward function. This helps to reuse the

previous experience and bootstrap incremental learning of

multiple expert strategies.

II. PRELIMINARIES

Consider the learner as an autonomous agent in a

Markov Decision Process (MDP) represented by a tuple

< S,A, Psa, α, γ, φ, w >, where S is a finite set of N states;

A is a set of M actions that the agent can take in a given

state; Psa : S × A × S → [0, 1] describes the transition

dynamics of the environment, i.e., Psa , Pr(s′, a, s) is the

probability of transitioning to state s′ after taking action a in

state s; α(s) : S → [0, 1] and
∑

s α(s) = 1 is the initial state

distribution from which the state s0 is drawn; γ ∈ R → [0, 1)
is the discount factor; φ(s) : S → R

k
[0,1] is the mapping from

state s to a set of k task-dependent features1; w ∈ R
k
[−1,1]

and ‖w‖1 ≤ 1 defines the relative weights of the features.

Different weights for the features yield different rewards

while interacting with the environment, R(s) = wTφ(s).
A policy π ∈ Π defines the mapping from state to actions.

A policy can be deterministic, π(s) : S → A, in which case

each state is mapped to a unique action, or a policy can be

1All the features are normalized to make their effect on the reward
function comparable in a relative way.
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stochastic in which case each state is mapped to a distribution

over actions, π(s, a) : S × A → [0, 1] and
∑

a π(s, a) = 1.

The policies we consider here are stationary as they depend

only on current state and do not change with time. Note that a

stochastic policy can be represented as a convex combination

of deterministic policies and every convex combination of

deterministic policies represents some stochastic policy (see

Ch. 6 of [12]).

The value-function V π(s) : S → [ −1
1−γ

, 1
1−γ

] measures the

expected value of discounted sum of rewards that the agent

gains starting from state s and following policy π:

V π(s) = E
{ ∞∑

t=0

γtR(st)|s0 = s, a = π(st),

s′ ∼ P π(.|st)
}

where P π : S × S → [0, 1], is the transition dynam-

ics after fixing action in each state according to policy

π. When modulated by the initial state distribution α(s),
the value of a policy π reduces to a scalar defined by:

V π =
∑

s α(s)V
π(s) (note that we dropped the s in the

parentheses). A policy π is optimal for the MDP if it satisfies:

π = argmax
π∈Π

V π

Similar to how the value-function gives an expectation

over rewards in the long run, feature expectation vector,

µπ(s) : S → R
k
[0, 1

1−γ
], corresponds to the discounted sum of

the features as the agent observes the sequence s0, s1, s2, . . .

starting from the state s0 = s following policy π.

µπ(s) = E
{ ∞∑

t=0

γtφ(st)|s0 = s, a = π(st),

s′ ∼ P π(.|st)
}

Note that the reward function is linear in features, the value-

function is also linear in feature expectations, parametrized

by the same weight vector w, i.e., V π(s) = wTµπ(s) and

similarly for the initial state distribution, V π = wTµπ, where

µπ =
∑

s α(s)µ
π(s) 2.

The expert strategy is represented by its feature expecta-

tion µπE . Given the expert’s sequence of visited states over

m runs [s0, s1, s2, . . .]
m, an empirical estimate of the expert’s

feature expectation can be computed as:

µ̂πE =
1

m

m∑

i=1

∞∑

t=0

γtφ(sit)

2With slight abuse of notation, we later use bold-face notation to write
equations in matrix form without parentheses as well. µπ for N×k matrix
[µπ(s1) . . . µπ(sN )]T , and µπ for column vector of dimension k, Φ for
the matrix of reward features, and α for the initial-state distribution vector
of dimension N .

III. TRANSFER IN LEARNING MULTIPLE STRATEGIES

The main contribution of this paper is to incorporate the

transfer of knowledge for boosting incremental learning of

multiple expert strategies. We first formalize our problem

statement in this section, followed by our multiple expert

strategies learning algorithm and then explain the transfer of

knowledge to speed up the learning process.

A. Problem Statement

Let ΠD be the set of all deterministic stationary policies

available to the learner in a MDP as possible ways of exe-

cuting a task. Each policy possibly gives a different feature

expectation µπ, among which the optimal ones maximize

the value of a policy V π for some w. The set of feature

expectations µπ1 , µπ2 , . . . , µπd ⊆ µ(ΠD) that are maximal

for some w defines a convex hull Co{µ(ΠD)} in the feature

expectation space. Ideally, we would like to learn all the

optimal policies over this convex hull so that the learner

can readily replicate any expert strategy by appropriately

combining these optimal policies.

To make it concrete, suppose we can compute the set of

feature expectations of all the optimal policies in ΠD, then

we can approximate any expert strategy µπE (in expectation)

by constructing a mixed policy3 that assigns a probability λi

to the policy with feature expectation µπi :

µπE =

|πd|∑

i=1

λiµ
πi

Note that the deterministic stationary policies of ΠD alone

do not constitute all the feasible strategies in the feature

expectation space. By allowing ourselves to approximate

the expert strategy with mixture of optimal policies, we do

not limit the expert to be optimal or nearly-optimal in a

deterministic way; otherwise we could select one optimal

deterministic policy with feature expectation µπi lying on the

convex hull that is closest to µπE . We only require the expert

strategy to lie within the convex hull of feature expectations,

and thereby, assume the expert to be optimal in a stochastic

manner. In other words, the expert may sequentially optimize

over different reward functions in his/her strategy.

However, learning all optimal policies in ΠD is in general

intractable with |ΠD| = AS . Moreover, not all the policies in

the set lead to practically useful description of a task. To this

end, we leverage upon the availability of the expert to address

this challenge. Let us denote ΠE as the set of deterministic

policies available to the expert where |ΠE | ≪ |ΠD| in

general. Let ∆(ΠE) be the set of probability distributions

(unknown) over the set ΠE from which the expert draws a

finite number of strategies µπE1 , µπE2 , . . . , µπEn as possible

useful ways of demonstrating a task to the learner. The goal

of the learner is to approximate the strategies demonstrated

by the expert as µπA1 , µπA2 , . . . , µπAn belonging to the

probability distribution set ∆(ΠA), and after experiencing

3A mixed policy is executed by randomly selecting the policy πi at t = 0
with probability λi (λi ≥ 0,

∑
i λi = 1), and following it for the rest of

the time.
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a finite number of them, be able to approximate any new

expert strategy drawn from ∆(ΠE)
4. The learner does so

by finding the set of deterministic policies ΠA that is used

to generate a mixed policy for matching any expert strategy

by drawing from the associated distribution such that the

performance of the learner is at least as good as that of the

expert with a tolerance of ǫ0:

|V πE − V πA | ≤ ǫ0 (1)

where ǫ0 ≥ 0, πA ∼ ∆(ΠA), πE ∼ ∆(ΠE) and the expert’s

weight vector is unknown in the demonstrated strategy.

B. Learning Multiple Expert Strategies

Given an expert strategy µπE , the learner seeks a policy

πA whose performance is close to that of the expert’s policy

πE as given by Eq. (1). Based on the reward function used

by the expert, there are two main approaches to recover the

learner’s policy: 1) learn the expert’s reward function from

demonstrations of the strategy explicitly and then compute

the optimal policy for this reward function [1], [3], [7], or 2)

match the feature expectations of the learner and the expert’s

policy irrespective of the reward function used [2], [13], [5].

We follow the latter approach in this work and present our

results with the well-known projection algorithm [2].

The projection algorithm returns the learner’s policy πA

for a given expert strategy such that ‖µπE − µπA‖2 ≤ ǫ1,

thereby yielding the same performance as that of the expert.

From (1):

|V πE − V πA | = wT (µπE − µπA)

≤ ‖w‖2‖µπE − µπA‖2
≤ 1 · ǫ1

where the first inequality follows from Cauchy-Schwarz

inequality: |xT y| ≤ ‖x‖2‖y‖2 and ǫ1 ≥ ǫ0. The problem

of matching the performance of the expert with respect

to the unknown weight vector is, hence, transformed to

a vector matching problem over feature expectations. The

projection algorithm iteratively computes an optimal policy

πi with feature expectation µπi for reward function, R(s)i =
(wi)Tφ(s) in each iteration, i = 1 . . . T . The weight vector

wi of the reward function is updated in each iteration such

that the successive projected mapping µ̄i moves closer to

the expert strategy µπE , where µ̄i is the projection of µπE

on the line joining µ̄i−1 and µπi . Learning converges when

the projected mapping is ǫ1−close to the expert strategy

µπE and the weight vector changes no more (see Algorithm

1). At the end, the point µπE is guaranteed to be close to

the convex hull of feature expectation set of intermediate

policies, µπ1 , µπ2 , . . . , µπT , with µπA being the closest point

in that convex hull to µπE .

Here we extend the idea of projection algorithm for learn-

ing multiple expert strategies. After computing the feature

4For simplicity, we assume that the new expert strategy during test-
ing belongs to the convex set of already experienced expert strategies
µπE1 , µπE2 , . . . , µπEn .

Fig. 1: Projection algorithm for multiple expert strategies

expectation set µπ1 , µπ2 , . . . , µπT corresponding to T iter-

ations of the projection algorithm for expert strategy µπE1 ,

the initial weight vector for µπE2 is selected along the line

connecting µπE2 and the closest possible feature expectation

achievable from the set µπ1 , µπ2 , . . . , µπT to µπE2 . For the

j th expert strategy, the initial weight is computed as: w =
µπEj − u, where u is obtained from the feature-expectation

set as following:

minµ ‖µ− µπEj‖2 s.t. (2)

µ =
∑(T×j)

i=1 λiµ
πi ,

∑(T×j)
i=1 λi = 1, λi ≥= 0

Note that if ‖w‖2 < ǫ1 after the above optimization, the

algorithm terminates in the first iteration as µπEj can already

be estimated from the existing feature expectation set of the

learner.

C. Optimal Policy Transfer

There are two main issues in learning multiple expert

strategies with the feature-matching approach: 1) it is com-

putationally very expensive to find an optimal policy for a

given reward function with weight w, and 2) the number

of deterministic policies in the set ΠA can grow arbitrarily

large for matching all the expert strategies. Consequently,

the learner seeks to: 1) reuse the previously learned poli-

cies to achieve faster learning with a new reward function

parametrized by w, and 2) store only distinct policies (we

call them ǫ-better policies) that are possibly optimal for a

wide range of weights. Previous work in [14] uses such

transfer of knowledge to optimize average-reward per time

step in hierarchical Semi-Markov Decision Processes. A

more generic overview of transfer in reinforcement learning

can be found in [15].

Let Π
(j)
A be the set of stored optimal deterministic policies

after learning the j th expert strategy. Given a new reward

function with weight w, the learner chooses as initial policy

πinit the one with the highest value in the set Π
(j)
A :

πinit = arg max
π∈Π

(j)
A

(wTµπ) (3)

The initial policy πinit is the optimal policy for the given

reward function if there exists no other policy whose perfor-

mance is ǫ-better than the initial policy. The set of ǫ-better

policies is characterized in the following Lemma:
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Lemma 1: Given a finite state space S, action set A, initial

state distribution α, reward function R, the optimal policy

π with transition matrix Pπ is ǫ-better than an initial policy

πinit with transition matrix Pπinit , if it satisfies:

αT
(
(I − γPπ)−1 − (I − γPπinit)−1

)
R ≥ ǫ (4)

Proof: The value of an ǫ-better policy is at least ǫ better

than the value of πinit:

V π − V πinit ≥ ǫ

((µπ)T − (µπinit)T )w ≥ ǫ (5)

µπ =
∑

s

µπ(s)α(s)

=
∑

s

E(

∞∑

t=0

γtφ(st)|s0 = s, s′ ∼ P π(.|st))α(s)

=
∑

s

(φ(s) + γ
∑

s′

P πµπ(s′))α(s)

µπ = (Φ+ γPπµπ)
︸ ︷︷ ︸

µπ

Tα

µπ = Φ
T ((I − γPπ)−1)Tα

(µπ)T = αT (I − γPπ)−1
Φ (6)

Substituting Eq. (6) into Eq. (5) for (µπ)T and (µπinit)T :

(αT (I − γPπ)−1
Φ−αT (I − γPπinit)−1

Φ)w ≥ ǫ (7)

Rearranging gives the required result in (4) 5.

Lemma 1 gives the space of policies that are better than

πinit for the given reward function with weight w. We now

further narrow down this space by imposing constraints due

to other policies in the set Π
(j)
A .

Definition 1: Given a set of optimal deterministic poli-

cies, π1, π2, . . . , πT ∈ ΠA, with feature expectations,

µπ1 , µπ2 , . . . , µπT ∈ µ(ΠA), corresponding to reward func-

tions with weights, w1, w2, . . . , wT , the optimal policy π for

reward function with weight w and feature expectation µπ

is an ǫ-better policy in ΠA if:

wT (µπ − µπi) ≥ ǫ (8)

(wi)T (µπ − µπi) ≤ 0 i = 1, 2, . . . , T (9)

The first set of constraints follows from the definition of

the feature expectation µπ of the optimal policy π for weight

w:

µπ = arg max
µ∈µ(ΠD)

(wTµ)

⇒ wTµπ ≥ wTµ ∀µ ∈ µ(ΠD)

5Note that the term ((I−γPπ)−1)Tα gives the state-visitation frequen-
cies

∑
a x(s, a) following policy π, where x(s, a) is a feasible solution of

the dual linear MDP. Consequently, one can easily switch between primal
and dual variables.
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Fig. 2: ‘Value-Surface’ with k = 2 (best viewed in color).

For a new reward function with weight w, value-surface gives

the initial policy with the best weighted value. The surface

is updated only if there exists a ǫ-better policy at w whose

weighted value is less than the value of other optimal policies

at w1, w2, . . . , wT .

For π to be stored, its value wTµπ has to be ǫ-better than

the values of all the policies in the set ΠA at weight w:

wTµπ ≥ wTµπi + ǫ for i = 1 . . . T . Rearranging yields the

constraints in (8). Since the value V π is linear in weights,

the policy gives a weighted value of (wi)Tµπ at some

other weight wi. The weighted value (wi)Tµπ must be less

than the optimal value (wi)Tµπi for πi to be the optimal

policy corresponding to weight wi; otherwise π would be the

optimal policy for weight wi, i.e., (wi)Tµπ ≤ (wi)Tµπi for

i = 1 . . . T . Rearranging gives the constraints in (9). Further,

adding constraints (8) and (9) and using Cauchy-Schwarz

inequality gives a lower bound on the distance between w

and other weight vectors in the set w1, w2, . . . , wT for w to

have an ǫ-better policy6:

(w − wi)T (µπ − µπi) ≥ ǫ

‖w − wi‖2‖µπ − µπi‖2 ≥ ǫ

‖w − wi‖2 ≥ ǫ(1− γ)√
k

i = 1 . . . T(10)

Every policy adds a set of constraints for a new reward

function with weight w to satisfy. The set µπ1 , µπ2 , . . . , µπT

defines a convex hull Co{µ(ΠA)} in the feature expectation

space and the resulting piecewise planar ‘value-surface’ gives

the best policy value for each possible weight (see Fig. 2).

Note that Lemma 1 combined with the constraints in

Definition 1 can be used to find an ǫ-better policy with

a linear program; albeit very slow. In our implementation,

we verify the existence of ǫ-better policy in three steps in

this order: 1) satisfy (10) to check if there does not exist

6Remember that: µπ ∈ R
k

[0, 1
1−γ

]
⇒ ‖µπ − µπi‖2 ≤

√

k
1−γ

.
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any wi in the vicinity of w for which we already have the

optimal policy, 2) there exists a µ such that the constraints

in Definition 1 are satisfied, i.e.,

Solve for µ s.t. wT (µ− µπinit) ≥ ǫ, (11)

(wi)T (µ− µπi) ≤ 0, i = 1, 2, . . . , T

0 � µ � 1
1−γ

Note that the use of µπinit at w also satisfies all µπi in (8),

and 3) find the optimal policy using the well-known value-

iteration algorithm starting from πinit (any reinforcement

learning algorithm can be used) and use Lemma (1) to

decide whether to store or discard the optimal policy. If the

verification fails at any of the above three steps, πinit is

declared the optimal policy for w. The overall algorithm of

learning multiple strategies from demonstrations is presented

in Algorithm 1.

Algorithm 1 Transfer in Learning Multiple Strategies

Input: < S,A, Psa, α, γ, φ, {µπE1 , µπE2 , . . . , µπEn}, ǫ >
procedure LEARNER TRAINING

1: Initialize i := 1, wi s.t. ‖wi‖1 = 1, ΠA = {}
2: µ̄i = argmaxµ∈µ(ΠD)

(
(wi)Tµ

)

3: for j = 1 to |µπEn | do

4: if ΠA 6= {} then

5: Solve (2) for µ := minµ∈Co{µ(ΠA)} ‖µ− µπEj‖2
6: wi = µπEj − µ

7: µ̄i−1 = µ

8: end if

9: repeat

10: if i > 1 then

11: πinit := argmaxπ∈ΠA

(
(wi)Tµ

)

12: Verify three steps for existence of ǫ-better policy

13: if three steps are verified then

14: Add πi to ΠA

15: else

16: πi = πinit

17: end if

18: µ̄i = µ̄i−1+ (µπi−µ̄i−1)T (µπEj−µ̄i−1)
(µπi−µ̄i−1)T (µπi−µ̄i−1) (µπi−µ̄i−1)

19: end if

20: wi+1 = µπEj − µ̄i

21: i := i+ 1
22: until ‖wi − wi−1‖2 is unchanged

23: end for

24: return set of learner policies ΠA

procedure LEARNER TESTING

25: loop

26: Expert demonstrates a strategy µπE ∼ ∆(ΠE)
27: Learner finds a strategy µπA ∼ ∆(ΠA) : µπA =

∑|ΠA|
i=1 λiµ

πi , where λi is obtained by solving (2) with

(T × j) = |ΠA|
28: end loop

IV. EXPERIMENTAL STUDY

Experimental study is first performed on a grid world prob-

lem, followed by our sequential decision making task of play-

ing mini-golf. The goal here is to asses the performance of

optimal policy transfer in learning multiple expert strategies

with different values of ǫ against the ‘no transfer’ case where

each expert strategy is learned separately with the projection

algorithm. The performance is evaluated using three metrics:

1) empirical error – distance between the estimated feature

expectation of the expert and the learner averaged over n

strategies, i.e., 1
n

∑n
j=1 ‖µ̂πEj − µ̂πAj‖2, 2) CPU learning

time, and 3) number of policies stored. We use the same

discount factor of 0.9 in all our experiments. Moreover, we

only iterate our algorithm for an expert strategy up to a

maximum of 50 iterations.

A. Grid World

We first illustrate our approach in a conceptually sim-

ple grid world environment of 100 × 100 cells. Each cell

represents a different state of the learner. In a given state,

the learner can take 9 different actions corresponding to

a move in all eight neighbouring directions or a stay in

the same cell. Transition dynamics are stochastic with 0.7
probability of moving in the direction of desired action

instead of a random one. Initial state distribution is uniform

over all the states. Five features – radial basis functions with

centres chosen randomly among states and width drawn in

the interval [1, 20] – are used to populate the feature space.

Ten different reward functions are generated to simulate

multiple experts by randomly assigning different weights to

every feature in the interval [−1, 1]. We log the visited states

sequence of 125 time steps from the optimal policy of every

reward function in a demonstration and vary the number of

sample demonstrations to study its effect on learning multiple

strategies.

Fig. 3 (left) shows that the average empirical error over all

strategies decreases sharply with the increase in the number

of demonstrations, while it increases slightly with higher

values of ǫ for a given number of sample demonstrations. The

other two plots clearly indicate the advantage of optimal pol-

icy transfer with a magnitude of performance improvement

in terms of required time and number of policies to learn

all strategies. Note that the optimal policy transfer is useful

even for the case of learning a single expert strategy.

B. Mini-Golf

Mini-golf, short for Miniature golf, is a competitive but

enjoyable sport in which the players compete to strike a

golf ball with a putter into a hole. The game is played

on a small field with various fixed obstacles and unique

variations. Different fields are marked with increasing order

of the difficulty level and the players are required to complete

each hole before moving on to the next one. The goal is to

sink the ball into the hole from the tee area in as few shots as

possible. Depending on the various features of the field, the

task of estimating how to hit the ball in a given situation is a

difficult task that requires a lot of skill from the expert. The
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Fig. 3: Grid world results. Results are averaged over 5 iterations

Fig. 4: Simulated mini-golf playing field

expert has to plan a number of aspects such as reflections

of the boundaries, number of shots and intermediate ball

positions for every hole separately. In this section, we use

the knowledge of different experts to teach the learner how

to putt the golf ball into different holes.

1) Learning Problem: We are interested in learning all the

useful playing strategies for the learner from the expert. The

learner is a 7-degrees of freedom Barrett WAM robot arm and

the expert is a computer program that knows how to sink the

ball in different holes. The simulated mini-golf environment

is shown in Fig. 4. To simulate various strategies of the

expert, we have 5 different holes in one field. To find useful

playing strategies, the expert computes 100 optimal policies

for randomly chosen weights and selects one optimal policy

for each hole based on its success count and policy-value.

For brevity, we fix 100 demonstrations of length equal to

50 time steps for each optimal policy to estimate the feature

expectation of expert’s strategies, µ̂πEj , j = 1 . . . 5 (same

setting is used to empirically estimate the learner strategies).

The learner is required to learn the set of deterministic

policies ΠA from which it can approximate any randomly

chosen distribution over the 5 expert strategies. In other

words, sink the ball in each hole same number of times as

the expert does in his/her strategy.

2) State, Action and Feature Space: The state-space cor-

responds to the 2−dimensional position of the ball in the
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Fig. 5: Comparison of first 15 expert and learner strategies

for 100 episodes with ǫ = 0.1. For every strategy number,

the first bar gives the success count of holes for the expert,

the second bar gives the learner’s response to the expert’s

strategy. First five strategies correspond to the training set,

other mixed strategies are from the testing set.

grid, |S| = 81 × 56 = 4536. The action-set corresponds

to 4 hitting directions at right angles to one another and

6 different hitting speeds, |A| = 24. The feature space is

13-dimensional, where first 8-dimensions give distance of

the ball to each wall segment, and other 5-dimensions give

distance of the ball to each hole. The features are scaled such

that φ(s) ≤ 1. Intuitively speaking, an ideal strategy chooses

the intermediate ball positions in a way that keeps the ball

maximally away from all other holes and wall segments,

while sinks the ball in the desired hole in least number of

shots. The initial state distribution is uniform on the tee area

marked with the yellow line in Fig. 4. An episode of play

corresponds to 50 shots. The ball position is randomly reset

on the tee area every time the episode ends or the ball sinks

into a hole.
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TABLE I: Performance comparison of projection algorithm

for learning multiple strategies with and without optimal

policy transfer. Results are averaged over 5 iterations

Learning CPU Stored Empirical Empirical

Multiple Time Policies Error Error

Strategies (sec) (Training) (Testing)

No
333.53 250

0.901 0.931
Transfer ±0.117 ±0.096

ǫ = 0.1 310.49 14.2
0.972 0.778
±0.089 ±0.03

ǫ = 0.2 188.66 12
0.971 0.797
±0.068 ±0.032

ǫ = 0.5 78.05 8.2
1.025 0.794
±0.073 ±0.038

3) Results and Discussions: We design our experiments

as follows: the learner is required to learn the 5 expert

strategies from their estimated feature expectations using our

proposed algorithm in the training phase. During testing, the

expert then draws 50 mixed strategies each corresponding

to a random distribution over pure expert strategies, and the

learner is asked to replicate the expert’s strategy.

Table I gives a performance comparison of the projection

algorithm for learning multiple strategies with and without

optimal policy transfer. The algorithm with ‘no transfer’ fails

to converge for each of the 5 expert strategies in 50 iterations,

leading to a large number of stored policies. Increasing val-

ues of ǫ depict a similar trend as in the grid world problem,

however, the CPU learning times are more closer to one

another. This is because the value-iteration algorithm takes

somewhat shorter time in this case to compute an optimal

policy even if it is initialized randomly. In more realistic

scenarios where sample collection process is expensive and

optimal policy needs to be computed online, the difference

in learning times would be largely amplified. By reducing

the time to compute optimal policy, our approach would

scale gracefully with moderately high dimensions. A direct

comparison with learning multiple expert strategies on the

real robot is, however, subject to our future work.

Fig. 5 gives a measure of the ability of the learner to

replicate previously unseen expert strategies. It is seen that

after learning the 5 expert strategies corresponding to sinking

the ball in each hole separately during training, the learner

is able to successfully replicate all the mixed strategies of

the expert in the testing phase.

V. CONCLUSIONS

We presented the learner as an autonomous agent that can

learn multiple ways of doing a task by observing the expert,

while making use of the previously gathered experience.

We tested our algorithm on the mini-golf task to verify the

proficiency of the learner against different playing strategies

of the expert.

In this work, we evaluate the ability of the learner to

match any complex strategy demonstrated by the expert. We

are also interested in the online version of our formulated

problem where the expert’s choice of subsequent strategy

selection guides the learning process of the learner to reach

equilibrium. While having discrete state-action space with

known transition dynamics can often be restrictive for real-

world tasks, we plan to relax these assumptions with continu-

ous states and actions for model-based/model-free interaction

with the environment in our future work.
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