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Abstract— We present a provably-good distributed algorithm
for generalized task assignment problem in the context of multi-
robot systems, where robots cooperate to complete a set of given
tasks. In multi-robot generalized assignment problem (MR-
GAP), each robot has its own resource constraint (e.g., energy
constraint), and needs to consume a certain amount of resource
to obtain a payoff for each task. The objective is to find a maxi-
mum payoff assignment of tasks to robots such that each task is
assigned to at most one robot while respecting robots’ resource
constraints. MR-GAP is a NP-hard problem. It is an extension
of multi-robot linear assignment problem since different robots
can use different amount of resource for doing a task (due to the
heterogeneity of robots and tasks). We first present an auction-
based iterative algorithm for MR-GAP assuming the presence
of a shared memory (or centralized auctioneer), where each
robot uses a knapsack algorithm as a subroutine to iteratively
maximize its own objective (using a modified payoff function
based on an auxiliary variable, called price of a task). Our
iterative algorithm can be viewed as (an approximation of) best
response assignment update rule of each robot to the assignment
of other robots at that iteration. We prove that our algorithm
converges to an assignment (approximately) at equilibrium
under the assignment update rule, with an approximation
ratio of 1 + α (where α is the approximation ratio for the
Knapsack problem). We also combine our algorithm with a
message passing mechanism to remove the requirement of a
shared memory and make our algorithm totally distributed
assuming the robots’ communication network is connected.
Finally, we present simulation results to depict our algorithm’s
performance.

I. INTRODUCTION

Task assignment is a fundamental problem in multi-

robot system with various applications such as intelligent

manufacturing, automated transport of goods, search and

rescue assistance in disaster relief, as well as environmental

monitoring. In the basic formulation of multi-robot linear

assignment problem, it is assumed that each task would

consume the same unit amount of resource from each

robot’s resource budget. However, in practice, each task

might consume different amount of resource from differ-

ent robots due to the heterogeneity of robots and tasks,

which can be modeled as multi-robot generalized assignment

problem (MR-GAP). In MR-GAP, each robot has its own

resource constraint, and needs to consume a certain amount

of resource to obtain a payoff for each task. The overall

objective is to find a maximum payoff assignment of tasks

to robots such that each task is assigned to at most one robot

while respecting robots’ resource budget constraints. Given

its wide applicability for real-world problems in various
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areas as well as its computational NP-hardness, general-

ized assignment problem (GAP) has been well studied in

operations research, theoretical computer science and other

related research communities. However, most algorithms are

centralized in nature. In multi-robot application scenarios

where robots need to autonomously operate in the field,

it is desirable to have distributed algorithms on individual

robots so that the system is resilient to single-point failure

and adaptive to environmental change. Thus, in this paper,

our goal is to design distributed algorithms for MR-GAP

with provable performance guarantee.

Multi-robot generalized task assignment arises in many

multi-robot application scenarios. Especially when tasks and

robots are heterogeneous, the amount of resource each task

consume from each robot, as well as the payoff each robot

could obtain from each task, might be different. Depending

on the specific application, the resource could be energy,

processing time or any other consumable resource. Consider

the situation in automated warehouse management system

where packages have to be picked up from certain clustered

storage locations, and placed in other delivery locations.

In this situation, different robots and objects might be dis-

tributed across different spatially clustered location. Thus, the

energy each robot consume to travel from its original position

to the targeted object location could be different. Another

application area is in disaster recovery scenario where the

robots need to remove debris and clear the paths. In such

cases different robots with heterogeneous design might need

different processing time to remove different kinds of debris.

In this paper, we present a distributed auction-based al-

gorithm for MR-GAP, where each robot can bid for its

own tasks by solving a knapsack sub-problem as subroutine.

We show that our algorithm provides an 1 + α approximate

solution assuming that the knapsack problem is solved by

an algorithm with approximation ratio α ∈ [1,+∞). Thus,

our distributed algorithm has an approximation ratio of 2

(or 3), when the algorithm used for knapsack is optimal (or

2-approximate). Unlike other approximation algorithms of

GAP, our auction-based new algorithm is designed specifi-

cally for distributed multi-robot systems with limited range

communication. Furthermore, our algorithm can achieve a

similar approximation ratio with a competitive running time.

Our proof also presents a new perspective showing that best-

response assignment update rule of individual robots would

lead to an assignment at equilibrium with guaranteed ap-

proximation ratio. We first present our auction-based iterative

algorithm for MR-GAP assuming that the robots have access

to a shared memory (or there is a centralized auctioneer).
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Each robot obtains the information of highest bid for each

task among all robots from the shared memory, and then uses

a knapsack algorithm as a subroutine to iteratively maximize

its own objective (using a modified payoff function based on

an auxiliary variable called price of a task). The assignment

update rule of our iterative algorithm can be viewed as

(approximate)1 best response of each robot to the temporary

assignment of other robots at that iteration. We prove that

our algorithm would eventually converge to an assignment

at (approximate) equilibrium with an approximation ratio of

1 + α . We also make our algorithm totally distributed by

combining it with a message passing mechanism to remove

the requirement of a shared memory (at the cost of slower

convergence and more local communication), assuming the

robots’ communication network is connected. Finally, we

present simulation results to depict the performance of our

algorithm.

II. RELATED WORK

Task allocation is important in many applications of multi-

robot systems, e.g., multi-robot routing [1], multi-robot deci-

sion making [2], and other multi-robot coordination problems

(see [3], [4]). There are different variations of the multi-robot

assignment problem that have been studied in the literature

depending on the assumptions about the tasks and the robots

(see [5], [3], [6] for surveys), and there also exists multi-robot

task allocation systems (e.g., Traderbot [7], [8], Hoplites [9],

MURDOCH [10], ALLIANCE [11]) that build on different

algorithms. Here we consider a deterministic offline multi-

robot generalized assignment problem, and our objective is

to design distributed algorithms with provable performance

guarantee. Therefore, we will restrict our discussion to most

relevant literature with performance guarantee.

In the simplest version of the task allocation problem (also

known as the linear assignment problem), each robot can

perform at most one task and the robots are to be assigned

to tasks such that the overall payoff is maximized. The linear

assignment problem is essentially a maximum weighted

matching problem for bipartite graphs, which can be solved

in a centralized manner using the Hungarian algorithm [12],

[13], or a decentralized manner with shared memory using

auction algorithm [14], or a totally distributed way using

consensus-based auction algorithm [15], [4]. However all

of this work assume that the tasks are independent. Some

work has been done to address the constraints among tasks

in multi-robot task assignment. In [16], set precedence

constraints are introduced among tasks, where the tasks are

organized into disjoint groups such that each robot can be

assigned to at most one task from each group and there

is a bound on the number of tasks that a robot can do. A

generalization of the auction algorithm of [14] is presented in

[16] to achieve an almost optimal solution. [17] studied the

multi-robot task assignment with task deadline constraints,

which extends the problem in [16] in the sense that the

1Approximate best response and at approximate equilibrium will be
strictly defined in Definition 3 and 4.

task group can overlap, and each robot can be assigned

to multiple tasks in each group. The constrained linear

assignment problems in [16], [17] are solvable in polynomial

time whereas MR-GAP is NP-hard.

Generalized assignment problem (GAP) is an extension to

the linear assignment problem, which has been extensively

studied in both operation research [18], [19] and theoretical

computer science [20], [21], [22], [23]. However, most algo-

rithms are centralized in nature, i.e., a centralized controller

collects all parameter information and then computes the

whole assignment. This may not be suitable for situations

where distributed algorithm is required for multi-robot in-

field operation. A branch and bound algorithm was presented

in [18] to determine the bounds of optimal solution. A series

of 0/1 knapsack problem are solved so that the bound gets re-

fined iteratively. A branch-and-price algorithm was designed

in [19] that employs both column generation and branch-and-

bound to obtain optimal integer solutions. However, these

algorithms do not provide any approximation guarantee.

Some approximation algorithms exist for GAP, e.g., LP-

based 2-approximation algorithm in [20], [21]. A combinato-

rial local search with (2+ε)-approximation guarantee, and an

LP-based algorithm with ( e
e+1

+ε)-approximation guarantee

with polynomial running time are presented in [23]. A

(2+ε)-approximation algorithm with the same guarantee as

the combinatorial local search but a better running time is

given in [22]. The algorithm presented in [22] can be viewed

as the first round of our iterative algorithm where each robot

sequentially runs the algorithm for one iteration.

III. PROBLEM FORMULATION

Suppose that there are nr robots, R = {r1, . . . ,rnr}, and nt

tasks, T = {t1, . . . ,tnt}. Each robot, ri, has resource budget

Ni, and consumes resource wi j to complete task t j while

getting payoff ai j. Any robot can be assigned to any task,

and performing each task needs a single robot. The objective

is to assign tasks to robots so that the sum of the payoffs of

the robots is maximized subject to the resource constraints.

Let fi j take a value 1 if task t j is assigned to robot ri and 0

otherwise, where i∈ {1, . . . ,nr}, j ∈ {1, . . . ,nt}. We study the

maximization version of MR-GAP, which can be formulated

as an integer linear program (ILP):

max
{ fi j}

nr

∑
i=1

nt

∑
j=1

ai j fi j

s.t.
nr

∑
i=1

fi j ≤ 1, ∀ j = 1, . . . ,nt (1)

nt

∑
j=1

wi j fi j ≤ Ni, ∀i = 1, . . . ,nr (2)

fi j ∈ {0,1}, ∀i, j (3)

where (1) guarantees that each task is exclusively assigned to

at most one robot; (2) guarantees that the sum of consumed

resources for tasks assigned to each robot ri does not exceed

its budget Ni. When wi j = 1 and Ni = 1, the generalized

assignment problem becomes the linear assignment prob-

lem [13]. When wi j = w j and ai j = a j, i.e., wi j and ai j do not
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vary for different robots, the generalized assignment problem

becomes a multiple knapsack problem [24].

IV. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we introduce an iterative auction-based

algorithm for multi-robot generalized assignment problem.

We will first introduce a few key concepts such as robot’s

(approximate) best response and the assignment at (approxi-

mate) equilibrium. We also recall the definition of knapsack

problem. We will then present an iterative auction-based

algorithm with shared memory, where given current tem-

porary assignment of other robots, each robot bids for tasks

using the knapsack algorithm as a subroutine. We show the

connection of our algorithm to (approximate) best response

update rule, and prove that the algorithm would converge to

an assignment at (approximate) equilibrium with guaranteed

approximation ratio. Finally, we discuss the use of a message

passing mechanism to make our algorithm totally distributed.

A. Preliminary Concepts

Let Ji = { j| fi j = 1} denote the task set assigned to robot

ri and J = ∪i{Ji} be a task assignment solution for GAP.

Definition 1: Define an assignment transform function Gi

as a transformation from a given old assignment J′ to a new

assignment J, due to a new assignment component Ji for

robot ri: J = Gi(J
′,Ji) = (∪k 6=i{J′k \ Ji})∪{Ji}, i.e.,

Jk =

{

Ji if k = i

J′k \ Ji if k 6= i
We say Ji is a feasible assignment for robot ri if and only

if Ji satisfies ri’s budget constraint in (2), denoted as Ji ∼ (2);
and J is a feasible assignment, if and only if J satisfies all

constraints in (1) - (2), denoted as J ∼ (1)− (2).

Lemma 1: The assignment transform function Gi is a

valid transform, i.e., if both J′ and Ji are feasible assign-

ments, then J = Gi(J
′,Ji) is also feasible.

Proof: For any robot rk 6= ri, its newly assigned task set Jk =
J′k\Ji ⊂ J′k. Since J′k is feasible for rk, Jk must also be feasible,

i.e., the subset of previously assigned tasks must consume

less resource than the budget of rk. Besides, Jk ∩Ji = /0, so J

must exclusively assign tasks to at most one robot. Together

with the feasibility of Ji, we know that the new assignment

J ∼ (1)− (2), i.e., the transform function is valid. �

Denote F(J) = ∑i:Ji∈J ∑ j∈Ji
ai j as the total payoff of a

feasible assignment J; H(J′,Ji) = F(Gi(J
′,Ji))−F(Gi(J

′, /0))
as the total payoff increment due to a new assignment

component of robot ri from /0 to Ji, imposed on J′.

Definition 2: A new assignment component J∗i is robot

ri’s best response2 to an old assignment J′ if and only if

J∗i = argmax
Ji

H(J′,Ji)

which is the best unilateral assignment change of robot ri to

increase the total payoff from assigning nothing to ri.

2Note that ri’s best response might not always be unique for some given
old assignment J′. In such cases, we could use any one as the best response.

Definition 3: A new assignment component J∗i is robot

ri’s α-approximate best response to an old assignment J′

(α ∈ [1,+∞)), if and only if

αH(J′,J∗i ) ≥ max
Ji

H(J′,Ji)

Definition 4: An assignment J∗ is at equilibrium (or at

α-approximate equilibrium) if and only if any assignment

component J∗i ∈ J∗ is already robot ri’s best response (or

α-approximate best response) to J∗ itself, i.e.,

∀J∗i ∈ J∗ : J∗i = argmaxJi
H(J∗,Ji)

(or αH(J∗,J∗i ) ≥ maxJi
H(J∗,Ji))

Note that if we use (α-approximate) best response as the iter-

ative assignment update rule for each robot, any assignment

at (α-approximate) equilibrium would be a fixed point for

such update rule. There might be many different assignments

at (α-approximate) equilibrium depending on the parameters

of problem instances.

Since we use algorithms for 0/1 knapsack problem as

a subroutine in our iterative algorithm later, we recall the

definition of 0/1 knapsack problem below.

Definition 5: [0/1 Knapsack Problem]: Consider n items,

{x1, . . . ,xn}, and a bag to contain these items. Each xi has a

value vi and weight wi. The maximum weight that we can

carry in the bag is W . Assume that all values and weights

are nonnegative. The objective is to determine the items of

maximum value such that the total weight is less than or

equal to W .

max
{yi∈{0,1}}

n

∑
i=1

viyi s.t.
n

∑
i=1

wiyi ≤W.

where yi = 1 if item xi is in the bag, otherwise yi = 0.

The knapsack optimization problem is NP-hard. There ex-

ist a pseudo-polynomial time algorithm using dynamical

programming and a fully polynomial time approximation

scheme (FPTAS). The FPTAS uses the pseudo-polynomial

algorithm as a subroutine, and can approximate the optimal

solution to any specified degree in polynomial time [24].

B. Auction-based Decentralized Algorithm Design

We want to match nr robots and nt tasks with constraints

(1)-(3) through a market auction mechanism, where each

robot is an economic agent acting in its own best interest

to bid for tasks. Each robot ri wants to be assigned to

its favorite tasks (with highest payoffs) while satisfying its

budget constraints in (2). The different interest of robots will

probably cause conflicts in assignment that violate the con-

straints in (1). This can be resolved by introducing auxiliary

variables called task price, and making robots bid for tasks

with highest values (defined as payoffs minus price) instead

of highest payoffs, through an iterative auction mechanism.

At iteration τ , let the price for task t j be p j(τ). The value

of task t j to robot ri is vi j(τ) = ai j − p j(τ) instead of just ai j.

Robot ri bids for tasks which satisfy its budget constraints

and have highest values to itself. Formally, in iteration τ ,

robot ri computes its new bids by solving the following 0/1

4767



knapsack problem:

max
{ fi j∈{0,1}}

nt

∑
j=1

vi j(τ) fi j s.t.
nt

∑
j=1

wi j fi j ≤ Ni. (4)

Let Ji be the task set obtained by robot ri by solving

the problem (4) using an α-approximation algorithm for the

knapsack problem. Robot ri would then bid for each task

t j, j ∈ Ji, with new price ai j, which would guarantee ri to

win the bids since vi j(τ) = ai j − p j(τ) > 0. We assume that

there exists a shared memory (or auctioneer) for all robots to

access the current task price, which is the current highest bid

from all robots. The shared memory is also used to guarantee

that at any time, at most one robot can access the task price

and provide new bids for tasks. After winning the bids and

assigned to tasks in the iteration, the robot would then set the

new task price as the winning bid, which is the highest bid for

the task among all robots till then. Thus the iterative bidding

from robots leads to the evolution of robot-task assignment

as well as task price p j(τ), which can gradually resolve the

interest conflicts among robots. 3

Based on the idea described above, we design a new

auction-based decentralized algorithm for the generalized

assignment problem. In the decentralized algorithm, there is

no centralized controller to make assignment decisions for

robots. Instead each robot are making assignment decision

by itself. For each robot ri, a single bidding iteration τ of

our auction-based algorithm is described in Algorithm 1.

Each robot could implement the iterative bidding procedure

either synchronously or asynchronously. However, the shared

memory must guarantee that at any time, at most one robot

can access the task price and provide new bids for tasks. For

the sake of ease of discussion, below we assume that in our

auction-based algorithm, all robots run copies of Algorithm 1

sequentially. The algorithm terminates after the task price

information does not change after all robots bid for one

iteration.

As shown in Algorithm 1 (Line 1), the knowledge / infor-

mation available to each robot ri during its bidding iteration

τ includes two parts: (a) locally maintained information:

{ai j|∀ j} and {wi j|∀ j}, the payoffs of tasks to ri itself and

their consumed resource for ri, J′i and {b′j| j ∈ J′i}, indices

of tasks assigned to ri during its previous bidding iteration

and ri’s bidding price for those tasks at that iteration; (b)

information accessed from the shared memory: {p j(τ)|∀ j},

the task price maintained and updated in the shared memory

during its bidding iteration τ .

First, robot ri goes through tasks in J′i , which is the task set

assigned to ri during its previous bidding iteration. ri com-

pares the current price of those tasks with the corresponding

previous bids b′j from ri: if b′j < p j(τ), it means that another

robot must have bid higher price for t j, and thus t j has been

3Note that p j(τ) is an auxiliary variable, which is used to resolve the
conflict that multiple robots share the same interest of being assigned to
the same tasks. When the algorithm terminates, the quality of assignment
solution does not depend on p j(τ), i.e., the output assignment solution is
evaluated in terms of original payoffs ai j instead of the net value vi j(τ) =
ai j − p j(τ).

reassigned to the robot with that bid; otherwise, b′j = p j(τ),
task t j is still assigned to robot ri since b′j is still the highest

bid. In the latter case, ri resets the task price to be zero so

that the new value of the task to ri is still ai j. (Line 2 to 8)

Second, given the current task price {p j(τ)|∀ j}, robot ri

selects a task set with task indices J∗i using any knapsack

algorithm with performance guarantee to maximize the total

assignment values ∑ j∈J∗i
vi j(τ) (Line 9 to 11).

Third, robot ri is assigned to task set J∗i , and updates the

task price (from Line 12 to 15) so that ∀ j ∈ J∗i , p j(τ +1) =
ai j. The bidding price for each task is ai j bigger than its

previous price p j(τ) (otherwise vi j(τ) = ai j − p j(τ) ≤ 0, t j

would not be selected), so the tasks receiving ri’s bids must

be assigned to ri at the end of the iteration.

Algorithm 1 Auction Iteration τ For Robot ri

1: Input: ai j, p j(τ), ∀ j, J′i , {b′j| j ∈ J′i}// J′i : indices of ri’s

previously assigned tasks

Output: p j(τ + 1), J∗i // J∗i : ri’s newly assigned tasks

2: // Reset the price of still assigned tasks from previous

iteration to zero

3: for each task t j: j ∈ J′i do

4: if p j(τ) == b′j then

5: p j(τ) = 0;

6: p j(τ + 1) = 0;

7: end if

8: end for

9: // Collect information for new bids

10: Denote vi j(τ) = ai j − p j(τ) // value of t j to ri

11: J∗i = knapsack(vi j(τ),wi j,Ni);
12: // Start new bids and update price information

13: Bid with price b j for task t j : j ∈ J∗i :

14: b j = ai j, p j(τ + 1) = b j;

15: for task t j : j 6∈ J∗i , p j(τ + 1) = p j(τ)

C. Performance Analysis

In this section, first, we show the connection of Algo-

rithm 1 to robot’s (approximate) best response update rule;

second, we prove that the algorithm would converge to an

assignment at (approximate) equilibrium; third, we prove that

the assignment at (α-approximate) equilibrium is guaranteed

to be a solution for GAP with approximation ratio 1 + α .

Below we assume that the subroutine knapsack algorithm in

Algorithm 1 has α ∈ [1,+∞) approximation ratio4.

Lemma 2: When robot ri runs Algorithm 1 at iteration

τ , its newly assigned task set J∗i is α − approximate best

response to the assignment at the beginning of iteration τ .

Proof: Suppose the assignment at the beginning of iteration

τ is J′. ∀ a new feasible assignment Ji for robot ri, the total

value increment due to Ji would be

H(J′,Ji) = F(Gi(J
′,Ji))−F(Gi(J

′, /0))

= ∑
k 6=i

( ∑
j∈J′

k

ak j − ∑
j∈Ji∩J′

k

ak j)+ ∑
j∈Ji

ai j −F(Gi(J
′, /0))

4Note that there exists pseudo-polynomial time algorithm to achieve
optimal solution for knapsack problem. In that case, α = 1
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= ∑
k 6=i

∑
j∈J′

k

ak j + ∑
j∈Ji

(ai j − p j(τ))−F(Gi(J
′, /0))

= ∑
j∈Ji

(ai j − p j(τ))

which is the objective of knapsack problem, solved by ri

as a subroutine in Algorithm 1. Since we assume that the

knapsack algorithm leads to α−approximate solution,

α ∑
j∈J∗i

(ai j − p j(τ)) ≥ max
Ji∼(2)

∑
j∈Ji

(ai j − p j(τ)) ⇒

αH(J′,J∗i ) ≥ max
Ji∼(2)

H(J′,Ji)

According to Definition 3, we get that J∗i is α−approximate

best response to J′ at the beginning of iteration τ . �

Theorem 1: Algorithm 1 for all robots will terminate in a

finite number of iterations, and converges to an assignment

at α −approximate equilibrium.

Proof: When α = 1, according to Lemma 2, it is easy to

see that the new assignment J∗i for robot ri would make

the total assignment payoff non-decreasing. In the case that

α > 1, we could easily incorporate a simple comparison in

the knapsack routine so that the output would be the better

of J′i and J∗i , and thus the new total assignment payoff is still

non-decreasing with each iteration of new bids. Besides, the

total payoff is bounded. So Algorithm 1 for all robots will

terminate in a finite number of iterations.

When Algorithm 1 for all robots terminates, according to

Lemma 2 and Definition 4, it must converge to an assignment

at α −approximate equilibrium. �

When α = 1, Algorithm 1 is actually ri’s best response,

and it would converge to an assignment at equilibrium.

According to the proof above, the convergence time of

Algorithm 1 would be O(nr · f (nt) ·C) where f (nt) is the

running time for knapsack algorithm and C is a constant

due to the number of iterations, depending on the payoff

parameters(i.e., the maximum total payoff divided by the

minimum payoff increment).

Theorem 2: An assignment at α − approximate equilib-

rium is a solution for GAP with approximation ratio 1 + α .

Proof: Suppose the assignment at α − approximate equi-

librium is J∗ = ∪i{J∗i }, while the optimal assignment is

Jopt = ∪i{J
opt
i }. Below we want to compare the total payoff

of each robot ri in two different assignment J∗i and J
opt
i .

Since J∗i must be α-approximate best response to J∗,

α ∑
j∈J∗i

(ai j − p j) ≥ ∑
j∈J

opt
i

(ai j − p j) (5)

There are two cases depending on whether J̄i = J
opt
i ∩

(∪k 6=iJ
∗
k ) = /0 or not:

(a) If J̄i = /0: According to Algorithm 1, ∀ j 6∈ ∪iJ
∗
i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈J

opt
i

p j (6)

Combining Equation (5) and (6) above, we have that

α ∑
j∈J∗i

ai j ≥ ∑
j∈J

opt
i

ai j (7)

TABLE I

PAYOFF PARAMETERS ai j AND CONSUMED RESOURCE PARAMETERS wi j

IN EXAMPLE 1

ai j t1 t2
r1 1 α + ε

r2 1+αε ε

wi j t1 t2
r1 1 1

r2 1 1

If ∀i ∈ {1, . . . ,nr}, J̄i = /0, we have

α ∑
i

∑
j∈J∗i

ai j ≥ ∑
i

∑
j∈J

opt
i

ai j (8)

So J∗ is a solution with approximation ratio α .

(b) If J̄i 6= /0: again since ∀ j 6∈ ∪iJ
∗
i , p j = 0,

∑
j∈J∗i

p j ≥ ∑
j∈J

opt
i \J̄i

p j = ∑
j∈J

opt
i

p j − ∑
j∈J̄i

p j (9)

Combining Equation (9) and (5), we have that

α ∑
j∈J∗i

ai j + ∑
j∈J̄i

p j ≥ ∑
j∈J

opt
i

ai j (10)

If ∀i ∈ {1, . . . ,nr}, J̄i 6= /0, we have

α ∑
i

∑
j∈J∗i

ai j +∑
i

∑
j∈J̄i

p j ≥ ∑
i

∑
j∈J

opt
i

ai j (11)

Since ∀i1, i2, J
opt
i1

∩ J
opt
i2

= /0 ⇒ J̄i1 ∩ J̄i2 = /0. So

∑i ∑ j∈J̄i
p j ≤ ∑i ∑ j∈J∗i

p j = ∑i ∑ j∈J∗i
ai j

Together with Equation (11),

(α + 1)∑
i

∑
j∈J∗i

ai j ≥ ∑
i

∑
j∈J

opt
i

ai j (12)

So J∗ is a solution with approximation ratio 1 + α .

Since ∀i, either J̄i = /0 or J̄i 6= /0, it must belong to one of the

two cases above. So it is guaranteed that the assignment J

at α −approximate equilibrium is a solution for GAP with

approximation ratio max(α,1 + α) = 1 + α .�

According to Theorem 1 and 2, we prove that Algorithm 1

would eventually converge to a solution for GAP with

approximation ratio 1+α . The following example shows that

the approximation ratio of assignments at α −approximate

equilibrium is actually tight.

Example 1: Consider two robots with budget N1 = N2 = 1,

and two tasks, with parameters listed in Table I, where ε is

an arbitrarily small constant. The assignment {J1 = {t1},J2 =
{t2}} is an assignment at α −approximate equilibrium:

α(F(Gi1(J,J1))−F(Gi1(J, /0))) = α((1 + ε)− ε)

≥ (α + ε)− ε = F(Gi1(J,J
∗
1 = {t2}))−F(Gi1(J, /0));

α(F(Gi2(J,J2))−F(Gi2(J, /0))) = α((1 + ε)−1)

≥ (1 + αε)−1 = F(Gi2(J,J
∗
2 = {t1}))−F(Gi2(J, /0))

However, it is an (1+α) approximate solution to the optimal

assignment {J∗1 = {t2},J
∗
2 = {t1}}:

(1+α)F(J)= (1+α)(1+ε)= ((α +ε)+(1+αε))= F(J∗)
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D. Distributed Implementation

Algorithm 1 is decentralized in the sense that every

robot can make assignment decisions by itself, based on

an iteratively updated common information of task price

from the shared memory. In this section, we discuss how to

remove the requirement of the existence of shared memory to

make the algorithm totally distributed assuming the robots’

communication network is connected.

Suppose that there exists a robot communication network

G = (V,E), where V = R consists of robot nodes, and E =
{(i1, i2)} consists of connection edges between robots, which

can directly communicate. We assume that G is connected.

In a distributed implementation of Algorithm 1, no shared

memory exists to provide task price p j(τ) during each itera-

tion τ . Each robot ri needs to locally maintain the task price

pi
j(τ), and update them based on the local communication

with its direct neighbor in Ni = {i′|(i′, i) ∈ E}.

Below, we show that a distributed message passing mech-

anism could be used for robot to maintain and update the

task price information in a distributed way. During each

iteration τ , robot ri runs Algorithm 1, where p j(τ) would

become the local maintained task price pi
j(τ), to get the new

assignment Ji and new task price pi
j(τ + 1). The message

passing mechanism is described as follows.

First, ri would send out the message in the follow-

ing format: Mτ+1
i = (P,ri,V,τ + 1), where P = (pi

1(τ +
1), . . . , pi

nt
(τ + 1)) is the new price vector for all tasks

maintained in ri, ri is the identifier of the robot who sends

out the message, V = ∑ j∈Ji
vi j(τ) is the output total value of

the knapsack subroutine algorithm in Algorithm 1, and τ +1

is time stamp of the message, i.e., the number of iteration

when the message would be used to update the task price. If

Ji = J′i , i.e., the robots’ bidding tasks are the same as before,

V is set to be 0 in P.

Second, when ri receives a message Mτ+1
i′

from one of

its neighbor i0, it would first send out the message to its

neighbors except i0. Then ri would compare Mτ+1
i′

(V ) with

its locally maintained Vmax(τ + 1), which is the maximum

value of all messages with time stamp τ + 1 till then. If

Mτ+1
i′

(V ) > Vmax(τ + 1), ri would store the message with

higher value and reset Vmax(τ + 1) = Mτ+1
i′

(V ), and get rid

of previous message; if Mτ+1
i′

(V ) <Vmax(τ +1), ri would get

rid of the message Mτ+1
i′

. To break the tie when Mτ+1
i′

(V ) =
Vmax(τ +1), robots could use a consistent rule, e.g., keep the

message with the smaller robot identifier.

Third, ri would keep track of the number of robot iden-

tifiers nID(τ + 1) from all messages. When nID(τ + 1) = nr,

i.e., ri has received all robots’ messages for iteration τ +1, ri

would start to update its locally maintained task price from

the only stored message (e.g., Mτ+1
i′

) with the highest value:

pi
j(τ + 1) = Mτ+1

i′
(P( j)),∀ j, and then start a new bidding

procedure for iteration τ + 1.

From the above message passing mechanism, we know

that during each iteration τ , each robot would start a new bid

and send out a new message. Since the robot communication

network G is connected, all messages would reach all robots.

However, only the message with highest value from r∗(τ)
would be stored and used to update task price for τ +1, which

would be consistent among all robots. It is equivalent to say

that during each iteration τ , only one robot r∗(τ) starts a new

bid, and updates task price, which would be consistently and

locally stored by all robots. Thus we can see that although the

shared memory is removed, its two following functions are

still maintained in a distributed way: (a) during any iteration,

at most one robot can start a new bid and update task price;

(b) task price are consistently maintained among all robots.

So the conclusions in Section IV-C are valid in the distributed

implementation. However, since the bidding message needs

to be propagated in the network G, during each iteration,

the distributed algorithm might be delayed by the product of

one-hop message passing time and ∆ (∆ ≤ nr), which is the

diameter of G.

V. SIMULATION RESULTS

In this section, we present some preliminary simulation

results to check how our algorithm’s solution quality changes

with iterations till convergence. Consider nr = 20 robots,

where each robot ri has budget Ni = 10, and nt = 40

tasks. In our simulations, we first assume each robot can

communicate with all other robots, i.e., ∆ = 1. The knapsack

algorithm used in the simulation is the optimal dynamic

programming algorithm, so α = 1 and the approximation

ratio of Algorithm 1 is 2.

Figure 1 and Figure 2 show that in two different simulation

samples how the solution performance changes with bidding

iterations of robots. In both figures, we randomly generate

100 samples with different ai j and wi j, and show the mean

and standard deviation of our solution performance. In all the

100 generated samples, our algorithm converges within 200

iterations. In Figure 1, for each robot ri and task t j, payoffs

ai j are drawn from a uniform distribution in (0,9), and the

consumed resource wi j from [1,6]. In Figure 2, for each robot

ri and task t j, we set the consumed resource wi j = 5,∀i, j,

and ai j are randomly generated according to the distributions

in Table II, where U(xmin,xmax) represents a uniform distri-

bution from xmin to xmax. From Figure 2 and Figure 1, we can

see that although the total assignment payoffs get improved

until convergence in both cases, the improvement patterns

before convergence are very different in the two cases: in

Figure 1, the assignment performance after all robots run one

iteration is very close to the performance of assignment at

convergence, while Figure 2 shows that in some situations,

our algorithm could achieve much better solution than the

algorithm where all robots run one iteration. The reason is

that when all robots just run one iteration, robots bidding

first might lose their assigned tasks to robots bidding later,

and do not have chance to be assigned to other tasks, which

could be compensated in our iterative algorithm.

VI. SUMMARY

We studied the multi-robot generalized assignment prob-

lem, where the objective is to maximize the total assignment

payoffs while respecting robots’ budget constraints. We
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TABLE II

PAYOFF PARAMETERS ai j DISTRIBUTIONS IN FIGURE 2

ai j t1 - t20 t21 - t40

r1 - r10 U(8,9) U(6,7)

r11 - r20 U(10,11) U(0,1)
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Fig. 1. Statistics of total assignment payoffs by our algorithm as a function
of iterations, where ai j and wi j are randomly generated in 100 samples.

presented a distributed auction-based algorithm, where each

robot iteratively uses a knapsack algorithm as subroutine to

choose its assigned tasks and maximize the sum of each

assigned task value (defined as a task’s payoff minus its

price). Suppose the knapsack subroutine algorithm has an

approximation ratio α ∈ [1,+∞). We show that the iterative

bidding procedure of each robot is actually an α-approximate

best response assignment update rule to the current tempo-

rary assignment of other robots. We proved that such bidding

procedure would eventually converge to an assignment at α-

approximate equilibrium, which is guaranteed to be a solu-

tion to MR-GAP with an approximation ratio of 1 + α . We

also presented simulation results illustrating our algorithm.
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