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Abstract— We propose a method for tracking the bound-

ary of an object at frame rates beyond 1 kHz, based on

a novel contour propagation mechanism operating in polar

image space. The work draws inspiration from well established

methodologies in object tracking and segmentation. The main

contribution is how the polar representation is exploited for

tracking, including enabling parallelization for sub millisecond

performance. The presented results show the feasibility of the

method in a wide range of settings.

I. INTRODUCTION

For a robot, object tracking is an essential capability,
required for a wide range of tasks such as following the
face of a human during interaction, or visual servoing for
manipulation. One requirement of such methods is naturally
that it needs to run fast enough for the robot to react.
Algorithms referred to as real-time typically run in the order
of tens of frames per second (fps), e.g. [1], framerates that
humans perceive as smooth, and are often developed around
the frame rate of standard video cameras.

On the contrary we believe that the capabilities of robots
should exceed those of humans. High-speed cameras that
operate at frame hundreds or thousands fps are becoming
more affordable. This enables a whole new range of abilities
that are impossible to humans and robots operating at lower
frame rates. Two examples are accurately predicting the tra-
jectory of a ball based on its rotation, or as we demonstrated
in [2], predict the evolution of a folding cloth.

During the past decade some works on tracking algorithms
operating at these frame rates have been presented. In [3]
the authors tracked objects with a periodic motion pattern,
such as a bird or a fan, at 1000 fps. By using a static
camera and observing the frequency in intensity change for
every pixel, such patterns could be observed and filtered
from the background. In [4] a paramecium was tracked in
a microscope at 500 fps. In this work the authors made
strong assumptions about the characteristics of the object to
improve tracking. The common point in both these works
is that strong assumptions about the tracked objects are
exploited to improve performance. In this work we instead
want the method to be capable of dealing with any object.
In [5] multiple objects were tracked at 2000 fps using
color histograms, and matching these between frames. For
successful tracking, the histogram of each object needs to
be processed in advance, which assumes knowledge of the
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(a) Original and polar images respectively

(b) The Polar Hull

Fig. 1. The top row shows an image with its polar counterpart. The pixels
in the polar image correspond to angle and distance from a given point in
the original image. The bottom row shows the concept of the polar hull
given a point. The bear is segregated from the image using its boundary.
The polar hull will be identical to the boundary as long as the inside of the
boundary can be seen from the selected point. If not, illustrated by thin blue
lines in the figure, parts of the background will be included in the hull.2

object. Differently, in this work we make very few prior
assumptions about the tracked object.

The demand for fast and robust tracking methods was
emphasized in the work of Okumura et al . [6] In this work
the authors presented a pan-tilt camera system that performs
saccades at super human rates. This setup enables the robot
to, differently to human saccades, keep track of the object
during the saccade as well. It does this by capturing and
processing video at a framerate of 1000 Hz and control the
gaze using the mirrors based on visual input accordingly.
To demonstrate the camera system the authors used color
thresholding to track a ball [6]. While this worked well in
the controlled setting of the paper, it will likely fail in other
more cluttered environments, so there is a need for more
robust algorithms that can cope with more difficult scenarios,
as well as keep up with the framerate of the camera.

The high-speed tracking task puts high requirements on
the algorithm in terms of both throughput and latency, so
tradeoffs in terms of accuracy might naturally be necessary.
On the other hand, knowing that images are captured with
small time intervals makes it possible to exploit the fact
that changes in the scene between images will be much
smaller than for lower framerates. In [7] the authors explored
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Fig. 2. The figure gives an example of the performance of the proposed method. The green contour is the initial guess which is taken from the previous
frame and the red contour indicates the final result.4

tracking using a Markov Random Field (MRF) framework,
This method searches for the best solution in a global sense
by taking all pixels into account at every frame. In practice
this means that the final solution is robust against differences
in initialization. Exploiting assumptions about small changes
between frames makes a local method equally tractable given
that the contours of the object in the previous frame was
accurately captured.

In this paper we propose a method for tracking the bound-
ary of an object operating at framerates above 1 kHz. It draws
inspiration from popular segmentation and tracking methods
that propagate a contour using level-sets e.g. [8], [9], as well
as the recent works in fixation-based segmentation [10]. A
key concept that is introduced is the polar hull, which is
illustrated in Fig. 1. This is a representation of the boundary
of an object that makes a small tradeoff between accuracy
and processing speed. For simple objects the polar hull will
be identical to the boundary of the object, while for more
complex objects parts of the background will be included in
the hull. This is however not a problem for many commonly
occurring objects. An example of the method can be seen in
Fig. 2.

The paper is organized as follows: In the next section con-
tributions and related work are presented. Sec. III describes
the active contour model and Sec. IV describes the proposed
approach. Sec. V presents some results of the method and
finally in Sec. VI the paper is summarized.

II. RELATED WORK AND CONTRIBUTIONS

Object tracking is a broad research field and can be
arranged in different branches. Contrary to work assuming
rigid [11] or known objects [12] we in this work focus on
unknown deformable objects. Here tracking can further be
divided into work just tracking the position or bounding
box of an object and work tracking the actual contours
of objects. Only tracking an object’s position can be done
at high frame rates using e.g. Mean Shift tracking [13].
This enables applications such as following the position
of an object. However, as we exemplified in [2], tracking
an object’s boundary gives birth to a whole new range of
applications. In this work we therefore focus on tracking of
object boundaries.

A popular methodology for segmentation and boundary
tracking is active contours. Here the problem is posed as the
one of solving a partial differential equation (PDE) based on

4Video by ChuWng Vo

image and contour characteristics:
@C(s, t)

@t
= F ~N. (1)

Here C 2 R2 is the contour parameterized over a scalar
s 2 [0, 1], and time t. The equation says that the motion of
the contour C over time is determined by a function over
the image in the normal direction of the contour N . If the
motion is zero everywhere, the contour has converged. One
popular way of solving these PDE:s is through level-sets.
With this formulation the contour is propagated by implicitly
defining it as the zero-level on a 2D function � over the
image domain, and updating � instead [14].

According to Eq. 1 the contour motion always occurs in
its normal direction. This work deviate from this point as
the motion occur in the radial direction with respect to the
selected point of the polar transformation. While this might
be limiting in some scenarios, the benefit is that all motion
can be done in parallel.

One characteristic of the level-set formulation is that it is
non-parametric and furthermore provides the ability easily
change topology, which is a desired feature in e.g. medical
imaging. The drawback however is that the propagation
speed must be kept low for the optimization to find the
true solution, resulting in slow convergence and thus long
processing time. In [15] the authors introduced a way of
solving the PDE using level-sets by updating � through
direct propagation of the zero-level. This resulted in much
improved convergence rate. This work draws from this idea
and updates the contour directly. Differently however, the
polar representation makes it possible to parallelize this
propagation (see Sec. IV).

Contrary to the level-set formulation, the proposed method
does not have the ability to change topology. This means
that e.g. the space between the legs of the bear in Fig. 1 will
be included in the segment, and that if there would have
been two bears apart from each other, both might have been
considered to be the same segment. For many objects this
will however not be an issue. Rather, in most cases we are
interested in tracking objects as whole objects, meaning that
changes in topology is undesirable.

In [10] the authors performed segmentation by first con-
verting images to polar space. One motivation was that the
performance of the method will then be independent of object
size. They formulated the problem as a minimization problem
over an MRF and solved with graph-cuts [16]. Apart from
using a global solver, the computational speed of the method
was heavily impacted by the usage of boundary detection
[17], making the segmentation run in the order of seconds
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or tens of seconds. We recognize the benefits of using polar
representation, but formulate the problem of tracking the
boundary in a way that allows for orders of magnitude faster
processing.

In [7] the authors use belief propagation optimized for
the GPU to solve the MRF, providing real-time performance.
This however demonstrates the limitations of a global method
when looking for performance in the order of magnitudes
faster. Therefore we here utilize a local method.

In the class of segmentation and tracking methods that
use level-sets, objects need to be defined based on some
criteria. Two popular ways are to model them using their
boundary against the background [18], or as done in region
based methods, model their color [8]. The force F in Eq. 1
is then determined by how well the current contour fits the
respective models. We adopt the region based methodology
and exemplify the performance of the proposed method
compared to a traditional solver.

The main contributions of this work are:
• A tracker for non-rigid objects using contour propaga-

tion in polar image space. The polar space formula-
tion gives advantage in terms of naturally restricting
the tracking to one object, the center of the objects
will be given directly by the polar representation, and
parallelizability.

• An efficient parallel implementation of the algorithm
enabling tracking at > 1 kHz frame rates.

III. ACTIVE CONTOURS

As described in the previous sections, contour propagation
using active contours is a popular way of segmenting and
tracking objects in an image or video. In this section we
give an introduction to the idea of contour propagation and
performing this using level-set methods.

In level-set methods the contour C is defined implicitly
through the zero level on a function

� : (x, y, t)! �. (2)

which in turn is defined on the image domain. In other words:

C = {(x0, y0)|�(x0, y0, t) = 0}. (3)

In Eq. 1 the evolution of a parameterized curve was
expressed. Using the implicit notation, given that ~N =

r�/|r�|, the propagation of the curve can be expressed
as [19]:

@�

@t
= F |r�|, �(x, y, 0) = �

0

(x, y). (4)

Thus there is a simple relationship between the parameterized
and level-set formulations.

It is common to formulate the right side of Eq. 4, i.e. the
function influencing the contour motion, in terms of external
and internal energies:

E(�) = E
ext

(�) + �E
int

(�). (5)

The internal force affects the contour based on its length, and
the external force affects the contour based on properties

Algorithm 1:

input: Image sequence S, fixation point p
0

= (x
0

, y
0

)

and circle radius r
0

(A) C
0

 createContour(p
0

, r
0

)

(B) I 0
0

 rgb2hsv(I
0

), ✓
0

 createModels(I 0
0

, C
0

)

for each I
t

2 S do

(1) I 0
t

 rgb2hsv(I
t

)

(2) Ip
t

 polarImage(I 0
t

, p
t�1

)

(3) C
t

 propagateContour(Ip
t

, ✓
t�1

, C
t�1

)

(4) ✓
t

 updateModels(✓
t�1

, Ip
t

, C
t

)

(5) p
t

 updateMean(C
t

, p
t�1

)

end

of the image. The former will typically have a smoothing
effect on the curve, preventing it from overfitting to image
data, while the latter will make sure that the contour moves
towards actual boundaries in the image.

Propagating C means searching for the minimum energy
E through gradient descent:

@�

@t
=

@E

@�
. (6)

In the discrete domain this can be formulated accordingly:

�

t+1 � �

t

�t
=

@E

@�
) (7)

�

t+1

= �

t

+�t
@E

@�
. (8)

Thus by iteratively updating � the contour implicitly defined
by the zero level will converge towards some minima.

IV. NOVEL FORMULATION

Here the proposed approach is introduced in detail. First
we give a brief introduction to the different steps of the
algorithm. Then describe how the object and background
are modeled, and then the curve propagation using level-
sets in the context of the model. After that we introduce
the proposed approach and how it relates to the methods
described above. Finally we provide some implementation
details.

A. Algorithm Summary

Alg. 1 shows the different steps of the algorithm. It is
initialized in our case by manually marking a point in the
image and deciding the size of the circle to be used as initial
contour (A). Initial models are then created based on this
contour (B) (Sec. IV-B). After initialization, each image in
the sequence is processed as follows: The image is converted
to HSV space which generally gives better performance (1).
Then this image is transferred to polar space (2) (Sec. IV-
D.1). Using the polar image, current models and contour,
the contour is propagated until convergence (3) (Sec. IV-
D.2), and finally models and mean are updated (4),(5) (Sec.
IV-D.3).
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Fig. 3. The left figure illustrates the model concept as well as the concept
for curve propagation. In the scene there is a gray object on a white
background, modeled with histograms ✓

o

and ✓
b

respectively. The current
estimate of the boundary is identified with a blue contour. Outside the gray
object the probability of a measurement m belonging to the background is
greater than the foreground, and vice versa for the inside of the gray object.
Light blue areas indicate parts on the object that for the current contour
estimate reside in the background and thus fit poorly to the model. The light
red areas indicate the same parts in the background currently estimated to
be on the object. Together these parts will add more to the total energy than
if they would be estimated to belong to the other region. The right figure
shows this case with the optimal contour in which the energy is minimized.

B. Modeling and Initialization
In order to know in which direction to propagate the

curve towards the object boundary, the object has to be
modeled according to some criteria. There exists a large
number of variations on Eq. 4 that take into account different
strategies for both internal and external energies. One way
is to model the boundary directly through discontinuities
in image intensity [18]. The underlying idea is that the
intensity of an object close to its boundary is different from
the background around that boundary and therefore a good
indicator of the object. Accurate boundaries are however
inherently difficult to identify since e.g. internal texture of
the object will generate discontinuities as well which will
confuse the method.

The approach taken here is instead to represent the object
and background using the color in respective regions, rather
than the boundary separating them, similarly to what was
proposed in [8]. This strategy will ensure that the regions
inside and outside the contour are internally similar, but
different between the regions. Given an image measurement
m

i

at pixel i = (x
i

, y
i

) the probability of it belonging to
either object o or background b is:

p(m
i

2 ⌦

k

) = ✓
k

(m), k 2 {o, b}. (9)

The functions ✓
k

represents the color distribution over the
image regions ⌦

k

with a histogram.
The energy that we want to minimize can then be formu-

lated as

E
C

(C) =�
Z

i2⌦

o

log p(m
i

|✓
o

)d⌦ (10)

�
Z

i2⌦

b

log p(m
i

|✓
b

)d⌦+ �S
C

(C).

S
C

is a function describing the length of C. Short length
implies low energy, which will force the contour to not
overfit to the data. Fig. 3 shows the intuition behind the two
first terms.

Before tracking can begin, the models need to be initial-
ized. This could be done automatically by using attention

Fig. 4. The left figure shows the original image from Fig. 3, and the right
the corresponding polar image generated from the indicated center. In both
images the 90� and 225� lines from this center are displayed. Straight lines
from the center in the original images correspond to lines along rows in the
polar image.

mechanisms [20]. In this work we manually select a fixation
point, i.e. a point on the object that will be the base of
the polar transform, and create a circle around that fixation
point. Object and background models are created from pixels
lying inside or outside of the circle respectively. The model
creation and updates can be done directly in polar space by
adding to the histogram proportionally to the distance to the
fixation point.

C. Level-Set Formulation
Before detailing the proposed method in Sec. IV-D, we

describe how it can be done using level-set methods. In order
to minimize the energy in Eq. 10 the common approach is to
embed the contour in a function � over the image domain,
as described in Sec. III. In order to do this the variables
depending on the contour in Eq. 10 must be expressed using
�. The contour C was defined in Eq. 3, and the regions ⌦

o

and ⌦

b

are defined as:

⌦

o

= {(x, y)|�(x, y, t) > 0} (11)
⌦

b

= {(x, y)|�(x, y, t) < 0}. (12)

Thus the energy from Eq. 10 can be reformulated as:

E(�) =�
Z

i2⌦

[ log p(m
i

|✓
o

)H(�

i

) + (13)

log p(m
i

|✓
b

)(1�H(�

i

)) ]d⌦

+ �S(�).

Here �

i

is the value of � at pixel i and H is the Heaviside
function:

H(x) =

⇢
1 if x > 0

0 otherwise. (14)

The contour length can be expressed using � as [8]:

S
C

(C) = S(�) =

Z

⌦

�
0

(�

i

)|r�
i

|d⌦. (15)

�
0

is the dirac delta function, which is the derivative of H:

�
0

(�) =

@H(�)

@�
. (16)

Eq. 13 is minimized using gradient descent, so we seek
the Gâteaux derivative of the functional E(�):

@E(�)

@�
= �

0

(�) [� log p(m
i

|✓
o

) + log p(m
i

|✓
b

)

+�div
✓
r�
|r�|

◆�
. (17)
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Looking at Eq. 17 the first thing to observe is that � has
no change outside the curve since �

0

(x) = 0, x 6= 0. On the
contour the force will be a competition between how well
that point fits the object model compared to the background
model, and the length of the contour. If the point fits the
foreground better than the background this will generate an
outward force and vice versa. The last term is a measure
of curvature, which will act as a counter force whenever
the curvature is high, effectively reducing the length of the
contour.

Using H and �
0

as defined above would result in numer-
ically unstable solutions. Therefore approximations of these
are commonly used:

H
✏

(x) =
1

2

✓
1 +

2

⇡
arctan

⇣x
✏

⌘◆
(18)

�
e

(x) =
1

✏⇡(1 + (

x

✏

)

2

)

. (19)

In this way a portion around the border will be considered
during the updates. As pointed out in [21] this is also an
indicator of uncertainty of the location of the border. Using
these smooth versions the curve can be updated iteratively
by combining Eq. 8 and Eq. 17.

D. Propagation in Polar Space
Contrary to level-set methods we in this work we present

a method for propagating the curve without explicitly com-
puting �, but instead working directly on the contour defined
by � = 0. The takes advantage of the polar representation
of the image as described below.

1) Polar Representation: The method formulation relies
to a large extent on the polar transform of the image. This
transform is based on a fixation point (x

f

, y
f

) in the original
image. Each point (r,�) in the polar image corresponds to
coordinates

(x, y) = (x
f

+ r cos�, y
f

+ r sin�). (20)

in the original image. Each row in the polar image will thus
correspond to one ray from the fixation point with an angle
determined by the column. The number of columns in the
polar image will differ depending on where the fixation point
is selected, while the number of rows, B, is a parameter to
the method. Fig. 4 shows an example of the transform.

We define the object contour in this representation using
one contour point per row, which then is moved along that
row. This corresponds to a move in the radial direction in the
original image. This representation gives rise to the concept
of the polar hull. Since two contour points cannot lie on the
same radial line, there will be a discontinuity along these
lines whenever the outside of the boundary faces the fixation
point. In practice however, many objects will not present
these discontinuities, and for those who do, this effect will
be negligible.

2) Contour Propagation: In the active contour formu-
lation, propagation in the tangential direction can be seen
as a re-parameterization of the contour. Hence propagation
is done only in the negative or positive normal direction

Algorithm 2: Contour propagation
input : Ct

= {ct
i

} (the contour at time t),
measurements m, and models ✓

o

, ✓
b

output: Ct+1

= {ct+1

i

}
for each ct

i

2 Ct

do

f
o

 
P

j<c

t

i

r

o

(j) log p(m

i

|✓
b

)

P
j<c

t

i

r

o

(j) log p(m

i

|✓
o

)

f
b

 
P

j>c

t

i

r

b

(j) log p(m

i

|✓
o

)

P
j>c

t

i

r

b

(j) log p(m

i

|✓
b

)

if f
o

> 1 ^ f
b

< 1 then

ct+1

i

 ct
i

+ 1

else if f
o

< 1 ^ f
b

> 1 then

ct+1

i

 ct
i

� 1

else

ct+1

i

 ct
i

end

end

of the contour. As noted above, we propagate the contour
in the radial direction, which will often correspond to a
linear combination of normal and tangential direction in the
original image. Here, however, the tangential part cannot be
expressed through re-parameterization since the motion of
the contour is restricted.

From Eq. 17 and Eq. 19 we know that the sign of @E/@�
around � = 0 will effectively determine the direction of
curve propagation, i.e. whether the motion will be inward or
outward. We therefore propose instead to move the contour
one step inward or outward depending on the directions
computed from Eq. 17 in a surrounding of the contour.

We divide the propagation into two steps: One for external
and internal energy respectively. The first step will propagate
the contour according to the object and background models,
and the second step will smooth the contour. This is similar
to what was done in [15]. The first step is done according
to Alg. 2. For each contour point the fit to object and
background models are measured. r

o

and r
b

is used for
the same purpose as �

✏

, i.e. account for contour uncertainty.
They give high values close to the contour and low values
away from the contour giving more importance to values
around the contour while still including information further
away from it. The intuition behind f

b

and f
o

is that they
indicate how well inside and outside of the contour fit to
the object or the background. The contour should then be
moved accordingly. If both indicate that inside and outside
are correctly estimated nothing should happen, which is also
the case if the both inside and outside are wrongly estimated.
In this case it is unclear in which direction to move, but
if surrounding points can move, the smoothness term will
generate a force on the point in question as well.

In the second step the contour smoothness is considered.
Shi et al . made the observation that contour evolution due
to its curvature computed by the Laplacian, is equivalent of
smoothing the contour with a Gaussian [15]. In the polar
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space this can be realized by filtering the contour with a 1D
Gaussian filter. In this work however, high curvature is not
necessarily a bad thing, which can be seen by considering
a contour that lies in the radial direction from the fixation
point. To account for this we adapt the variance of the
Gaussian filter based on how well the inside and outside
of the contours fit their respective model.

3) Tracking: The contour is propagated in each frame
using the method described in the previous section. Between
frames several steps need to be taken, like updating the
fixation point and the color models.

After the contour has converged the color model is up-
dated. Histograms ✓0

k

, k 2 {o, b} are computed given the
new contour in frame t and the models from frame t�1 are
updated:

✓t
k

= (1� ↵)✓t�1

k

+ ↵✓0
k

, k 2 {o, b}. (21)

↵ is a parameter of the method that governs the adaptivity
of the model.

Using the high frame rate assumption, i.e. that the object
only moves marginally between frames, we can initialize the
contour of frame t+1 with the converged contour from frame
t. However, when the contour has converged in the previous
section it is likely that the object mean position has changed,
and a new one needs to be calculated. It would be too costly
to transfer the polar representation of the contour back to
cartesian space, compute the mean and then convert back to
polar space. Instead we introduce the polar mean computed
as:

x =

X

i2C

r
i

cos�
i

/|C|, y =

X

i2C

r
i

sin�
i

/|C|. (22)

This gives the change in x and y relative to the previous
fixation point which is updated accordingly. This will not
give the same result as the cartesian mean, but rather strives
to keep the variance of the contour in polar space low. We did
not find any drawbacks of using this mean in the experiments.

When the mean has been updated, the contour needs to be
updated as well since it depends on the fixation point. Here
the polar hull comes into play since the new mean might
observe two of the old contour points in the same direction.
In this case we keep the outermost one.

4) Implementation Details: All parts of the algorithm
have been implemented and tested on a standard 2.6 GHz
Intel Core i7 CPU with 16 GB RAM, using multi threading
and vector instructions. There are four time consuming parts:
1) Conversion to HSV color space, 2) polar transform and 3)

histogram updates and 4) contour propagation. For a VGA-
image, color conversion takes ⇠ 0.16 ms. Using B = 360

rows in the polar transform takes ⇠ 0.30 ms, histogram
updates ⇠ 0.20 ms and contour propagation between 0.20
and 0.30 ms.

The the first step contour propagation can be done com-
pletely in parallel, while in the second step each point is
depending on their closest neighbors. We assign a range of
rows to each thread, and let each thread in addition process
one point extra on each side of the range. In this way both
steps can be done in parallel.

V. EXPERIMENTS

In this section we present a number of sequences high-
lighting different aspects of the method. The sequences are
recorded with a wide range of high-speed imaging devices
operating at frame rates from 200 to 1000 fps. In this
work processing has been done offline by first loading the
sequences into memory, and then process them to evaluate
the algorithm performance. Parameters are set to: B = 360,
↵ = 0.01. The histogram size was kept to 20 for each
channel. If nothing is said, the Hue and Saturation channels
were used. In the future we plan to implement the algorithm
on the saccade mirror [6] for online experiments.

In the figures, green outlines indicate the initial contour for
that frame, and red outlines indicate the propagated contour.
In each case the first image of the sequence is shown with
the manually selected initial contour (circle).

a) Ski sequence: This sequence, seen in Fig. 5(a), was
recorded using a compact consumer camera with a resolution
of 512⇥384 pixels at 240 fps. The skier’s body is constantly
changing position, with arms and legs pointing in different
directions. Despite the polar representation, the extremities
are well covered by the contour. All three color channels
were used.

b) Cloth folding sequence: This sequence, seen in Fig.
5(b), is taken from our previous work [2], and was captured
using a EoSens camera at 1000 fps with VGA resolution.
The images are captured in grayscale, so a 1-D histogram
was used for the models.

c) Ball throwing: Fig. 5(c) shows this sequence, which
was recorded with using the same camera as the ski se-
quence. The surface of the ball turns inside out when thrown,
making it change appearance rapidly from orange to green.
However, as the appearance change, the models will adapt
and eventually the contour will capture the entire ball. As a
reference we run this example using the same model but with
the solver proposed in [21]. The results are shown in Fig.
7. Using the same initialization, this method will initially
give similar results as the proposed method, but will then
converge towards covering the hand as well. Furthermore,
after a while the contour will change topology, resulting in
two separate segments.

d) Ball dribbling: The ball sequence is recorded with
the saccade mirror system [6]. The images are 128⇥128 pix-
els and recorded at 1000 fps. The difficulty in this sequence
is the similarity with the blue ball to the background (see
Fig. 6). However, the polar representation makes it difficult
for the contour to propagate to the vehicle. The sequence is
shown in Fig. 5(d).

e) Shaky sequence: These sequences were captured
with VGA resolution at 200 Hz using a Point Grey Grashop-
per camera, by observing at a static object with the camera
shaking fiercely. The first sequence (Fig. 5(e)) is correctly
handled by the algorithm, but its limitations can be observed
in the second case (Fig. 5(f)). Here the camera moves more
than the width of the object between two frames, and thus the
initial estimate in the second frame ends up entirely outside
the object. The simple solution would be to use a camera with
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(a) Ski.The human body is articulated and subject to the limitations of the polar hull. Even so it is well captured in the sequence. Small effects can be
observed in the third and fifth frame which lack a part of the arm, and the last frame where the background is included in the object.

(b) Cloth folding. This sequence is hard due to the many shadows on the cloth, as well as the fact that there is only one color channel. Between the fourth
and fifth frame the cloth changes from having a visible front side to showing its back side to the camera, which introduces many new shadows on the cloth.
The method recovers from this and continuously keeps track of the contour.

(c) Ball throwing. The initial circle is small, only capturing an orange part of the ball. As the ball is thrown, more parts get included until the entire ball
is captured by the contour.

(d) Ball dribbling. Even though parts of the contour spread to the vehicle, the ball is always enclosed. When it starts to move it will therefore drag the
contour along with it effectively keeping the contour around the ball.

(e) Shaky sequence 1. The moving camera introduces a large amount of blur in the image, as well as providing bad initial guesses to the contour propagation.
This effect can be observed in the fifth frame where the propagated contour is a bad fit to the object. This is due to the contour being propagated with the
fixation point from the green contour. By iteratively propagating the contour and updating the mean the contour could therefore be more accurately captured
at the expense of reduced performance.

(f) Shaky sequence 2. In this sequence the motion of the camera is too large resulting in the initial segment in the fifth frame being completely outside the
object. In the last frame there is no measurements close to the foreground model inside the contour, so it shrinks to a single point. The effect here efficiently
demonstrate what would happen in many of the presented examples if the frame rate was reduced.

Fig. 5. Each figure shows six frames from different sequences. Except for the last sequence, in which the four last frames are adjacent in time, frames
with the order of 100 of frames in between them are selected.
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Fig. 6. The skier is well captured by the method, as is the blue ball. The
method captures the cone well, but also parts of the background and splits
into several segments.

higher frame rate, but another solution would be to estimate
the velocity of the mean in addition to the mean itself.

For comparison we implemented the same model with the
level-set solver in [21]. Fig. 6 and 7 show these results. The
results from the proposed method is comparable, while being
generated at orders of magnitude faster. The skier is naturally
captured more precisely, but the compared method also over
adapts and changes topology which can be seen in the ball
throwing and shaky sequences.

VI. DISCUSSION

Robots have the potential to perform tasks that widely
exceeds what humans are able to perform. Hardware and
control mechanisms already exist that enable the robot to
get visual input from its environment and react to it faster
than humanly possible. This puts high requirements on the
vision algorithms designed for these scenarios. In this paper
we presented a method for tracking an object’s boundary
operating at frame rates above 1000 fps. Inspired by the
level-set methodology, the method operates in polar image
space and propagates the contour along each row in the polar
image.

Through the new formulation, contour propagation can be
parallelized, the mean of the segment is part of the definition,
and the contour topology is not allowed to change, effectively
eliminating ambiguous situations involving double segments.
Our experiments show that the method is applicable in a wide
range of scenarios where video sequences are captured at
high speed. Furthermore, the tracking results are for these
scenarios comparable to standard level-set methods while
being generated at orders of magnitude faster.

In the future we want to explore how to minimize
the need for human intervention. While fairly robust to
method parameters, currently the human needs to select
e.g. histogram size, fixation point and initial contour size.
Trough automatic model selection and sailency detection
through e.g. motion the need for a human to supervise the
system should be minimized.
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