
Gait Optimization for Roombots Modular Robots
- Matching Simulation and Reality

Rico Moeckel, Yura N. Perov, Anh The Nguyen, Massimo Vespignani, Stéphane Bonardi, Soha Pouya,
Alexander Sproewitz, Jesse van den Kieboom, Frédéric Wilhelm, Auke Jan Ijspeert

Abstract— The design of efficient locomotion gaits for robots
with many degrees of freedom is challenging and time con-
suming even if optimization techniques are applied. Control
parameters can be found through optimization in two ways:
(i) through online optimization where the performance of a
robot is measured while trying different control parameters on
the actual hardware and (ii) through offline optimization by
simulating the robot’s behavior with the help of models of the
robot and its environment.

In this paper, we present a hybrid optimization method that
combines the best properties of online and offline optimization
to efficiently find locomotion gaits for arbitrary structures. In
comparison to pure online optimization, both the number of
experiments using robotic hardware as well as the total time
required for finding efficient locomotion gaits get highly reduced
by running the major part of the optimization process in
simulation using a cluster of processors. The presented example
shows that even for robots with a low number of degrees of
freedom the time required for optimization can be reduced
by a factor of 2.5 to 30, at least, depending on how extensive
the search for optimized control parameters should be. Time
for hardware experiments becomes minimal. More importantly,
gaits that can possibly damage the robotic hardware can be
filtered before being tried in hardware. Yet in contrast to
pure offline optimization, we reach well matched behavior that
allows a direct transfer of locomotion gaits from simulation
to hardware. This is because through a meta-optimization
we adapt not only the locomotion parameters but also the
parameters for simulation models of the robot and environment
allowing for a good matching of the robot behavior in simulation
and hardware.

We validate the proposed hybrid optimization method on a
structure composed of two Roombots modules with a total num-
ber of six degrees of freedom. Roombots are self-reconfigurable
modular robots that can form arbitrary structures with many
degrees of freedom through an integrated active connection
mechanism.

I. INTRODUCTION

With an increasing number of degrees of freedom it
becomes challenging and often even impossible to design
and tune efficient locomotion controllers by hand. Scalable
controllers like Central Pattern Generators (CPGs) in com-
bination with learning and optimization techniques allow
for an automatic exploration of efficient locomotion gaits
in simulation [1] and hardware [2]. With their relatively
low number of control parameters, CPGs can reduce the
time required for gait optimization. However, also CPGs

All authors are with the Biorobotics Laboratory, Ecole Polytech-
nique Fédérale de Lausanne, Switzerland. Yura Perov is also with the
Siberian Federal University, Institute of Mathematics and Computer Sci-
ence, Russia, Krasnoyarsk. Corresponding authors: {rico.moeckel,
auke.ijspeert}@epfl.ch

cannot fully solve the problems that come with optimization
techniques that are purely based on hardware or software
experiments.

Online optimization, where the optimization process is
performed on the robotic hardware, is typically too time
consuming for robotic structures with many degrees of free-
dom. The parameter space exploration requires experiments
running in real time and unless many robots with well-
matched behavior are available the optimization process
cannot be parallelized. Furthermore, online optimization can
be dangerous for the robotic hardware since high impacts
between robot and ground often cannot be predicted and get
detected only during the actual experiment.

Offline optimization allows the exploration of a variety
of control parameters in simulation often faster than real
time and in parallel since the optimization process can be
performed on a cluster with many processors. Furthermore,
time consuming processes including resetting the robot after
each experiment as well as charging and replacing batteries
can be avoided. Control parameters can be explored safely
without the risk of damaging expensive robotic hardware.
This is why the exploration of robot behavior in simulation
is so popular. However, offline optimization has one major
drawback that can make it poorly suited for finding control
parameters for robotic hardware: Due to a lack of precision
in the robot and environmental models, the optimized control
parameters are typically not transferable from simulation to
robotic hardware, a problem known as the ”reality gap”.

A variety of researchers has been studying pure online
and offline optimization of locomotion patterns for legged
and modular robots [3]–[10].

Several other researchers have started targeting the prob-
lem of reducing the reality gap. Lipson et. al [11], Glette
et.al [12], and Coros et. al [13] have been presenting studies
using quadruped robots. Adams has been using artificial
evolution as a tool for generating controllers for physical
robots [14]. Bongard et. al studied self-modeling machines
[15]. A comparison of different strategies for simulator
tuning was presented by Klaus et. al [16].

This paper explores the method of hybrid optimization
as a solution to combine the advantages of the online and
offline optimization process applied to a modular robot.
Hybrid optimization is a cyclic method that avoids time
consuming parameter optimization with hardware. Instead
hybrid optimization aims at finding optimal control param-
eters in simulation through simulation models that match
well the robotic hardware and the environment (Fig. 1). In

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3265

Fig. 1: Hybrid optimization is a cyclic process combining (1) offline
optimization,(2) exploration of control parameters found in simulation on
hardware, and (3) meta-optimization to improve matching of software
models and hardware.

other words, hybrid optimization improves both control and
model parameters. In the first step (1) during an optimization
cycle, control parameters leading to optimized robot gaits
are extracted in simulation using existing simulation models.
In a second step (2), a selection of optimized gaits found
during the first step is verified on robotic hardware by testing
optimized control parameters on the actual robot while the
robot’s behavior is recorded. The third step of the hybrid
optimization cycle (3) is the meta-optimization, where the
behavior of the simulation model and robotic hardware for
each selected gait is compared and model parameters are
updated to achieve better behavioral matching. Afterwards,
a new optimization cycle using the updated models can be
started in simulation.

Modular robots that allow the rapid assembly of a variety
of morphologies with many degrees of freedom present a
valuable and challenging platform for the exploration of
locomotion control and learning strategies. This is why we
chose to test our hybrid optimization methods on our modular
robot system Roombots.

In this paper we present only one hybrid optimization
cycle since our study concentrates on reducing the gap be-
tween software simulation and reality. So instead of running
a second offline optimization, we verified the parameters
found during the first meta-optimization by simulating again
the gaits that have been found during the initial offline
optimization and selected for verification on robotic hard-
ware but this time using the updated simulation models.
The behavior of the robot model simulated with the meta-
optimized model parameters and the actual robotic hardware
already matched very well after the first optimization cycle
such that differences in the behavior are difficult to identify
by pure human observation. Several fast and robust robot
gaits could be identified.

In Section II we present the Roombots hardware. The
sections III and IV describe the central pattern generator
controller and optimization method, respectively. Section
V gives details on the offline optimization process while
Section VI presents our setup for robotic experiments and
Section VII explains the meta-optimization process. Section
VIII discusses experimental results and Section IX concludes
and describes future work.

Fig. 2: (a) Picture of the Roombots (RB) meta-module hardware. (b)
Snapshot of the simulation model implemented in Webots. (c) Transparent
CAD drawing. A RB meta-module is composed of two individual RB
modules that form a rigid connection. Thus a RB meta-module contains
4 cubes and six degrees of freedom (DOF). Four intra-cube motors actuate
the four DOFs within the cubes. Two inter-cube motors actuate the inner
DOFs of the two individual RB modules forming the meta-module. (d) Each
DOF is controlled by an oscillator. The six oscillators are bidirectionally
phase coupled to form a central pattern generator.

II. ROOMBOTS HARDWARE

We conduct our simulation and hardware experiments
using a Roombots (RB) meta-module - a structure composed
of two individual Roombots modules. Fig. 2 shows a picture
of a RB meta-module (Fig. 2a), of its simulation model
(Fig. 2b) as well as a transparent CAD (Computer Aided
Design) drawing depicting the meta-module’s six degrees of
freedom (DOF) (Fig. 2c). Specifications for the meta-module
are given in Table I. Further details about the Roombots
hardware can be found in [17] and [18].

A RB meta-module is composed of four cubes. Due to
space constraints, different motors have been selected for
the DOFs within a cube (intra-cube DOFs, see Fig. 2c) and
DOFs between cubes (inter-cube DOFs, see Fig. 2c) resulting
in the different torque and speed constraints given in Table
I. The connection between the two RB modules forming the
meta-module is rigid through an active connection mecha-
nism (ACM) based on mechanical grippers. These ACMs
give the robot its ability for self-reconfiguration and allow
for a rapid assembly of complex structures.

RB meta-modules are operated on two Lithium Polymer
battery packs giving the robot autonomy for about 1 hour.
The brushed motors are position and speed controlled in
real-time through a PID loop implemented on custom motor
driver electronics. The motors’ relative encoders are used
for feedback. Real-time control through central pattern gen-
erators (CPG) is implemented on custom electronics that
communicate with the motor driver electronics via a RS485
communication bus protocol at a baudrate of 1MBAUD. CPG
values get updated at a frequency of 20Hz. We control the
RB meta-module and configure the CPG controller from a
PC using a wireless Bluetooth communication module. At
each time step a real-time collision checker simulates the
next moves of the RB meta-module before they are executed.
Only if no internal collisions are detected the set-points of

3266

TABLE I: Roombots Metamodule Specifications

Specification Value
Degrees of freedom 6 (continuous rotation)
Intra-cube DOF
Motors Faulhaber 2342 012 CR
Gearbox reduction 305:1
DOFs speed (No load) 26.6 RPM
DOFs nominal torque 4.9 Nm
Inter-cube DOF
Motor Faulhaber 2232 012 SR
Gearbox reduction 366:1
DOFs speed (No load) 19.4 RPM
DOFs nominal torque 3.6 Nm
Overall dimensions 110x110x440 mm
Weight 2.8 kg
Energy source 2x 2-cell LiPo battery

with 1200 mAh
autonomy ∼1 hour

the motor position get updated.

III. CENTRAL PATTERN GENERATOR
CONTROLLER

We control Roombots structures through central pattern
generators (CPG) [19] - networks of coupled nonlinear
oscillators - for the following reasons: (i) CPGs are capable
of generating synchronized movement patterns using only a
few control parameters. Thus only a few parameters have
to be learned during the optimization process to achieve
complex behavior. (ii) CPGs provide a scalable control
scheme that can be easily adapted to the number of modules
forming the robotic structure by simply adding or removing
oscillators from the network. Thus the concept of CPGs
is well suited for the control of modular robots especially
when using a distributed implementation. (iii) CPGs ensure
smooth transitions of motor set points after a modification of
control parameters. This avoids abrupt changes of the motor
states which is typically preferred to achieve stable gaits and
expand motor and robot life time.

The RB meta-module presented in this paper (Fig. 2)
is controlled by six phase oscillators each producing the
position set points for one of the meta-module’s six DOFs.
The coupled phase oscillators are implemented in form of
the following coupled differential equations:

φ̇i = 2π · f ·∑
j

wi j · r j · sin(φ j−φi−ψi j) (1)

ṙi = ai (Ri− ri) (2)
θi = ri · sin(φi)+Xi (3)

where i and j are the indexes of the oscillator. The oscillators
output θi directly controls the position set point of the motor
actuating DOF number i. θi follows a harmonic oscillation
with an amplitude ri, a phase φi, and an offset Xi. The
constants wi j = 0.5 and ai = 2 control how quickly oscillators

synchronize and reach a modified amplitude, respectively.
The frequency f = 0.2Hz was chosen to respect the maxi-
mum rotation rate and acceleration of the inter-cube DOFs.
In our experiments oscillators are bidirectionally coupled
(ψi j = −ψ ji) in a chain configuration as shown in Fig. 2d.
We did not couple all oscillators with all other ones. Thus
each oscillator i has a maximum of three parameters that
are subject to optimization: the desired amplitude Ri, offset
Xi and the coupling phase ψi j to the following neighbor
j = i+1.

IV. PARTICLE SWARM OPTIMIZATION

We use Particle Swarm Optimization (PSO) [20], [21] to
optimize CPG control parameters during offline optimiza-
tion as well as simulation model parameters during meta-
optimization. PSO is a stochastic optimization method that
uses so-called particles to explore the parameter search space.
The position xi and velocity vi attributed to each particle i
represent the particle’s parameter values and search direction,
respectively. At each iteration t, both xi and vi get updated
as follows while continuously taking into account the best
known solution vector of particle i, pi, and the global best
known solution vector pg:

vi(t +1) =
K· [vi(t)+ c1r1 (pi−xi(t))+ c2r2 (pg−xi(t))] (4)

xi(t) = xi(t−1) ·vi(t) (5)

where the constriction factor K, the cognitive factor c1, the
social factor c2, and the two pseudo-random numbers r1
and r2 were set according to [22] to ensure convergence.
We chose PSO over other optimization techniques for the
following reasons: (i) With its relatively low number of
computations, PSO is a light-weight optimization method
that can even be run directly on the robot if required. (ii)
In contrast to other optimization techniques, PSO does not
require gradients and performs well also on more complex
search spaces.

V. OFFLINE OPTIMIZATION

We identified 17 fast gaits that show low impact between
the robot and the ground and no internal collisions by
simulating a model of the RB meta-module in the robot
simulator Webots [23] based on ODE (Open Dynamics
Engine). The parameters of the CPG controlling the RB
meta-modules were optimized with PSO using 300 particles
and 200 iterations using 30 cores of a cluster of 2.00GHz
quad-core Intel Xeon E5504 processors. To make the hybrid
optimization as efficient as possible it is important to sim-
ulate in a non-perfect virtual world to (i) avoid overfitting
and (ii) to receive gaits that are robust to noise and thus
can be transferred to the real world [24]. This is why we
added noise to the outputs of the CPGs and repeated each
iteration three times. The fitness of a trial was evaluated
as follows: If during a trial a collision between the half-
spheres of the RB meta-module occurred, the fitness of this

3267

Fig. 3: Evolution of particle with the highest fitness during offline optimiza-
tion.

trial was set to 0. Otherwise, the fitness of collision-free
trials was set to be proportional to the speed of the meta-
module averaged over three repetitions of the iteration. For
each iteration, we performed a pairwise comparison between
the robot trajectories to penalize those gaits that led to large
deviations in the presence of noise.

The evolution of the particle with the highest fitness during
the offline optimization process is shown in Fig. 3. The plot
shows the asymptotic increase of the best fitness over the
iterations while the PSO particles are evaluating the search
space for the CPG control parameters.

Since previous experiments with a simplified robot simu-
lation model could not be transfered to the robotic hardware,
we used a detailed robot model with realistic object bound-
aries for the ODE collision checker. This detailed model
was directly imported from the CAD tool SolidWorks that
was used to design the RB hardware. Due to the detailed
model, simulation speed was decreased in comparison to
former Roombots simulation studies to about 2x real time so
that each trial simulating 30 seconds in real time took about
15 seconds simulation time on the 2.00GHz processors. The
total time required for offline optimization on the cluster
simulating the 300 particles, 200 iterations, and 3 repetitions
was about 22 hours.

VI. VERIFICATION THROUGH HARDWARE
EXPERIMENTS

For verification of CPG control parameters found during
offline optimization we build the setup shown in Fig. 4.
During locomotion, the RB meta-module was constantly
observed by a Microsoft Kinect camera. We decided for the
Kinect since it allows for simple and efficient tracking of
robotic structures in real time. The Kinect provides depth
images that support an easy removal of the background
from the recordings. Before each trial CPG parameters were
loaded into the RB meta-module via a wireless Bluetooth
communication. Once the internal CPG network was config-
ured the robot became fully autonomous and tried out the
control parameters for 30 seconds.

Fig. 4: Setup for hardware experiments. The behavior of the Roombots
meta-module is recorded by a Kinect camera. Both the camera and robot
are controlled from a PC.

Fig. 5: We measure the similarity between the motion exhibited by a
simulated and hardware robot by monitoring the overlap of the robots’
projections onto the ground as observed by an overhead camera.

We tested and recorded in total 17 gaits that we selected
from the offline optimization. Six gaits were used to optimize
simulation parameters during the meta-optimization. We val-
idated the new simulation parameters with the remaining 11
gaits to test for overfitting in the meta-optimization. The
selection of gaits included both those with the best fitness
but also several hand selected gaits with medium fitness that
clearly used different strategies for locomotion than the fittest
gaits. The medium fitness gaits were not selected for their
speed but to improve the variability of the gaits used for the
following meta-optimization process.

VII. META-OPTIMIZATION

During the meta-optimization, we aimed at optimizing
the RB model, the environmental parameter of the Webots
simulation tool as well as the parameters of the virtual
camera to match the behavior of the simulated robot with
the recordings from the hardware experiments. Table II gives
an overview of the 22 parameters that we optimized through
PSO as well as the search space for each parameter, its value
before and after meta-optimization.

3268

TABLE II: Model parameters subject to meta-optimization

Parameter description Search range Hand tuned
value

Value after
meta-
optimization

Parameters of simulation environment
1 Constraint force mixing (CFM) in Webots1 [0.0; 0.001] 0.00001 0.00014892
2 Error reduction parameter (ERP) in Webots1 [0.1; 0.8] 0.2 0.3652
3 Coulomb friction between Roombots body and ground

surface2
[0.1; 5.0] 1 0.8018

4 Bounce between Roombots body and ground surface2 [0.0; 1.0] 0.5 0.8040
Parameters of Roombots model

5 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3038
6 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3142
7 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.2939
8 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3308
9 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3079
10 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3316
11 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3438
12 Mass of meta-module’s half-spheres. [kg] [0.280; 0.370] 0.325 0.3017

Intra-cube DOF
13 Maximum velocity3 [1.0; 15.0] 2.5 6.8721
14 Maximum torque3 [2.5; 15.0] 4.8 9.0643
15 Control parameter P3 [5.0; 15.0] 10 6.9873
16 Damping constant3 [0.0; 1.0] 0 0.1172

Inter-cube DOF
17 Maximum velocity3 [1.0; 15.0] 1.5 7.5193
18 Maximum torque3 [2.5; 15.0] 3.2 12.2080
19 Control parameter P3 [5.0; 15.0] 10 12.8652
20 Damping constant3 [0.0; 1.0] 0 0.5622

Camera parameters
21 Height of the virtual Kinect depth camera [cm] [210.0; 240.0] 260 227.8160
22 Time shift between movies taken by hardware and

virtual software camera [ms]
[0.0; 1200.0] 900 424.1056

We quantify the match of behavior of the robot in sim-
ulation and hardware through the following procedure: We
record the hardware through a real and the simulation model
through a virtual overhead mounted Kinect camera. The
camera removes the background and only keeps those camera
pixels of the robot body. We thus gain two sequences of
snapshots or movie frames, the hardware (H) and simulation
movie (S). Fig. 5 shows two overlaid snapshots. The camera
projection of the simulated robot body is shown in blue while
the projection of the robotic hardware is shown in red and the
overlap of the robot bodies is shown in green. For the meta-
optimization we defined a similarity ratio, R, that is equal
to the overlapped area divided by the total area of the robot
projections. Areas are measured in number of pixels. If both
robot projections match perfectly R reaches its maximum
equal to 1.

During the meta-optimization we want to maximize R for
all selected gaits found during offline optimization while
R is measured frame by frame. Since the frames of the
hardware and simulation trials need to be synchronized we
added the time shift parameter #22 (Table II), s, to the

optimization process. Thus the final fitness measure Fmeta
for meta-optimization becomes:

Fmeta =
∑gaits

[
Wgait · 1

∑ f rames
·∑ f rames R [H(t),S(t + s)]

]
∑gaits Wgait

(6)

where H(t) is the movie frame at time t from a hardware
experiment and S(t + s) is the possibly corresponding movie
frame of a software experiment at time t shifted in time by
the time shift s. For each gait the similarity rate R is modified
by a gait dependent weight Wgait .

We aim at gaits that are fast, robust to noise, that do not
generate internal collisions, and that lead to low impacts
between the robot and the ground. When selecting the gaits
for meta-optimization from the offline optimization process

1For explanation see: ”http://ode-wiki.org/wiki/index.php?title=
Manual: Concepts”

2For explanation see: ”http://www.cyberbotics.com/dvd/common/doc/
webots/reference/section3.12.html”

3For explanation see: ”http://www.cyberbotics.com/dvd/common/doc/
webots/reference/section3.41.html”

3269

Fig. 6: Evolution of the particle with the highest fitness value during meta-
optimization.

we selected only fast gaits that showed no internal collision
and low impacts with the ground. To ensure that fast gaits
with a high robustness to noise have greater influence on the
selection of parameter values during the meta-optimization,
we weighted the influence of gaits differently in the fitness
function through the weight Wgait :

Wgait = vgait ·RH (7)

RH =
∑

K
k ∑

K
n>k

1
∑ f rames

·∑ f rames R(Hk,Hn)

∑
K
k ∑

K
n>k

(8)

where vgait is the speed of the robot achieved during the
hardware verification averaged over three trials. RH measures
the similarity of different trials of the same gait tested on the
hardware by taking the pairwise similarity ratio SR between
different trials (k,n ∈ [1,2,3]). K = 3 is the total number of
trials.

For the meta-optimization on the cluster we were using
100 particles and 100 iterations. Fig. 6 shows the evolution of
the best fitness or similarity over iterations. The convergence
of the fitness after about 60 iterations can be clearly seen.
The total simulation time was about 20.2 hours.

VIII. EXPERIMENTAL RESULTS AND
DISCUSSION

Since we wanted to understand how well simulation
and hardware behavior got matched after the first meta-
optimization we did not continue the hybrid optimization cy-
cle with another offline optimization but instead re-simulated
the previously 17 selected in hardware tested gaits using the
meta-optimized simulation parameters. Table III depicts the
average similarity rates achieved with the hand-tuned and the
meta-optimized simulation parameters. The similarity rates
of the 6 gaits that belonged to the training set for the meta-
optimization was improved by more than 65%. A perfect
match with a similarity rate of 1 could not be achieved
for the following reasons: (i) Although both simulation and
hardware were recorded at the same frequency a perfect
synchronization between the virtual and hardware camera

TABLE III: Improvements of similarity between robot behavior in simula-
tion and hardware due to meta-optimization

R of hand-
tuned sim-
ulation

R of meta-
optimized
simulation

Improvement

Training set 0.250317 0.414293 65.51 %
Test set 0.325153 0.402104 23.67 %
All gaits
(training +
test set)

0.281152 0.409271 45.57 %

is not possible and possibly also not meaningful since
also (ii) noise in the hardware experiments will remain
preventing a perfect match. (iii) Furthermore, the parameters
and simulation models provided by ODE probably will not
allow a much better match since for instance the ODE
friction model will not allow to recreate exactly the ground
reaction forces and sliding generated by the hardware and the
bounce parameter will not be sufficient to exactly simulate
the properties of the ground. More detailed models might
allow for better matching but will also lead to an increase
in simulation time. (iv) Also the ground is not exactly
homogeneous during a gait cycle and might vary over time.

Fig. 7 shows the fastest gait we found during the exper-
iment that according to our optimization function received
the highest weight during the meta-optimization and thus
achieved the best matching properties. The gait that achieved
an average speed of 6.0 cm/s in simulation and 5.8 cm/s
in hardware could be robustly repeated at numerous occa-
sions. We considered the matching between hardware and
simulation that led to this gait good enough to stop the
optimization process after one iteration. As Fig. 7 and the
movie submitted with this publication show5, simulation and
hardware results are well matched and sufficiently difficult
to distinguish through human observation.

To further validate the improvement of the matching
between the behavior of the simulated robot and hardware
we used the additional 11 gaits (called the test set) from
the offline simulation and previously performed hardware
experiments that were not part of the meta-optimization
process. When tested in hardware and simulation the gaits
achieved a similarity rate of more than 0.4 - similar to
the gaits that were part of the training set. These results
make us confident that the parameters obtained during meta-
optimization are robust and can be used to predict the
behavior of the robotic hardware for gaits that were not part
of the meta-optimization process.

With our hybrid optimization process the time for ob-
taining fast and robust gaits could be highly reduced in
comparison to an online-learning approach while obtaining
realistic results as if the experiments would have been carried
out purely in hardware. Learning the required 17 control
parameters (6x oscillator amplitudes, 6x oscillator offsets, 5x
coupling phases) for a RB metamodule as stated in Section

5The movie can also be found at ”http://biorob2.epfl.ch/utils/
movieplayer.php?id=257”.

3270

Fig. 7: Snapshots of a meta-optimized RB meta-module gait with a similarity rate of about 0.4. Time increasing from left to right. Top: hardware experiment,
Bottom: simulation. The time between snapshots is 12 seconds.

III with PSO typically takes about 50 particles and more
than 100 iterations. A single experiment requires at least 1
minute including the 30 seconds for recording the robot’s
behavior as well as the additional average time for resetting
and maintaining the robot. If the effect of noise on the
experimental results should be reduced, the experiment has to
be repeated for at least 3 times resulting in a minimum time
for the online optimization of about 250 hours. An extensive
search as we performed during the initial offline optimization
with 300 particles, 200 iterations and 3 repetitions would
require about 3000 hours.

The hybrid optimization process requires simulation time
for the (i) offline and (ii) meta-optimization as well as
a minimal set of (iii) hardware experiments. (i) With our
detailed robot simulation model, an offline optimization with
PSO using 300 particles, 200 iterations and 3 repetitions took
about 22 hours. In contrast to online optimization, the offline
optimization process could be parallelized and the total
simulation time could be easily distributed among several
processor cores as we did with our distributed simulation
framework6. In theory each PSO particle can be simulated
on a separate processor core - in practice we used 30 cores
heavily reducing the actual required simulation time.

(ii) We recorded 17 gaits on the hardware that we repeated
3 times. With the typical overhead that comes with hardware
experiments the total time required for was less than 2 hours.

(iii) The meta-optimization was again distributed on 30
processor cores. We chose 120 particles and 100 iterations
to optimize the 22 parameters shown in Table II. The total
simulation time was about 20.2 hours.

To allow a fair comparison between online and meta-
optimization one has to take into account the time required
for building the initial robot simulation model required for
optimization in simulation. The Roombots simulation model
was improved during many studies and experiments. A fair
upper bound taken for building the model is about 50 hours.

So in the described case the meta-optimization took about
94 hours in comparison to the 250 to 3000 hours for the

6See ”http://biorob2.epfl.ch/users/jvanden/docs/optimization-concept/
concept.pdf” for an overview.

online optimization which corresponds to a reduction of a
factor of at least 2.5 to 30 depending on how extensive the
search for optimized control parameters should be. If 100
processor cores were used for simulation the optimization
time excluding the design and hand tuning of the initial
model can most likely be reduced to less than 10 hours
even for extensive parameter searches. More importantly, the
time experimentalist have to be physically present to perform
experiments was reduced to 2 hours. Furthermore, possibly
dangerous gaits that would have caused high impacts be-
tween the robot and the ground and thus possibly might have
damaged the hardware could be discarded before being tried
on the robot. To conclude, our study shows that the time
spent to improve the simulation model in addition to the
control parameters is well invested. We believe that the more
degrees of freedom future robots will have, the more different
structures should be explored and thus the more different
control parameters will have to be extracted, the more
experimentalist will benefit from the hybrid optimization
approach.

IX. CONCLUSIONS AND FUTURE WORK

We presented a hybrid optimization process for efficient
learning of fast locomotion gaits that are robust to noise,
that do not generate internal collisions, and that lead to low
impacts between the robot and the ground. The method is
verified using a Roombots meta-module with six degrees of
freedom. Our locomotion control and optimization approach
combines a scalable central pattern generator controller that
is capable of generating coordinated complex movements for
robots with many degrees of freedom with particle swarm
optimization for learning parameter values for the controller
as well as for the robot simulation software. Although
optimization is performed offline in simulation, we achieve
well-matched behavior of the simulated robot and hardware
through meta-optimization. We show that, through hybrid
optimization, experiment time using robotic hardware and
thus the time where the experimentalist has to be physically
present can be easily reduced by a factor of more than
100. If the optimization process in simulation is parallelized

3271

as presented, simulation time can be reduced by a factor
greater than 2.5 to 30 depending on how extensive the
search for optimized control parameters should be. With an
increase in robot complexity we expect experimentalists to
benefit even more from the proposed hybrid optimization
approach. Furthermore, in contrast to online optimization,
hybrid optimization allows avoiding the test of gaits with
high impacts that could possibly damage the robot.

We are currently testing the hybrid optimization process on
more complex Roombots structures as well as on more dy-
namic legged modular robots. Futhermore, we are extending
the proposed methods to more complex, less homogeneous
terrains.

X. ACKNOWLEDGMENT

The authors gratefully acknowledge the technical support
of Andre Guignard, Andre Badertscher, Peter Bruhlmeier,
Philippe Voessler, and Manuel Leitos in the construction of
the robot modules. This project has received funding from
the European Community’s Seventh Framework Programme
FP7/2007-2013 - Future Emerging Technologies, Embodied
Intelligence, under the grant agreement no. 231688 (Lo-
comorph). This research was also supported by the Swiss
National Science Foundation through the National Centre of
Competence in Research Robotics.

REFERENCES

[1] S. Pouya, J. Van Den Kieboom, A. Spröwitz, and A. Ijspeert, “Auto-
matic gait generation in modular robots: to oscillate or to rotate? that
is the question,” Proceedings of IEEE/RSJ IROS 2010, Taipei, Taiwan,
October 18, vol. 22, 2010.

[2] A. Sproewitz, R. Moeckel, J. Maye, and A. J. Ijspeert, “Learning to
move in modular robots using central pattern generators and online
optimization,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 423–443, 2008.

[3] O. Miglino, H. H. Lund, and S. Nolfi, “Evolving mobile robots in
simulated and real environments,” Artificial life, vol. 2, no. 4, pp.
417–434, 1995.

[4] G. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata,
“Autonomous evolution of gaits with the sony quadruped robot,” in
Proceedings of the Genetic and Evolutionary Computation Confer-
ence, vol. 2. Citeseer, 1999, pp. 1297–1304.

[5] A. J. Ijspeert and J. Kodjabachian, “Evolution and development of a
central pattern generator for the swimming of a lamprey,” Artificial
Life, vol. 5, no. 3, pp. 247–269, 1999.

[6] K. Wolff and P. Nordin, “Learning biped locomotion from first
principles on a simulated humanoid robot using linear genetic pro-
gramming,” in Genetic and Evolutionary ComputationGECCO 2003.
Springer, 2003, pp. 199–199.

[7] V. Zykov, J. Bongard, and H. Lipson, “Evolving dynamic gaits
on a physical robot,” in Proceedings of Genetic and Evolutionary
Computation Conference, Late Breaking Paper, GECCO, vol. 4, 2004.

[8] G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, “Au-
tonomous evolution of dynamic gaits with two quadruped robots,”
Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 402–410, 2005.

[9] D. Christensen, D. Brandt, K. Stoy, and U. P. Schultz, “A unified
simulator for self-reconfigurable robots,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 870–876.

[10] D. J. Christensen, U. P. Schultz, and K. Stoy, “A distributed strategy
for gait adaptation in modular robots,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
2765–2770.

[11] H. Lipson, J. Bongard, V. Zykov, and E. Malone, “Evolutionary
robotics for legged machines: from simulation to physical reality,”
in Proceedings of the 9th Int. Conference on Intelligent Autonomous
Systems, 2006, pp. 11–18.

[12] K. Glette, G. Klaus, J. C. Zagal, and J. Torresen, “Evolution of loco-
motion in a simulated quadruped robot and transferral to reality,” in
Proceedings of the Seventeenth International Symposium on Artificial
Life and Robotics, 2012.

[13] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. Van De Panne,
“Locomotion skills for simulated quadrupeds,” ACM Transactions on
Graphics (TOG), vol. 30, no. 4, p. 59, 2011.

[14] B. Adams, “Evolutionary, developmental neural networks for robust
robotic control,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2006.

[15] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–
1121, 2006.

[16] G. Klaus, K. Glette, and J. Tørresen, “A comparison of sampling
strategies for parameter estimation of a robot simulator,” in Simulation,
Modeling, and Programming for Autonomous Robots. Springer, 2012,
pp. 173–184.

[17] A. Sproewitz, “Roombots: Design and Implementation of a Modular
Robot for Reconfiguration and Locomotion,” Ph.D. dissertation, EPFL,
Switzerland, 2010.

[18] A. Sprowitz, S. Pouya, S. Bonardi, J. Van den Kieboom, R. Mockel,
A. Billard, P. Dillenbourg, and A. J. Ijspeert, “Roombots: recon-
figurable robots for adaptive furniture,” Computational Intelligence
Magazine, IEEE, vol. 5, no. 3, pp. 20–32, 2010.

[19] A. J. Ijspeert, “2008 special issue: Central pattern generators for
locomotion control in animals and robots: A review,” Neural Networks,
vol. 21, no. 4, pp. 642–653, 2008.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on,
vol. 4. IEEE, 1995, pp. 1942–1948.

[21] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[22] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability,
and convergence in a multidimensional complex space,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58–73, 2002.

[23] Webots, commercial Mobile Robot Simulation Software. Available
online at http://www.cyberbotics.com.

[24] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in Advances in artificial
life. Springer, 1995, pp. 704–720.

3272

