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Abstract— Learning about activities and object affordances
from human demonstration are important cognitive capabilities
for robots functioning in human environments, for example,
being able to classify objects and knowing how to grasp them
for different tasks. To achieve such capabilities, we propose a
Labeled Multi-modal Latent Dirichlet Allocation (LM-LDA),
which is a generative classifier trained with two different data
cues, for instance, one cue can be traditional visual observation
and another cue can be contextual information. The novel
aspects of the LM-LDA classifier, compared to other methods
for encoding contextual information are that, I) even with only
one of the cues present at execution time, the classification will
be better than single cue classification since cue correlations are
encoded in the model, II) one of the cues (e.g., common grasps
for the observed object class) can be inferred from the other
cue (e.g., the appearance of the observed object). This makes
the method suitable for robot online and transfer learning;
a capability highly desirable in cognitive robotic applications.
Our experiments show a clear improvement for classification
and a reasonable inference of the missing data.

I. INTRODUCTION

Contextual information has been proven to improve the

performance of a number of visual recognition [1], [2], [3],

[4] and robotic manipulation [5], [6] tasks. Fig. 1 shows an

example of a contextual classification problem. Oranges and

lemons have very similar visual appearance. However, they

are handled in different ways: people commonly peel oranges

to eat, but cut lemons with a knife. Thus, using examples of

human actions on the two types of fruit in addition to their

appearance could significantly improve the performance of

an orange/lemon classifier.

However, when a robot perceives a new fruit, say a lemon

laying on a table, the robot will commonly only see the

appearance, not the action that is associated with the object.

Thus, the classifier should utilize the action information even

though it is not visible at execution time. Furthermore, the

robot not only needs to recognize the fruit, but it also needs to

know what to do with it. It should hence be possible to infer

the range of actions that an object with a given appearance

afford to an agent.

Analogously, context is also important in action recogni-

tion. As an example, based on observations of visual human

motion only, it is extremely hard to distinguish between the

actions vacuum-the-floor and mop-the-floor. However, the

classification task becomes significantly easier with knowl-

edge about the objects involved. Such object context has been

shown to improve action recognition [2], [3], [7]. Another
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type of context is semantic information about the action [8],

[9]. Moreover, given a task to perform, the robot should know

what objects it needs to search for to execute the task. Given

the task mopping, for example, the robot should be able to

search for a mop.

In this paper we address the robotic cognition task by

proposing a Labeled Multi-Latent Dirichlet Allocation (LM-

LDA) model, which marries topic modeling and contextual

cue integration, encoding information from two different

cues within a single principled generative framework. The

two novel aspects of the LM-LDA emanate from the model

structure: The LM-LDA models the process of generating

the two cues as dependent on a common, class-dependent

topic distribution. When training the model with examples of

observations, the correlations between the data from the two

cues will be encoded in the topic model. Put differently, the

contextual cue – peeling style in the fruit example in Fig. 1 –

guides the classifier to what aspects of the appearance cue are

relevant for classification. In the fruit example, the difference

in appearance between oranges and lemons is very small.

This means that the contextual cue during training affects the

representation of the appearance cue so that the classifier to

a higher degree pays attention to aspects in the appearance

cue that are correlated with the contextual cue. Addressing

this problem, we sum up our contribution in two aspects as:

Contribution 1: LM-LDA is able to achieve significantly

better performance than single cue classification by modeling

the context. Even if only one cue is visible at execution

time, LM-LDA outperforms single-cue classification, since

the correlations between the observed and unseen cue are

encoded in the model.

Contribution 2: Since the LM-LDA is generative, it is

possible to synthesize information about the missing cue

from a one-cue observation of a new instance (Fig. 1, left).

Moreover, as a topic model, LM-LDA represents the data in

terms of ”topics” in a latent space. Hence, there is a potential

to use the learned topics for transfer learning of action

”intention” [6] to other robot configurations with different

grasping state space.

The rest of the paper is organized as follows. In Section

II, related work on contextual recognition and topic models

is reviewed. The generative process and parameter estima-

tion of the LM-LDA model is described in Section III. In

Section IV, we then discuss the application of this model to

two different contextual recognition tasks. The performance

of the model on the two tasks is then evaluated in Section V.
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Robot observing objects What object classes are observed? What actions are afforded?
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Training Inferring Class Inferring Action

Fig. 1. Object classification for robot vision scenario. Top row: Standard uni-modal classification, which suffers from low classification
accuracy in the case of visually similar classes with high intra-class variability. This approach is not able to infer the action, since action
context is not modeled. Middle row: The normal contextual model, which can archive good classification performance when the contextual
information is available in testing time. Commonly, it will fail, when contextual information is not present in testing time. Bottom row:
The contextual LM-LDA model presented here encodes two different input modalities, in this example, object appearance and human
actions associated with the object. Training data are I) appearance features extracted from each training instance, II) features encoding the
human action associated with that instance. Given the trained model, a new set of appearance and action features can be classified with
high confidence. In addition, the model is able to classify a new object instance based on the appearance cue only, with considerably
higher confidence than a standard appearance-based classifier, since the LM-LDA model encodes correlations between the appearance
and action cues. Furthermore, the encoded correlations give the possibility of inferring the range of actions that an object with a given
appearance afford to a human.

II. RELATED WORK

We propose a new model for contextual modeling in

robotics, which not only inherits the strong classification

properties of traditional contextual modeling, but also has

stronger inference capabilities, thanks to it using a generative

model with a latent space. In this section, we will briefly

review related work on contextual and topic modeling.

The use of contextual information in vision recognition

has shown very encouraging results in recent years [10]. A

powerful contextual cue for object recognition is the scene

around the object. In [11], [12], [13], the scene itself is used

to guide object recognition. The scene itself is a strong prior

cue as to which objects can be expected and where they are

most likely to be found. Similarly, the spatial relationships

between objects in the image are exploited in [14], [15].

Object recognition can also be guided by observations of

human interaction with the objects; this is also explored in

this paper. Moore et al. [16] provide a Bayesian framework

for recognizing objects based on contextual information from

other objects, human actions being performed on the object,

and the scene. In [17], human actions are used to infer

object class. Analogously, action recognition is supported

by knowledge about the objects involved in the action. In

[2] and [3], different types of sequential graphical models

are used to simultaneously recognize objects and actions on

those objects. They require both the action/motion cue and

the object cue to be present at both training and testing time,

limiting its use in practical applications.

Imitation learning, or learning from demonstration [18],

[19], [20], [6], [5], [21] is a challenging problem in robotics.

A large amount of context information that used in vi-

sion recognition could be well used in robotic imitation

learning. An important application of imitation learning is

robotic grasp selection. Song et al. [6] instead proposed a

robot grasping planning method which aims to learn human

intention and mapping to the robotic embodiment on this

more abstracted level, instead of directly mapping the grasps

from the human to the robotic grasp spaces. However, in

their method, a fixed setting of high-level object and action

parameters need to be manually specified. Madry and Song et
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al. [4] integrated object classification and grasping generation

system together. But it was processed as two separated

step without modeling context. The approach proposed here

learns these parameters from data, for example, using ap-

pearance features, and a latent topic space is used which

enables contextual modeling. This topic space will thus

contain information about the mapping between the two

different data modalities – in other words, contain a high-

level representation of the state (which could be a grasp, an

object type, etc.) observed in the two data modalities. This

high-level representation could be used for mapping of a

grasp to a different robotic embodiment, but also for transfer

learning: mapping an object model to a new observation

setting, e.g., observing the object in a new environment.

Topic models have been applied successfully in text doc-

ument retrieval [22], [23], [24], [25], modeling documents

as bags (multi-set) of words, and subsequently in computer

vision, modeling images as bags of visual words [26], [27],

[14], [28], [29]. Fei-Fei et al. [27] show the feasibility of

applying topic models to natural scene classification. New

promising scene classification results are achieved using,

for example, the visual concept presentation of [30]. Other

extensions take spatial information into consideration [31],

[14], [28]; here, spatial location is treated as contextual infor-

mation to. All these extensions improve both classification

and segmentation performance. However, topic modeling has

not been well used in robotic community yet.

Latent Dirichlet Allocation (LDA) [23] is one of the

most important approaches in topic modeling, assuming

a generative process where a document is modeled as a

probability distribution over topics, which in turn are mod-

eled as distributions over words. There has been numerous

extensions of LDA in recent years. Supervision is introduced

for topic models in both a ”downstream” manner [25] and

an ”upstream” manner [27], [32], [33]. Another direction to

extend LDA is to use multiple cues [34], [29], [24]. Multi-

Multinomial LDA (MM-LDA) [24] is successfully applied

to computational linguistics, assuming that the words from

both cues are multinomially distributed. In [24], web tags and

web content are modeled jointly by forcing these two cues to

share the same topic proportion parameters. We employ this

approach since it gives an intuitive way of fusing information

from different modalities. Furthermore, the topic space can

be used for transfer learning, as discussed above [6].

Our LM-LDA model is based on MM-LDA, with an

additional object category label. Introducing labeling to MM-

LDA combines the advantages of both supervision and

multiple cues in learning. Moreover, the introduction of a

class label makes inference from partial observation possible.

Thus, in contrast to previous contextual modeling work pre-

sented above, the present model can be used with or without

observation of the second cue at test time (contribution 1, see

the Introduction). The class label also gives the possibility to

infer a range of possible context given just the regular visual

cue (contribution 2, see the Introduction).

Next, the LM-LDA model is explained in more detail.

III. LABELED MULTI-LDA

As discussed above, visual classification benefits from

adding contextual cue to the traditional cue and topic model

is able to extract topics/themes from documents/images. We

propose the LM-LDA model, to be able to model two cues

in a principled manner with prediction ability. It is to our

knowledge the first LDA approach to be used for robotic

cognitive reasoning. In this section, we describe the model.

More details on how this model is employed in robotic

applications are described in the next section.

A. Model
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Fig. 2. Graphic Representation of Labeled Multi-LDA.

For consistency, we inherit the terminology from LDA

[23] in this section to explain our proposed LM-LDA. Fig. 2

shows the graphic representation. Each document from the

corpus has one categorical label c and contains two data

cues. The first cue consists of N words w and the second

cue consists of L terms a. In the following we use ”words”

to denote the first cue and ”terms” to denote the second, for

clarity. However, there is no principal difference between

the cues, the model is symmetric. In a robotics scenario,

a document is a collection of any type of information,

and words/terms are information units. Each document is

modeled as belonging to K different topics, with probability

proportions given by θ, see Fig. 2. β/η models the word/term

distribution in each topic. The generative process for a

document is modeled as follows.

For each of the M documents in the corpus:

1) Choose a category label c ∼ p(c|ν). ν ∈ R
C and

ν follows categorical distribution, which reflects the

document category distribution in corpus.

2) Draw topic proportion θ from α by θ ∼ Dir(α). Here,

α is a K-dimensional Dirichlet parameter, where K is

the number of topics.

3) For each of the N words w from the first cue:

a) Choose a topic assignment of a word z ∼
Multinomial(θ)

b) Choose a word w from βz . Here, β is constructed

by K vectors, in which βk is a V -dimensional

vector of Multinomial distribution which reflect

the distribution of words under topic k, where V

is the word vocabulary size.

4) For each of the L terms a from the second cue:

a) Choose a topic assignment of a term y ∼
Multinomial(θ)
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b) Choose a term a from ηy . η is constructed by K

vectors, in which βk ∈ R
R that follows Multi-

nomial distribution which reflect the distribution

of terms under topic k, where R is the term

vocabulary size.

As described above, we can see that words w and terms a

are independent given the topic distribution, which makes

this model suitable to model two different cues without

any extra assumptions. On the other hand, by sharing the

same topic space with the same class label, correlations

between the cues will be encoded in the topic distribution,

since the topic model is trained with instances of both cues

simultaneously. The independence of the two cues given

topic distribution θ, makes inference with only one cue w

possible. Thanks to the correlation between the cues encoded

in the topic model, the inference will benefit from the

model being trained with two cues, even though only one

is observed for inference. The reason for this is that the two

cues make the topics more tuned to information present in

both cues (e.g., object shape for a visual and a grasp cue),

and less tuned to variation which only depends on one cue

(e.g., object surface patterns which is uncorrelated with the

grasp cue). In a related work, Zhang et al. [35] used an extra

prior in the model to make the topics more correlated with

object class. The additional prior can be seen as a second

cue to help finding a more robust representation of the data

characteristics. Furthermore, given c, θ and η, possible terms

from the unobserved cue a can also be reconstructed.

B. Parameter estimation

To estimate the unknown parameters, we use Gibbs Sam-

pling as described in [36]. In our case, there are two cues.

The update equation for a word with index i = (m,n) is:

p(zi = k|~z¬i, ~w)

∝
n
(t)
1k,¬i + πt

∑V

t=1 n
(t)
1k,¬i + πt

·
n
(k)

m(1),¬i
+ n

(k)

m(2),¬i
+ αk

[
∑K

k=1 n
(k)

m(1) + n
(k)

m(2) + αk]− 1

(1)

The update equation for a term with index j = (m, l) is:

p(yj = k|~y¬j ,~a)

∝
n
(p)
2k,¬j + κp

∑R

p=1 n
(p)
2k,¬j + κp

·
n
(k)

m(1),¬j
+ n

(k)

m(2),¬j
+ αk

[
∑K

k=1 n
(k)

m(1) + n
(k)

m(2) + αk]− 1

(2)

The parameters are estimated as:

θc,k =
n
(k)

m(1) + n
(k)

m(2) + αk

[
∑K

k=1 n
(k)

m(1) + n
(k)

m(2) + αk]− 1
(3)

βk,t =
n
(t)
1k + πt

∑V

t=1 n
(t)
1k + πt

(4) ηk,p =
n
(p)
2k + κp

∑R

p=1 n
(p)
2k + κp

(5)

where n
(·)
·,¬i indicates that the token i is excluded. In the

model, we can treat θ as a M ×K matrix, β as a K × V

matrix and η as K × R matrix. π, κ, α are smoothing

parameters. In Equation (3), n
(k)
m(1) stands for the number of

words which are assigned to the topic k from the document

m, and n
(k)
m(2) stands for the number of terms which are

assigned to the topic k from the document m. In this case,

θm,k presents the probability of chosen topic k from a

document. In Equation (4), n
(t)
1k,¬i stands for the number of

words t assigned topic k, and the sum in the denominator

shows the number for all the words which are assigned

to topic k with smoothing parameter π. In this way, βk,t

stands for the probability to sample the word t if topic k

is assigned. Similarly, in Equation (5), ηk,p stands for the

probability to sample the term p if topic k is assigned.

The update Equations (1) and (2) are straightforward, as

a certain word/term is sampled based on the estimated

probability from the rest of the data with Gibbs Sampling.

C. Inference

The inference problem is to calculate the most probable

category given a new observation and the learned parameters,

argmaxp(c | new observation, learned parameters), which

is in a similar manner as [27]. All parameters are learned

during the training phase. When classifying a new observa-

tion, the topic assignment is updated with Gibbs Sampling

as in [36]. The maximum likelihood of the categorical label

c is then computed conditioned on the topic assignment

distribution. Since the two cues share the same topic space

and c is inferred from the topic distribution, the inference

of categorical label can be from both cues (bags of words

w and terms a), or from only one of them. Furthermore, in

the case where only one cue is observed, the expected value

of the other cue can be inferred. The reason, as discussed

above, is that the topic-word/term distributions β and η are

learned in the training phase, so that they are correlated

topic-wise. Given the distribution of words for a certain

observed instance, the expected distribution of terms can thus

be inferred via the underlying latent topic distribution. These

two properties of the LM-LDA model are important for the

functionality of its application to visual classification, which

is described next.

IV. CONTEXTUAL MODELING

As discussed above, LM-LDA is able to provided a

principled framework for contextual modeling. In this sec-

tion, we describe two contextual classification tasks, action

recognition and functional object classification, in more

detail, explaining particular difficulties with each task. In

the experiments below, the application of LM-LDA in these

two scenarios are studied. The bag of words representation

together with LDA [27], [34], [29] requires discretization

of the feature space, which can potentially lead to lost

information. This problem can be addressed by using soft

assignment of feature descriptors to words [37].

A. Classification of Action from Visual Motion and Object

Interaction

Recognizing and reasoning about activities of daily living

is an extremely important skill for a robot functioning in hu-

man environments. Traditionally, action recognition is done

using motion features, e.g., STIPs [38]. Recently, [7] argue

that action involving objects strongly depends on the objects

involved, and propose the bag of active object (AO) feature,
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based on which object classes are in contact with the human

hand during the action and which are passively presented.

This feature requires (manual or automatic) detection of the

hand and all objects in the video sequences, whereas a visual

motion feature such as STIP is easy to obtain from data

without supervision. In addition, robot needs to know the

tool to use and environment to carry out the task given by a

human, which makes it important for robot to learn the task

and involved objects mapping as well.

The two cues complement each other: While the STIP

features capture differences between visually different ac-

tions, the AO features instead capture differences between

actions involving different kinds of objects. This implies that

it would be beneficial to classify from both cues simultane-

ously. The labeling requirements for the AO features implies

that this feature might not be accessible for each new instance

to be classified. All these together makes LM-LDA a suitable

classifier.

The LM-LDA is applied in the following way: Every

action clip is a document. Words w are STIP features [38],

quantized according to a codebook learnt from the data.

Terms a are AO features as defined in [7]. The category

label c indicates action class.

Below, experiments with this LM-LDA setup are carried

out, using the dataset from [7].

B. Functional Classification of Objects from Appearance

and Task-Orientated Grasp

An important capability of robots functioning in unstruc-

tured environments is to be able to pick up unknown objects

and use them for a specific task; this is referred to as task-

oriented grasp planning [39], [4]. The planning requires

categorization of previously unseen objects into functional

classes based on how they should be grasped for the purpose

of the current task. The classification is task-dependent: a

knife is grasped differently depending on if the intention is

to cut with it or to hand it over to someone else.

Conversely, how an object is usually grasped for different

tasks, provides rich information to discriminate between

object categories. It is therefore beneficial to use object

appearance and grasp parameters in a contextual manner for

object classification. Furthermore, while grasp information

might be available at training time (each training image

labeled with typical grasps), it is not likely that a new object

instance to be classified comes with this information. All this

together makes LM-LDA a suitable classifier.

The LM-LDA is applied as: Words w are SIFT features

[40], classified as visual words according to a codebook

learnt from the data. Terms a are grasp configurations that

include global hand position, orientation and finger configu-

ration at the single time frame when fingers contact the object

(see Figure 6), classified into R grasp term categories. The

categorical label c is an object class-orientated task, as in

Section IV-A. A document is one object instance, which is

presented with a bag of visual words w, and a bag of possible

task-oriented grasps a.

A/P Objects

Active Objects fridge, microwave, mug/cup, oven/stove,
soap liquid

Passive Objects bed, cell, dish, kettle, monitor, soap liquid,
tooth paste, book, dent floss, door, laptop,
pan, tap, TV, bottle, detergent, fridge, mi-
crowave, pitcher, teabag, TV remote

TABLE I

ACTIVE AND PASSIVE OBJECTS IN THE DATASET FROM [7].

Similarly to the application in Section IV-A, the trained

LM-LDA model can be used to assist classification when

observing a task being performed on an object ,or when ob-

serving just an image of the object. In addition, when seeing

a new object instance, the object category can be inferred,

and then subsequently the most probable grasp configurations

corresponding to different tasks can be predicted.

V. EXPERIMENTS

Experiments were carried out to evaluate the performance

of the LM-LDA model in correspondence with the applica-

tions in Sections IV-A and IV-B separately.

A. Classification of Action from Visual Motion and Object

Interaction

Action classification is evaluated in this experiment with

STIP features as the regular visual cue and AO feature as the

context. For this experiment, the Activities of Daily Living

(ADL) dataset [7] is used – the dataset originally used to

evaluated the AO feature. It contains a large number of video

clips with first-person camera views of 20 people perform-

ing unscripted everyday activities. For this experiment we

selected a representative subset containing 7 daily activities.

The 7 actives are chosen so as to give the subset the same

difficulty level as the original dataset.

The first cue are STIP features, extracted from the video

clip. STIP features are quantized as visual words according

to a codebook of size V = 256, learned from the data. Each

word w in the LM-LDA model is a visual STIP word.

The second cue are AO features. Each AO feature is an

26 dimensional vector which is the scaled detection score of

5 possible active objects and 21 possible passive objects, as

shown in Table I. AO features are quantized as action words

according to a codebook of size R = 30. Each word a in

the LM-LDA model is an AO word.

Parameters are K = 25, α = 0.5, π = 0.1 and κ = 0.1.

Here,α, π, κ, are hyper parameters which are less than one to

ensure the sparsity. The model is comparably robust relating

to the hyper parameters since the Dirichlet distribution has

the well-known ”rich-get-richer” behavior. The parameter

setting here is one of the most common used setting in topic

modeling [41]. The performance will be robust when the

number of topics is sufficiently large to describe the data for

LDA, which has shown in [41], [23], the setting here is a

sufficient number in this case.

Experiments are performed by employing one person’s

data for testing and the rest of the data for training, in

the same manner as in [7]. We run the experiments with

every person as test set; the final result is an average over
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Method Performance

SVM+bag AO [7] 38.31%

SVM+pyramid AO [7] 38.58%

LM-LDA train both, test STIP 38.23%± 2.48% 1

LM-LDA train both, test both 46.04%± 2.90% 1

TABLE II

THE FIRST TWO RESULTS ARE GIVEN BY RUNNING THE ORIGINAL

IMPLEMENTATION OF BAG OF AO AND PYRAMID AO METHOD FROM

[7]. TRAIN BOTH, TEST BOTH INDICATES THAT STIP AND AO ARE USED

IN BOTH TRAINING AND INFERENCE. TRAIN BOTH, TEST STIP

INDICATES THAT BOTH CUES ARE USED FOR TRAINING BUT ONLY STIP

IS USED IN INFERENCE.

all the experiments for each person. Four different settings

were used: a) only STIP features w during both training

and testing (single cue baseline), b) only AO features a

during both training and testing (single cue baseline), c) both

cues w and a accessible during training but only w during

testing (corresponding to the common situation that one cue

is expensive to obtain), and d) both cues w and a accessible

both during training and testing.

Fig. 3 shows the resulting confusion matrices with topic

models. Unlike [7], where one pyramid representation of AO

features is used to represent every video clip, the raw AO

features are used here, where each video clip is a document

with tens to hundreds of raw AO features (words), i.e.,

one AO feature per second in the video clip as given in

the dataset. This is a weaker representation, since it does

not contain any spatial information. Fig. 3(b) shows the

performance with only bag of quantized STIPs features. Fig.

3(c) shows the result of training with both bags of AO and

bags of STIP, but only STIPs are used for inference. In

this case, no object information/detection is applied in the

inference. This result correspond to the third row of Table

II. The added contextual cue at training time increases the

classification result by 7.74% compared to only STIPs, even

though the contextual cue is not present at test time. Table

II shows that it reaches the same level of performance as the

SVM with pyramid presentation of AO.

Furthermore, even though the AO cue is missing in the

inference, the most possible objects involved in the action

can be inferred from the STIP features, without applying

any explicit object detection. Table III shows the top objects

inferred from the LM-LDA model, given STIP feature obser-

vations of different actions. We can see that the model is able

to give noisy but reasonable inference on which objects are

involved in the action. For example, there are several kitchen

items inferred from Making cold food/snack. Furthermore,

comparing Drinking water/bottle and Drinking water/tap, we

see that fridge(active) is assumed to be involved in drinking

from bottle since there are several videos of taking a bottle of

water from fridge; however, tap is instead the first object of

drinking from tap and fridge(passive) is involved since this

action frequently happens in a kitchen scene. On the other

hand, Combing hair and Washing hands/face have similar

object presentation since they both happen in a bathroom

1The mean and standard deviation are derived by repeating the experi-
ments 5 times.

Action Top Objects

Combing hair tap, mug/cup, dish

Washing hands/face tap, mug/cup

Drying hands/face mug/cup, tap, TV

Drinking water/bottle mug/cup, dish, fridge(active)

Drinking water/tap tap, mug/cup, door, fridge(passive)

Making cold food/snack mug/cup, microwave, fridge(passive),

fridge(active), dish

Using cell mug/cup, TV, tap, fridge(passive)

TABLE III

THE MOST PROBABLE OBJECTS INFERRED FROM THE MODEL GIVEN

DIFFERENT ACTIVITY CLASSIFICATIONS. NO DIRECT OBJECT

DETECTION WAS PERFORMED, AND THE ACTION CLASSIFICATION WAS

DONE FROM STIP FEATURES ONLY. THE TOP WORDS WERE GENERATED

BY TAKING THE TOP 10 AO WORDS GIVEN THE CORRESPONDING

ACTION AND SET A THRESHOLD. AO FEATURES ARE NORMALIZED TO

0 ∼ 100 AND THRESHOLD IS SET TO 35 HERE.

with tap and mug/cup present in the scene. This shows our

second contribution.

Finally, Fig. 3(d), shows the result of using 2 cues (AO

and STIPs) in both training and inference, which correspond

to the last row of Table II. The second row is the current

state-of-the-art on the ADL dataset, other comparisons can

be found in [7]. We can see that LM-LDA outperforms the

state-of-the-art on the ADL dataset, thanks to its principled

way of cue-integration. This together with the result in Fig.

3(c), are experimental evidence of our first contribution.

B. Functional Classification of Objects from Appearance

and Task-Oriented Grasp

The training takes place in a leave-one-out manner with

three rounds, where one object instance is left out for testing.

Fig. 5 shows the resulting confusion matrices. The results

cohere with those found in Section V-A, which shows our

first contribution. It can be noted that the classes Knife

and Screwdriver are especially hard to distinguish without

grasp information (Fig. 5(a)). Adding grasp info in the

training enables the topics to pick up on some of the task

specific appearance aspects, increasing performance a bit

(Fig. 5(b)), even though no grasp information is present

at test time. However, the two classes look too similar to

reach a good discrimination performance using appearance

only for testing. If a grasp is observed at test time, the

classification performance is much better. As noted above,

the model can infer a range of allowed actions given just

an object appearance. Fig. 6 gives the top 5 most probable

grasps associated with a testing knife (not present in the

training data) for two different tasks, Hand-over and Tool-

use, which shows our second contribution. The visualized

grasps correspond to intuition: when handing a knife over,

the grasp can be applied from the side using a fingertip grasp

or from the end of the handle, while a knife needs to be

grasped with the whole hand on the handle if it is going to be

used for cutting or carving. Fig. 7 gives more examples with

other objects. In Fig. 7, the most probable grasp is presented

in most cases, and the second most probable grasp is shown

only if the first one is shared with another task. These grasps

are generated by the topics, which can be understood in a

similar way as intention [6]. Hence it can be easily used cross
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Combing hair

Washing hands/face

Drying hands/face

Drinking water/bottle

Drinking water/tap

Making cold food/snack

Using cell

Comb hair

Wash h/f

Dry h/f
Drink w/b

Drink w/t

Make cf/s

Use cell

0.29 0.14 0.14 0.29 0 0.14 0

0.04 0.68 0.2 0.08 0 0 0

0.06 0.19 0.48 0.1 0 0.1 0.06

0.15 0 0.08 0.38 0 0.38 0

0 0 0 0 0 0.5 0.5

0 0 0.33 0.67 0 0 0

0.2 0.2 0.2 0.1 0 0 0.3

(a) Train STIP, test STIP: 30.49%

Combing hair

Washing hands/face

Drying hands/face

Drinking water/bottle

Drinking water/tap

Making cold food/snack

Using cell

Comb hair

Wash h/f

Dry h/f
Drink w/b

Drink w/t

Make cf/s

Use cell

0.14 0.14 0.29 0.14 0.14 0.14 0

0 0.52 0 0.16 0.28 0.04 0

0.1 0.06 0.19 0.16 0.03 0.35 0.1

0 0 0.15 0.38 0 0.46 0

0.5 0.5 0 0 0 0 0

0 0 0.17 0.17 0 0.67 0

0.1 0.1 0.1 0.2 0 0 0.5

(b) Train AO, test AO: 34.4%

Combing hair

Washing hands/face

Drying hands/face

Drinking water/bottle

Drinking water/tap

Making cold food/snack

Using cell

Comb hair

Wash h/f

Dry h/f
Drink w/b

Drink w/t

Make cf/s

Use cell

0.37 0.06 0.23 0.17 0 0.17 0

0.05 0.72 0.14 0.07 0 0.02 0

0.05 0.15 0.53 0.07 0 0.11 0.08

0.14 0 0.06 0.62 0 0.15 0.03

0 0 0.1 0.1 0 0.5 0.3

0 0 0.13 0.67 0 0.2 0

0.08 0.22 0.22 0.24 0 0 0.24

(c) Train both, test STIP: 38.23%

Combing hair

Washing hands/face

Drying hands/face

Drinking water/bottle

Drinking water/tap

Making cold food/snack

Using cell

Comb hair

Wash h/f

Dry h/f
Drink w/b

Drink w/t

Make cf/s

Use cell

0.49 0.2 0.17 0.14 0 0 0

0.05 0.78 0.13 0.01 0.02 0 0.01

0.08 0.13 0.47 0.09 0 0.12 0.1

0.11 0 0.03 0.62 0 0.25 0

0 0.3 0.2 0 0 0.5 0

0.03 0 0.1 0.5 0 0.37 0

0.04 0.18 0.16 0.12 0 0 0.5

(d) Train both, test both: 46.04%

Fig. 3. Confusion matrices for LM-LDA classification, different settings.

Fig. 4. All the instances used in the Appearance and Task-Orientated Grasp experiment: 6 Bottles, 3
Glasses, 4 Hammers, 6 Mugs and 6 knives.

Bottle

Glass

Hammer

Knife

Mug

ScrewDriver

Btl Gls Hm Knf Mug SD

1 0 0 0 0 0

0 0.33 0.33 0 0.33 0

0 0 1 0 0 0

0 0 0 0.67 0 0.33

0 0 0 0 1 0

0 0 0 0.33 0 0.67

(a) Train SIFT, test SIFT: 77.78%

Bottle

Glass

Hammer

Knife

Mug

ScrewDriver

Btl Gls Hm Knf Mug SD

1 0 0 0 0 0

0 0.33 0.33 0 0.33 0

0 0 1 0 0 0

0 0 0 0.67 0 0.33

0 0 0 0 1 0

0 0 0 0 0 1

(b) Train both, test SIFT: 83.33%

Bottle

Glass

Hammer

Knife

Mug

ScrewDriver

Btl Gls Hm Knf Mug SD

1 0 0 0 0 0

0 0.67 0.33 0 0 0

0 0 1 0 0 0

0 0 0 0.83 0 0.17

0 0 0 0 1 0

0 0 0 0 0 1

(c) Train both, test both: 91.67%
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0 0 0 0 0 0 0 0 0 0 0.670.33 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.670.33

0 0 0 0 0 0 0 0 0 0 0 0 0 0.670.33

(d) Train both, test SIFT
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Hand over B
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Hand over G
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Tool use H
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Tool use K
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m M
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d
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se Sd

0.670.33 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.67 0 0 0 0.33 0 0 0 0 0 0 0 0

0 0 0 0.67 0 0 0.33 0 0 0 0 0 0 0 0

0 0 0 0.330.33 0 0.33 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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1

(e) Train both, test both: 59.52%

Fig. 5. Confusion matrices for the Task-Orientated Grasp experiment. (a-c) Confusion matrices for object classification (marginalized
over grasp). (d-e) Confusion matrices for task classification (black square indicating tasks with the same object class, such as ”Pouring
from Mug” and ”Dishwashing Mug”, which are impossible to distinguish given appearance only). Parameter settings: V = 192, R = 192,
K = 60 α = 0.5, κ = 0.1 and π = 0.1

Hand-over Knife Tool-use Knife

Fig. 6. The most probable grasps on an unseen knife with task-oriented grasp Hand-over and Tool-use.

Hand-over Bottle Pouring from Bottle Hand-over Glass Dishwashing Glass Hand-over Hammer Tool-use Hammer Hand-over Mug Dishwashing Mug Hand-over Screwdriver Tool-use Screwdriver

Fig. 7. Grasp examples on other objects.
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different hand configurations and further generate precise

grasps as in [6].

VI. CONCLUSIONS

We proposed a new model for contextual modeling, La-

beled Multi-modal LDA, which models two separate cues

as generated from the same topic space, for the purpose of

robotic cognition. Using this model it is possible to encode

information about the correlation between two contextually

dependent cues, so that the classification makes use of this

information even if only one of the cues are present at

execution time.

Furthermore, information about the missing cue can be

inferred from the model, given the other cue, available for

observation. This is highly relevant for, e.g., robotic grasping

applications, where suitable grasps can be inferred from

object appearance, given that the model has been trained

with grasps and object appearance in concordance.

Experiments showed that the LM-LDA model outperforms

the state-of-the-art method on the highly challenging Activ-

ities of Daily Living (ADL) dataset [7].

Directions of future research include the addition of spatial

information to the representation, as discussed in Section

II. Another avenue to explore is to include private topic

spaces for the two cues in addition to the shared topic

space. The highly related topics will then be captured in the

shared topic space and information private to one of the cues

will be explained by the private topics. An example in our

grasping application is appearance aspects that are unrelated

to grasp: When modeling the class Mug, topics relating to

the appearance of mug handles would be generated from

the topic model common to the appearance and grasp cue,

while topics relating to the type of pattern printed on the

mug would be generated from an appearance-only topic

model. We also plan to perform real world grasping test on

robots, generating the grasps from the model given object

appearance.
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