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Abstract— We propose a feedback-based solution for the
accurate manipulation of an unknown object in hand. This
method does not explicitly models friction and surface geometry
details, but employs a fast feedback loop based on visual and
tactile feedback to perform robust manipulation even in the
presence of unexpected slippage or rolling.

At every control step, fingertip motions are computed to
realize the intended object relocation, employing a composite
position/force controller. Subsequently inverse hand kinematics
is employed to retrieve joint-level motions, which are imple-
mented on the robot with a position servo loop.

We evaluate our method on a setup of two KUKA robot arms,
each equipped with a tactile sensor array as end-effectors to
perform the object manipulation task. The experimental results
show the feasibility of our proposed method, even in presence
of slippage or external disturbances.

I. INTRODUCTION

Humans use a large number of in-hand object manipu-

lation behaviors in their everyday lives. For example, we

grab our mobile phone and change its pose to make a call

or send a message. We pinch a pen and change its pose in

hand to a comfortable posture for writing. Such basic and

simple behaviors can be performed easily even by children.

However, they cannot yet be realized by the most advanced

robot hands. In this paper, we focus on this challenging task

of dexterously manipulating an object within a multi-fingered

robot hand, i.e. moving the object with respect to the hand.

A large body of work addressing this problem follows

an analytical approach based on robot manipulation theory

[11]. While sound, this theory makes strong assumptions in

order to perform dexterous manipulation tasks: the object

properties (friction, geometry, mass, etc.), the relative motion

between the fingertips and the object, and the robot hand

model must be known. Using this knowledge, the robot

hand can deliberately plan its motion offline and implement

accurate manipulation tasks in the real world [7].

In contrast to this open-loop planning approach, also

many feedback-based approaches have been proposed. For

example, [17], [18] proposed vision-free grasping and ma-

nipulation for a triple-fingered robot hand. Solely relying on

tactile feedback, they define the current object pose by a

virtual frame calculated from estimated contact points and

relocate the object w.r.t. this frame following an empirical

feed-forward control model. However, because visual feed-

back about the actual object pose is disregarded, accurate

control in the presence of unexpected slippage or rolling is

impossible.
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Wimboeck et al [19] also use the virtual frame idea to

realize object-level impedance control. Their model-based

control method requires an accurate robot dynamics model to

compute desired joint torques. Grupen et al [10] proposed a

control basis framework to perform complex manipulation

tasks. They use gradient descent to search for maximum

grasp quality configurations employing torque sensor feed-

back and multiple probing of the object surface. Finally,

they consider dexterous manipulation by sequencing a series

of stable grasps. Both methods can solve the manipulation

task by torque-controlled robots, but their methods are not

suitable for position-controlled ones.

In this paper, we propose the integration of vision, tactile

sensing and proprioception to accurately perform object

manipulation tasks. Concretely, we use vision to extract the

object pose, joint-angle feedback and forward kinematics to

estimate contact positions w.r.t. the robot frame, and tactile

sensing to estimate contact forces. All sensory feedback

signals are incorporated into a closed-loop manipulation

controller.

Conceptually, we divide the object manipulation process

into two stages: a local object relocation step and a global

regrasping step. The local controller reactively moves the

object by a small amount limited by the motion range of

the hand. A higher level planner will rearrange the finger

configuration to allow continuing the local motion. To this

end, a finger is selected for relocation, while the other fingers

maintain a stable grasp. The selected finger actively explores

the object’s surface to find a new optimal grasp configuration.

In our previous work, we have employed physics-based

simulation to show the feasibility of this approach [5].

The present paper will focus on an evaluation of the local

manipulation controller, i.e. the first stage, on a real robot.

The paper is arranged as follows. In the next section, we

discuss our methods to estimate the object pose and contact

positions/forces from visual and tactile sensors. In section III

we discuss the manipulation scenario and the local manipula-

tion controller, before in section IV the experimental setup is

detailed and the relocation capabilities are evaluated. Section

V discusses the results and parameter choices. Finally, we

conclude with a summary and an outlook.

II. OBTAINING OBJECT POSE AND CONTACT LOCATIONS

Focusing on the manipulation task, we employ a fiducial

marker attached to the object in order to easily estimate

the object’s 6D pose. The monocular camera was calibrated

applying standard calibration methods using a known 3D

calibration object [4]. The BCH-code-based marker provides
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TABLE I: static object pose estimation variance

position [cm] orientation [deg]

raw filtered raw filtered

x ± 0.052 ± 0.012 roll ± 0.017 ± 0.004

y ± 0.008 ± 0.002 pitch ± 0.013 ± 0.003

z ± 0.052 ± 0.012 yaw ± 0.004 ± 0.001

four highly reliable and efficiently detectable key-points (at

the corners) with known coordinates with respect to the

object frame. From these we can calculate the object’s pose

employing standard pose detection from planar targets [20].

To evaluate the accuracy of this pose estimation method,

we compare its results to ground truth data obtained from

a stereo-camera system (stereo basis: 20cm). The results

are shown in Tab. I given a static, known object pose. The

position error is naturally dominated by the depth estimation

error. The raw pose estimation results considerably vary over

time due to visual sensor noise. To reduce this variance, we

employ a sliding-window averaging filter (across 10 sam-

ples), which reduces variance by a factor of four to five, thus

providing suitable feedback signals for robot manipulation.

As can be seen from Fig. 1, showing the pose estima-

tion result and the recorded pose error during a human

manipulation sequence, the angular error gets larger if the

marker’s normal and the camera’s view-vector become more

(anti)parallel. However, both position and angular error stay

in an acceptable range for the envisioned manipulation task.

The marker-detection and pose estimation system runs at

the full camera frame rate of 30Hz, which is sufficient for the

robot control cycle. In more natural manipulation scenarios,

the marker-based pose detection module could be replaced

by marker-less object tracking frameworks such as [3] or

even Microsoft Kinect-based methods such as [9].

Another, even more important feedback channel for ma-

nipulation is tactile sensing. As absolute accuracy of human

tactile sensing is also limited, we propose to estimate contact

positions and force from a modern tactile sensor providing

an array of 16×16 tactels with a spacing of 5mm in each

direction [14]. The sensor is tuned towards high frame rates

(up to 1.9 kHz), rendering a use for real-time robot control

feasible. It exploits the piezo-resistive sensing principle,

measuring changes in resistance of a conductive foam due

to an applied normal force.

As a first processing step we need to identify the contact

region on the sensor, which typically extends over a larger

image region due to the softness of the sensor foam. To

this end, we employ connected component analysis [15],

well known from image processing, to extract all con-

nected regions in the binarized tactile image and choose the

largest one as the considered contact region R – neglecting

all smaller regions as originating from noise or spurious

contacts. An example contact region is shown in Fig. 2.

Subsequently, we compute the overall contact (normal) force

f as the sum of forces fij within the contact region and the

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

p
o

s
it
io

n
 e

rr
o

r 
n

o
rm

(c
m

)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

o
ri
e

n
ta

ti
o

n
 e

rr
o

r 
n

o
rm

(d
e

g
)

vision frame no.

frame no: 97 192 305 411 486

Fig. 1: Human manipulation sequence and obtained pose

estimation error.

Fig. 2: contact blob and center of gravity

contact position c as the center of gravity (cog) of R:

f =
∑

ij∈R

fij c = f−1
∑

ij∈R

fijcij , (1)

where cij are the discrete coordinates of the tactels on the

sensor surface. Due to the averaging effect from multiple

tactels composing a contact region, we obtain a sub-tactel

resolution for the contact position as can be seen from

Fig. 3. Exploiting proprioceptive feedback and calculating

the forward kinematics, the 2D contact location on the sensor

is mapped onto a 3D Cartesian position.

III. LOCAL MANIPULATION CONTROLLER

Conventional grasp and manipulation planning methods

[2], [8] uncouple the planning from the control stage. The

planning stage strongly depends on global knowledge about

the geometry of the object and the fingertips. Certain works

also explicitly consider spherical finger tips to facilitate

the geometry-based planning process [16]. Furthermore, the

friction coefficients for all contacts are required to evaluate

grasp stability.

In real world scenarios, especially when handling un-

known objects, this information is not available. Nevertheless

humans can easily manipulate objects without this know-

ledge. We assume that the incredible dexterity of human

manipulation originates from tight control loops employing
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Fig. 6: Low level, local manipulation control scheme.

an inverse hand kinematics module to compute actual joint

velocities. Fig. 6 summarizes this control scheme. For a more

detailed introduction of the local manipulation controller we

refer to our previous work [6].

IV. EXPERIMENTAL EVALUATION

In contrast to our previous works, where we proved the

feasibility of the manipulation approach in physics-based

simulation only (due to the lack of appropriate tactile sen-

sors), in the present work we evaluate the method using

two KUKA LWR arms, each equipped with a tactile sensor

module. Thus, both arms act as two large fingers with tactile-

sensitive fingertips.

The information about the shape, size, and friction of

the manipulated object is not available to the robot. The

experimental setup is shown in Fig. 7. The camera observes

the object from the top. We point out that we use only the

joint encoder feedback and not the torque feedback provided

by the KUKA arms. Vision feedback frequency is 30Hz,

and we limit the tactile feedback to the same frame rate.

They are both processed by a smoothing filter averaging

within a window 20 frames. Proprioceptive feedback and

joint angle control rate are both fixed at 125Hz. We extract

joint angle measurements and send joint control commands

via the KUKA FRI interface [13], [12]. All controller gains

are manually tuned to guarantee the stability of controllers

in all manipulation experiments.

The whole manipulation process comprises three phases:

(a) Vision-guided grasping of the object.

(b) Moving along world’s Z, X , and Y axis in sequence.

(c) Rotating around Z and X axis.

Each phase is described in detail in the following.

tactile sensor

calibrated camera

Z

X

Y

Fig. 7: Experimental setup using two KUKA arms with

attached tactile sensor arrays as large fingertips.
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Fig. 8: Evolution of force (f1, f2 of both tactile sensors /

fingertips) and positional errors during translating motion.

x,y,z errors are mapped to red, green, blue colors resp.

a) Vision-guided grasping: The first stage is to guide

the arms to contact the object, exert the planned grasp force

(see III-B) and hold the object. The force planner – originally

designed for multi-fingered hands – has been simplified for

the two-arm scenario: While the contact force vectors still

point towards the centroid of contact locations (see Fig. 5),

their magnitudes are set equally to a predefined value.

To establish object contact, we apply a simple, hard-coded

opposition strategy: Starting from the estimated pose (x, y, z)
of the marker attached to the object we attempt to drive

both fingertips, i.e. arm end-effectors, to the virtual grasp

point (x, y, z − z0) slightly below the marker frame, where

the offset z0 is a constant determined by the size of the

tactile sensor module. The approaching motion of both arms

is stopped as soon as contact to the object is detected by the

tactile sensor.

The coarse calibration of the tactile sensors does not pro-

vide accurate enough force feedback to stably hold the object

with a pure force-feedback controller. Rather, the object

will slowly drift away. However, exploiting visual feedback

about the object position too, the composite position/force

controller successfully accomplishes the grasping task.

b) Translating motion: In the first experiment, the

object is moved 10cm along the world’s z, x, and y axes in

sequence. The resulting trajectories for force and positional

errors are shown in Fig. 8. As can be seen from the

deflections in the bottom subfigure, a new target pose was

set after 5, 22, and 35 seconds. In all cases the positional

error quickly decays to the noise level.

Considering the force error trajectories, we see that the

motion along the y-axis generates most deviations. This

is because, this motion direction is parallel to the contact

normal, thus heavily demanding the composite force/position

controller. As soon as the positional error along the y-axis

stabilizes around zero, also the force error starts to decay.
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(a) rotational and positional errors
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Fig. 9: Error evolution rotating around world’s z-axis

c) Rotating motion: Secondly, we will show how the

object orientation can be controlled. In each experiment,

firstly the object will be lifted 10cm along the z-axis before

being rotated around the z resp. x axis. The results of both

experiments are shown in Figures 9 and Fig. 10. Again, the

positional and rotational errors quickly decay after setting

a new target pose. However, rotational errors are corrected

more slowly due to a more conservative choice of controller

gains.

Looking at the force error trajectories, we observe that

the errors do not completely decay anymore. This is due

to the fact, that the physically applied force direction isn’t

normal to the sensor surface anymore. However, the sensor

only measures normal forces. Again, incorporating visual

feedback and employing the composite position/force con-

troller we can realize stable object rotation nevertheless. All

experiments are also shown in the accompanying video [1].

0 10 20 30 40 50 60 70 80
−15

−10

−5

0

5

o
ri
e

n
ta

ti
o

n
 d

e
v
ia

ti
o

n
(d

e
g

)

 

 

roll

pitch

yaw

0 10 20 30 40 50 60 70 80
−5

0

5

10

15

p
o

s
it
io

n
 d

e
v
ia

ti
o

n
 (

c
m

)

time (sec)

 

 

move−x

move−y

move−z

(a) rotational and positional errors
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Fig. 10: Error evolution rotating around world’s x-axis

V. DISCUSSION

As we pointed out in the discussion of the grasping stage,

the force calibration of the piezo-resistive sensor is too

coarse to allow force-only feedback control for grasping.

Differing force magnitudes at opposing contacts will lead

to a drift of the object. However, as we have seen from

our experimental results, it is not necessary to improve on

the force measurement accuracy of the hardware. Rather, we

can compensate for this weakness using intelligent control

strategies.

In the present work, we relied on object pose feedback

from vision to solve this issue using a composite position and

force controller. However, even if object pose feedback is not

available, we can compensate for drifts using proprioceptive

feedback: Aiming to stably hold an object, we will expect

a stable end-effector pose as well (within noise level).

However, if we observe a drift of the end-effector pose, we

can trace it back to force deviations. In other words, instead

of using external feedback about the object pose, we could

also employ proprioceptive feedback to estimate the current
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object’s pose and use that in the composite controller to

compensate for drifts.

As detailed in our previous work [6], the composite

controller computes the final control signal by superimposing

the control signals from both sub controllers, the position and

force controllers. Naturally, linear superposition may lead to

destructive interference, i.e. non-zero control inputs from sub

controllers may add up to zero.

To circumvent this effect, we exploit the fact, that PI-

type controllers can compensate for systematic errors, thus

realizing higher priority control. That is, the more important

control variable will be controlled using a PI-type controller,

while the sub-ordinated one employs a P-type controller. In

our case, controlling the pose of the object, the position

control part is most important, thus using a PI-type controller.

In contrast, force is controlled using a P controller. This also

contributes to the poor tracking results visible in Figures 9b

and 10b.

As a matter of fact, PID controllers are sensitive to proper

parameter tuning. We obeyed general rules for PID gain

tuning: Firstly Kp parameters are regulated until the system

begins to oscillate. Then the derivative gain Kd is employed

to reduce oscillations. Finally, the integration component Ki

is added to eliminate the steady state errors. We used the

same parameter sets for both arms.

VI. SUMMARY

We proposed a reactive control strategy to realize local

manipulation motions for unknown objects. In contrast to

traditional manipulation strategies, which require a lot of

information about the object and which plan in an offline

fashion, our method plans in an online fashion and employs

minimal object and world information. The position and

contact force planners are designed independently and are

coordinated by a composite controller. Finally, we proved

the feasibility of the method to manipulate unknown objects

using a real robot platform composed from two KUKA

arms with attached tactile sensor arrays acting as two large

finger tips grasping the object. Because the proposed method

does not depend on the object geometry, it can be easily

employed for differently shaped objects as was shown in the

accompanying video [1].

We are also working on improving the tactile sensing

capabilities of our anthropomorphic Shadow Robot Hand.

Once new tactile sensors will be available, we will extend

the experimental evaluation to the regrasping strategy as

well, which already proved feasible in our previous work

employing physics-based simulation [5].
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