
  

  

Abstract—The Canadarm2, also named Space Station 
Remote Manipulator System (SSRMS), is a 7-joint redundant 
manipulator. Without spherical wrists, the singularity analysis 
and avoidance of these manipulators are very difficult. In this 
paper, a method is presented to analytically identify its singular 
configurations based on the elementary transformation of 
Jacobian matrix. Firstly, we constructed a general kinematics 
model to describe them in a united manner. Correspondingly, 
the differential kinematics equation and the modified form are 
derived. Secondly, the singularity conditions are isolated and 
collected in a 3×4 sub-matrix by several times row 
transformation of the modified Jacobian matrix, which is 
partitioned into a block-triangle matrix. Finally, all the 
singularity configurations are determined by analyzing the rank 
degeneracy conditions of the 3×4 sub-matrix. The proposed 
method isolates the singularity conditions, and collects them in a 
3×4 sub-matrix, largely reducing the computation workload. 

I. INTRODUCTION 
The Canadarm2 (or SSRMS) is a 7-DOF redundant 

manipulator. The three axes of the shoulder/wrist do not 
intersect in a common point, i.e. they have not spherical 
wrists/shoulders. Thus, it is very difficult to solve the inverse 
kinematics problem [1] and determine the singular 
configurations analytically of the SSRMS.  

Recently, Nokleby and Podhorodeski [2] successfully 
used the reciprocity-based methodology to identify the 
singularities of CSA/ISE STEAR test-bed manipulator, a 
ground-based manipulator with link lengths and offsets. 
Nokleby [3] further analyzed the singularities of the SSRMS 
using the similar method. Dupuis [4] presented the singular 
vector algorithm, which is actually a reformulation of the 
reciprocity-based methodology using linear algebra terms 
instead of the reciprocal screw. Kong and Gosselin [5] 
proposed a dependent-screw suppression approach for the 
singularity analysis of Canadarm2. Nokleby and 
Podhorodeski [6] considered the modified Canadarm2 
(incorporating two additional link lengths not found in the 
Canadarm2), and identified the complete set of singular 
configurations for the Canadarm2 and its modified version 
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using reciprocity-based methodology. 
Up to now, the reciprocity-based methodology is thought 

to be the most effective method for the singularity analysis of 
a redundant manipulator [5]. One key issue of this approach is 
to find a general expression of a reciprocal screw for a group 
of six linearly dependent screws. It is usually not easy to find 
it, which most depends on the personal experience. In order to 
preliminarily determine the possible singularity conditions, 
the determinant of a 6×6 Jacobian sub-matrix must be first 
derived analytically. This also increases the difficulty of 
using this method. Furthermore, the singularity avoidance 
problem is not decomposed into lower dimension 
sub-problems to reduce the computation workload, similar 
with previous methods based on “workspace decomposition” 
[7-8]. 

In this paper, a method based on the elementary 
transformation of Jacobian matrix is presented to analyze the 
singularity configurations of SSRMS manipulator. The 
produced matrix has a block-triangle form, similar with that 
of a redundant manipulator with spherical wrist [7, 9]. It is 
partitioned into four sub-matrices----two 3×4 sub-matrices 
(the upper-left and lower-left sub-matrices), a 3×3 sub-matrix 
(the upper-right sub-matrix) and a 3×3 null matrix (the 
lower-right sub-matrix). The upper 3×7 block (composed of 
the upper-left 3×4 and the upper-right 3×3 sub-matrices) is 
proved to be full rank. Therefore, the singularity conditions 
are isolated and collected in the other 3×4 sub-matrix. Then, 
the singularity determination of the 6×7 Jacobian matrix is 
reduced to identify the rank degeneracy condition of the 3×4 
sub-matrix. Compared with previous methods, the singularity 
analysis is greatly simplified.  

II. THE MODEL OF THE CANADARM2 
In the construction and maintenance of the International 

Space Station, the Canadarm2 has been playing important 
roles. It was also used to support the on-orbit experiments, 
extra-vehicular activity (EVA) and scientific activities 
onboard the ISS. As Ref. [6], a general kinematics model is 
constructed by adding two additional links offsets to the 
practical Canadarm2. Its DH (Denavit-Hartenberg) frames 
are defined in Fig. 1 (when the joint angles are all zeros), 
where zi-1 is the rotation direction of the ith joint (denoted by 
Ji). Frames {x0y0z0} and {x7y7z7} are respectively the base 
frame and the end-effector frame of the manipulator. The 
corresponding DH parameters of each link are listed in Table 
I. Parameters a2 and a5 (denoted as b and g in Ref. [6]) are the 
additional link offsets, not found in the actual Canadarm2. 
That is to say, by setting a2 and a5 to zero, the results obtained 
for the modified Canadarm2 can be extended to the actual 
Canadarm2. 
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Fig. 1 The DH Frames of the General Kinematics Structure 
(Zeros-Displacement Configuration) 

TABLE I THE DH PARAMETERS OF THE 7-DOF MANIPULATOR 
Link i /iθ D  /iα D  / mia  / mid  

1 0 90 0 d1 
2 180 90 -a2 d2 
3 180 0 a3 d3 
4 0 0 a4 0 
5 0 90 a5 0 
6 180 90 0 d6 
7 0 0 0 d7 

III. MODIFIED DIFFERENTIAL KINEMATICS EQUATION 

A. The Differential Kinematics Equation 
The differential kinematics equation of a manipulator can 

be written as: 
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where, 3
e ∈ω R  and 3

e ∈v R  respectively denote the 
angular and  linear velocities of the manipulator’s 
end-effector; [ ] 7

1 2 7, , ,θ θ θ= ∈Θ R"  is a vector formed by 
all joint angles of the manipulator; ( ) 6 7×∈J Θ R  is the 
Jacobian matrix, establishing the relationship between the 
joint rates and end-effector velocities. 

For a manipulator with n DOF(in this paper, n=7), the 
Jacobian matrix can be described as: 
 ( ) [ ]1 2, , , n=J Θ J J J"  (2) 

According to the definition, the ith column of it is 
calculated by the following equation: 
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where, -1iz  denotes the unit vector of the ith joint’s 
rotation axe; -1ir  is the position vector of the (i-1)th frame’s 
origin; -1i e→r  is the vector from the origin of the (i-1)th to that 
of the end-effector frame; 7e =p r . 

B. Modified Joint Screws and Jacobian Matrix 
The right part of (3) can be factored as: 
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where, I3×3 is a 3×3 identity matrix; e
×p  is a 

skew-symmetric matrix which is given by:  
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If matrix M and vector iS  are defined as follows: 
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Equation (4) can be written as: 
 i i=J M Si  (8) 

Vector iS  is a 6×1 vector similar with the joint screw [6], 
whose last three rows is actually -1 -1

ref ref
i i ref→×z r . 

Substituting (8) into (2) yields: 
 ( ) ( )=J Θ M S Θi  (9) 

In (9), ( )S Θ  is a matrix formed as 

( ) [ ]1 2 7,  ,  ,  =S Θ S S S" . For the convenience of discussion, 

iS  is called the modified joint screw of joint i, and ( )S Θ  is 
called the modified Jacobian matrix. Known from (6), the 
matrix M is invertible. Then, the matrices ( )J Θ  and ( )S Θ  
have the same singular conditions, according to (9). As the 
expression of iS  is generally simpler than that of iJ , we use 

( )S Θ  instead of ( )J Θ  to analyzed the singularity 
configurations of a redundant manipulator. 

Substituting (9) into (1), the following equation is 
obtained: 
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Equation (10) can be written as the following expression: 
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The term on the left-hand side of (11) can be defined as 
follows: 
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From (11) and (12), the modified differential kinematics 
equation is obtained: 
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Different reference coordinate system does not change the 
singular conditions of a manipulator. Choosing the 5th frame 
as the reference frame [6], the modified Jacobian matrix has a 
concise form. Correspondingly, the modified joint screws can 
be derived as follows:  

( )
( )
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[ ]5
3 3 45 4 5 3 45 4 5 50 1 0 0 Ta s a s a c a c a= − − + +S  (16) 

[ ]5
4 4 5 4 5 50 1 0 0 Ta s a c a= − +S  (17) 

[ ]5
5 50 1 0 0 0 Ta=S  (18) 

[ ]5
6 0 0 1 0 0 0 T=S   (19) 

[ ]5
7 6 6 6 6 6 60 0 Ts c d c d s= − − −S  (20) 

where, sin ,   cos ,i i i is cθ θ= = ( )sin ,ij i js θ θ= +

( )cos ,ij i jc θ θ= + ( )sin ,ijk i j ks θ θ θ= + + ( )cosijk i j kc θ θ θ= + + . 

IV. SINGULAR ANALYSIS BASED ON THE ELEMENTARY 
TRANSFORMATION 

According to (14) ~ (20), the modified Jacobian matrix is 
as follows: 

( )5 5 5 5 5 5 5 5
1 2 3 4 5 6 7

2 345 345 6

2 6

2 345 345

41 3 345 43 4 5 6 6
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61 3 345 63 64 5
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where, 
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61 3 2 345
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63 3 45 4 5 5

64 4 5 5
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Observing the matrix 5S  given in (21), we can simplify 
the forms of the 4th ~ 7th columns by some elementary 
transformations, since they have relative simple expressions. 
Firstly, the 6th row of 5S  is replaced by the sum of it and 5-a  
times of the 2nd row. The row operation is represented as 

6 5 2 6R a R R− → , where Ri denotes the ith row. The 
corresponding elementary matrix is given as follows:  

 ( )1 6 5 2 6

5

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1

ET R a R R

a
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where, ET is the abbreviation of “elementary 
transformation”; P1 denotes the elementary matrix 
corresponding to 1st elementary row transformation. The 
matrix produced by this transformation of 5S  is then 
obtained as: 
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1
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According to (23), the last three elements of the 1st row 
and the 4th~ 6th rows have similar forms: two elements are 
zeros and the last element is a multiple of s6 or c6. Then two 
more elementary row transformations can further simplify the 
matrix given in (23). They are respectively 5 6 1 5R d R R+ →  
and ( )6 5 6 4 6/R a d R R+ → , i.e. adding 6d  times of the 1st 
row to the 5th row, and adding ( )5 6/a d  times of the 4th row 
to the 6th row. The elementary matrices corresponding to the 
two operations are denoted by 2P  and 3P . They are written 
as follows: 

( )2 5 6 1 5
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0 1 0 0 0 0
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The resulting matrix after the above transformations is: 
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where, “*” denotes the 1~4th columns of ( )5S Θ . The last 
three elements of the 5th ~ 6th rows of the matrix shown as (26) 
are all zeros. The sub-matrix formed by the last three 
elements of the 1st and the 4th rows is written as: 

 

6

65
1 4,5 7

6 6

0 0
1 0
0 1 0
0 0

s
c

d c

− −

⎡ ⎤
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Since s6 and c6 can not simultaneously equal to zeros, the 
rank of the matrix Q is always 3, i.e. Rank(Q) = 3. If s6=0 
(c6=±1), all the elements of the 1st row of Q will be zero; else, 
one of the 1st and 4th rows can be transformed to be zero after 
an elementary row transformation. In the following contents, 
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the singularity configurations of the SSRMS-type 
manipulator will be completely identified by analyzing the 
two cases: s6=0 and s6 ≠ 0. 

A. Singular Analysis with s6 = 0 
1) Singularity Condition Separation 

When 6 0s = , c6=±1, the matrix ( )5S Θ� , shown in (26), 
can be written as (28). Observing the matrix given in (28), the 
last three elements of the 1st , 5th and 6th rows are all zeros. If 
the 4th row within the matrix is switched with 1st, a 3×3 null 
sub-matrix is formed. This row operation is denoted as 

1 4R R↔ , and the corresponding elementary transformation 
matrix is given as(29). 

 
5
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⎡ ⎤
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Then, the matrix obtained by exchanging the 1st row and 4th 
row of 5S�  has the following forms: 

 11 125 5
4

21 3 3

ˆ ˆ
ˆ ˆ= ˆ

×
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S S
S P S

S O
i  (30) 

where, 3 3×O  is a 3×3 zero matrix; the others sub-matrices 
are as follows: 

 
41 3 345 43 4 5
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J d c J a s
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T
2 345 51 6 2 345 61 5 2 5 6 41

345 52 6 345 3 345 5 6 3 345
21

63 5 5 6 43
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/
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0 0 /
0 0 /

s c J d s c J a c a d J
s J d s d s a d d c

J a a d J
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⎡ + + + ⎤
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Equation (30) shows that the modified Jacobian matrix 
( )5S Θ , given in (21), can be transformed to a block-triangle 

matrix, after 4 times elementary transformations. 
According to the characteristics of matrix rank, the 

following inequality holds: 
 ( ) ( )12 11 12

ˆ ˆ ˆrank rank 3⎡ ⎤≤ ≤⎣ ⎦S S S  (34) 

On the other hand, the determinate of the sub-matrix, given 
in (32), can be calculated as: 

 ( )
6

12 6

0 0
ˆdet 1 0 1 0

0 1 0

d
d

±⎡ ⎤
⎢ ⎥= ± = ± ≠⎢ ⎥
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S  (35) 

From (35), 12Ŝ  is full rank, i.e. ( )12
ˆrank 3=S . The rank of 

the block-triangle matrix 5Ŝ , given in (30), can be computed 
according to the following equation [10]: 
 ( ) ( ) ( )5

12 21
ˆ ˆ ˆrank rank rank= +S S S  (36) 

If 5Ŝ  is singular, ( )5 ˆrank 6<S . According to (36), the 

equivalent condition: 
 ( )21

ˆrank 3<S  (37) 

Then, the singularity configurations for 6 0s =  can be 
identified by analyzing the rank deficient conditions of a 3×4 
sub-matrix 21Ŝ . In order word, the singularity conditions 
originally distributed in the 6×7 matrix ( )5S Θ  with 6 0s =  
are collected in a 3×4 sub-matrix. The above process is called 
“singularity condition isolation”.  

 
2) Singular Configuration Identification 

As discussed above, the singularity conditions are 
separated and collected in the 3×4 sub-matrix 21Ŝ . Since 

( ) ( )T
21 21 21

ˆ ˆ ˆrank rank=S S S , where T
21 21

ˆ ˆS S  is a square matrix, 

the inequality (37) holds if and only if: 
 ( )T

21 21
ˆ ˆdet =0S Si  (38) 

By using Cauchy-Binet formula [11], the determinant of 
T

21 21
ˆ ˆiS S  can be expressed as 

 ( )
4

T 2
21 21

1

ˆ ˆ ˆdet = i
i

M
=
∑S Si  (39) 

where, ˆ
iM  is defined as the distinct, order-3 minor of the 

sub-matrix 21Ŝ  for i=1,..,4. According to (38) and (39), the 
singularity conditions of 21Ŝ  are determined by the following 
equations: 
 ( )ˆ 0     1, , 4iM i= = "  (40) 

Using symbol 21,
ˆ

kS  to denote the kth column vector of 21Ŝ , 
ˆ

iM  can be calculated as follows:  

 
( )

( )( )
1 21,1 21,2 21,3

2 3 4 1 3 4 4 2 3 6

ˆ ˆ ˆˆ det

   /

M

s a s a c a dη η η

⎡ ⎤= ⎣ ⎦

= − + +⎡ ⎤⎣ ⎦

S S S
 (41) 

 ( )2 21,2 21,3 21,4
ˆ ˆ ˆˆ det 0M ⎡ ⎤= =⎣ ⎦S S S  (42) 

 ( )3 21,3 21,4 21,1
ˆ ˆ ˆˆ det 0M ⎡ ⎤= =⎣ ⎦S S S  (43) 

 ( )4 21,1 21,2 21,4 4 2 2 3 6
ˆ ˆ ˆˆ det /M a s dη η⎡ ⎤= = −⎣ ⎦S S S  (44) 

where, 

( )1 5 5 6 5 52 2
5 6

1 sina c d s
a d

η θ ϕ= + = +
+
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( )2 5 5 6 5 52 2
5 6

1 cosa s d c
a d

η θ ϕ= − = − +
+

 

3 2 345 2 345 3 45 4 5 5d s a c a c a c aη = − + + +  
The angle ϕ  in the expressions of 1η  and 2η  is a constant 

defined as ( )5 6atan2 ,a dϕ = . We can get the conditions 
which make all the minors ( )1 2 3 4

ˆ ˆ ˆ ˆ, , ,M M M M  to equal zero. 
All the singularity conditions for 6 0s =  are listed as Table II. 
TABLE II THE SINGULAR CONDITIONS FOR THE REDUNDANT MANIPULATOR 

FOR THE CASE S6=0 

Condition 
Index The Expressions of Singular Conditions 

1ŝk  6 0s =  and 2 0s =  

2
ˆ

sk  6 0s =  and 3 0η =  

3ŝk  6 0s = , 4 0s =  and 2 5 5 6 5 0a s d cη = − =  

B. Singular Analysis with s6 ≠ 0 
1) Singularity Condition Separation 

See (26), when 6 0s ≠ , the last three elements of the 4th 
row of the matrix ( )5S Θ  will become zeros by the row 
operation: ( )6 6 6 1 4/d c s R R→ , i.e. adding 6 6 6/d c s  times of 
the 1st row to the 4th row. The corresponding elementary 
matrix is given as (45), and the matrix produced by this 
transformation from the matrix ( )5S Θ  is written as (46). 

 6 6
4 1 4 6 6

6
6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

=
0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

d c
ET R R d c

s
s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞ ⎢ ⎥→ =⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P
�  (45) 

 11 125 5
4

21 3 3×

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦

S S
S P S

S O

� �
� �

�i  (46) 

The sub-matrices are respectively as: 

 
2 345 345

11 2

2 345 345

0 0
0 1 1

0 0

s c s
c

s s c

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

S
�

 (47) 

 
6

12 6

0 0
1 0
0 1 0

s
c

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

S
�

 (48) 

T
6 5

41 6 2 345 51 6 2 345 61 5 2 41
6 6

6 5
3 345 6 345 52 6 345 3 345 3 345

6 6
12

5
43 63 5 43

6

5
4 5 64 5 4 5

6

0

0

c a
J d s c J d s c J a c J

s d
c a

d c d s J d s d s d c
s d

a
J J a J

d
a

a s J a a s
d

⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥
⎢ ⎥
− + + − −⎢ ⎥

⎢ ⎥= ⎢ ⎥
− +⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

S
� (49) 

Since ( )12 6det 0s= ≠S
�

, 12S
�

 is always non-singular for the 

case 6 0s ≠ , i.e. ( )12rank 3=S
�

. Similarly, the singularity 

conditions of 5S
�

 is the same as those of the sub-matrix 21S
�

, 
i.e: 
 ( ) ( )5

21rank 6     rank 3< ⇔ <S S
� �

 (50) 

The singularity conditions originally distributed in the 6×7 
matrix ( )5S Θ  with 6 0s ≠  are also separated and collected 

in the 3×4 sub-matrix 21S
�

. Therefore, the singularity 
configurations of the redundant manipulator for the case  

6 0s ≠  can be identified by analyzing the rank deficient 
conditions of the 3×4 sub-matrix 21S

�
. 

2) Singular Configuration Identification 
Similarly, the singularity conditions of 21S

�
 are determined 

by setting all the order-3 minors of it to zero, i.e.: 
 ( )0     1, 2,3,4iM i= =

�
 (51) 

These order-3 minors are calculated as follows: 
 ( )1 2 4 5 6/M As B sη η= −

�
 (52) 

 2 3 4 4 5M a a s η=
�

 (53) 

 3 3 4 2 4 4M a a s s η=
�

 (54) 

 ( )4 2 4 5 6
ˆ ˆ /M As B sη η= −

�
 (55) 

where, 

 4 2 3 3 4 34 5 345 6 345

5 2 3 3 4 34 5 345 6 345

 = 
 = 

d a s a s a s d c
a a c a c a c d s

η
η

− − − − +⎧
⎨ − + + + +⎩

 (56) 

( )
( )

4 3 34 6 2 345 6

4 2 2 34 2 2 34 3 2 34 3 2 4 6 2 2 345 6

A a d c s s c

B a d c c a c s d s s a c s s s c c

η

η

⎧ = +⎪
⎨

= + − − +⎡ ⎤⎪ ⎣ ⎦⎩
 (57) 
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( )
( )

3 3 3 6 5 45 6 45 345 6

3 2 2 3 2 2 3 3 2 3 6

3 5 45 6 45 2 345 6

ˆ  = 
ˆ  =

     +

A a d c s a s d c s c A

B a d c c a c s d s s s

a a s d c s c c B

⎧ + − +⎡ ⎤⎣ ⎦⎪⎪ + −⎨
⎪ − +⎪⎩

 (58) 

Then we can obtain the conditions causing all the order-3 
minors to zeros. Then all the singularity conditions for the 
case s6 ≠ 0 are determined and listed in Table III. 

TABLE III THE SINGULAR CONDITIONS FOR 21S
�

 WITH  S6 ≠ 0 

Condition number singular conditions 

1sk
�

 2 0s =  and 5 0η =  

2sk
�

 4  = 0η  and 5 = 0η  

3sk
�

 4 0s =  and ( )2 4 5 60  0As B sη η− = ≠  

C. Summary of the Singular Conditions 
The singularity conditions of the SSRMS-type manipulator 

are found by considering the two cases: s6 = 0 and s6 ≠ 0. 
There are six conditions in total, three for each case. Actually, 
the conditions 3

ˆ
sk  and 3sk

�
, determined for s6 = 0 and s6 ≠ 0 

respectively can be further combined. Observing the 
coefficients A, B, given in (57), we get the following logic 
relationship: 
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    0

00
s A
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B

η η
η

= =⎧ ⎧
⇒ ⇒ − =⎨ ⎨ == ⎩⎩

 (59) 

Therefore, a new condition expression 1 3 3
ˆ

s s sk k k= ∪
�

 is 
used to represent the condition “ 3

ˆ
sk  or 3sk

�
”, the result is as 

follows: 

 4
1 3 3

2 4 5

0ˆ   
0s s s

s
k k k

As Bη η
=⎧

= ∪ = ⎨ − =⎩

�
 (60) 

Finally, five singularity conditions of the SSRMS-type 
manipulator are obtained. They are denoted as 1sk , 2sk , …, 

5sk  respectively, and listed in Table IV. Since Nokleby and 
Podhorodeski [6] had identified the complete set of the 
singularity conditions of the Canadarm and its modified 
version, we can compare the results obtained using the 
proposed method with those reported in Ref. [6]. Although 
different frames (we use the classical D-H notation; and 
Nokleby and Podhorodeski [6] used the modified D-H 
notation) are defined and different symbols are used, the 
following relationships exist: 

2

5 1 1 2 2 3 3

4 4 5 5 6 6 7 7

2 3 6 3

4

= ,
,  , + ,   +

,  , + ,   

,   , ,    
, s s s

s s s s

b
g

d a d c f d h a a d
a e a θ θ θ θ π θ θ π
θ θ θ θ θ θ π θ θ

⎧
⎪ = = = =⎨
⎪ = = = =⎩

= = + = =
=  (61) 

where, ,i id a  and iθ  are the D-H parameters used in this 
paper and listed in Table I. The symbols a, b, …, h denoted 
the link lengths in Ref. [6], and siθ  is the joint variable 
corresponding the frames defined in Ref. [6]. Substituting (61) 
to the singularity conditions listed in Table IV, we get the 
same conditions as those of Ref. [6]. The corresponding 
expanded expressions of the singularities for the Canadarm2 
are shown in Table V. 

TABLE IV SINGULAR CONDITIONS FOR MODIFIED CANADARM2 
Condition Index Singular conditions Remark 

ks1 4 0s =  and 2 4 5 0As Bη η− =  3 3ŝ sk k∪
�

 

ks2 2 0s =  and 6 0s =  original 1ŝk  

ks3 2 0s =  and 5 0η =  original 1sk
�

 

ks4 6 0s =  and 3 0η =  original 2ŝk  

ks5 4  = 0η  and 5  = 0η  original 2sk
�

 

TABLE V SINGULAR CONDITIONS FOR CANADARM2  
Method The proposed method in this paper 

1 
4 0s = and 

( )2 2 34 6 3 2 34 6 2 6 345 4 34 3 3 2

6 2 345 5 6 0
ad c c s d s s s s N d c a s a s d

d s c c c
− + + − − −

+ =

where 3 34 6 6 345 5 6

6 345 4 34 3 3
a

d c s d s c cN
d s a c a c

−
=

+ +
 

2 2 0s =  and 6 0s =  

3 2 0s =  and 6 345 4 34 3 3 0d s a c a c+ + =  

4 6 0s =  and 2 345 3 45 4 5 0d s a c a c+ + =  

5 6 345 4 34 3 3 0d s a c a c+ + =  and 6 345 4 34 3 3 2 0d c a s a s d− − − =  

V. CONCLUSION 
Compared with a 6-DOF manipulator, a redundant 

manipulator has great advantages in obstacle avoidance, joint 

torque optimization, manipulability enhancements, 
singularity handling, and so on. In the construction and 
maintenance of International Space Station, the Canadarm2 
has been playing important roles. Due to lack of a spherical 
wrist, it is very difficult to solve the inverse kinematics 
problem and determine the singular configurations 
analytically of the Canadarm2. In this paper, we proposed a 
method to isolate the singularity condition and decompose the 
workspace. This method is based on the elementary 
transformation. By only several times row transformation, the 
Jacobian matrix is transformed to a block-triangle matrix, 
which is partitioned into four sub-matrices. Since the upper 
3×7 non-zero block is proved to be full rank, the singularity 
conditions are isolated and collected in a 3×4 sub-matrix. 
Then, the singularity conditions of the 6×7 Jacobian matrix 
are identified by determining the rank degeneracy conditions 
of the 3×4 sub-matrix. Compared with previous methods, the 
singularity analysis is greatly simplified, and the computation 
workload is greatly reduced. 

REFERENCES 
[1] C. D. Crane, J. Duffy and T. Carnahan, "A Kinematic Analysis of the 

Space Station Remote Manipulator System (SSRMS)," Journal of 
Robotic Systems, vol.8, no.5, pp. 637-658, 1991. 

[2] S. B. Nokleby and R. P. Podhorodeski, "Velocity Degeneracy 
Determination for the Kinematically Redundant CSA/ISE STEAR 
Testbed Manipulator," Journal of Robotic Systems, vol.17, no.11, pp. 
633-642, 2000. 

[3] S. B. Nokleby, "On the Singular Configurations of the Canadarm2," in 
Proc. The 15th CISM/IFToMM Symposium on Theory and Practice of 
Robots and Manipulators, Montreal, Canada, pp. 1-10, 2004. 

[4] E. Dupuis, "A General Framework for the Manual Teleoperation of 
Kinematically Redundant Space-based Manipulators," Ph.D Thesis 
dissertation, McGill University, Montreal, Quebec, Canada, 2001. 

[5] X. Kong and C. M. Gosselin, "A Dependent-Screw Suppression 
Approach to the Singularity Analysis of a 7-DOF Redundant 
Manipulator: Canadarm2," Transactions of the Canadian Society for 
Mechanical Engineering, vol.29, no.4, pp. 593-604, 2005.zzzzz 

[6] S. B. Nokleby, "Singularity Analysis of the Canadarm2," Mechanism 
and Machine Theory, vol.42, no.4, pp. 442-454, 2007. 

[7] F. T. Cheng, J. S. Chen and F. C. Kung, "Study and Resolution of 
Singularities for a 7-DOF Redundant Manipulator," IEEE Transactions 
on Industrial Electronics, vol.45, no.3, pp. 469-480, 1998. 

[8] F. T. Cheng, T. L. Hour and Y. Y. Sun, "Study and Resolution of 
Singularities for a 6-DOF PUMA Manipulator," IEEE Transactions on 
System, Man, and Cybernetics--Part B: Cybernetics, vol.27, no.2, pp. 
332-343, 1997. 

[9] M. Kirćanski, "Symbolic Singular Value Decomposition for Simple 
Redundant Manipulators and Its Application to Robot Control," The 
International Journal of Robotics Research, vol.14, no.4, pp. 382-398, 
1995. 

[10] G. Matsaglia and G. P. H. Styan, "Equalities and Inequalities for Ranks 
of Matrices," Linear and Multilinear Algebra, vol.12, no.7, pp. 269-292, 
1974. 

[11] A. H. Roger and R. J. Charles, Matrix Analysis, Cambridge, England: 
Cambridge University Press, 1986 

 
 

800


