
Task-Relevant Roadmaps: A Framework for Humanoid Motion Planning

Marijn Stollenga†∗, Leo Pape∗, Mikhail Frank∗, Jürgen Leitner∗, Alexander Förster∗, Jürgen Schmidhuber∗

Abstract— To plan complex motions of robots with many
degrees of freedom, our novel, very flexible framework builds
task-relevant roadmaps (TRMs), using a new sampling-based
optimizer called Natural Gradient Inverse Kinematics (NGIK)
based on natural evolution strategies (NES).

To build TRMs, NGIK iteratively optimizes postures covering
task-spaces expressed by arbitrary task-functions, subject to
constraints expressed by arbitrary cost-functions, transpar-
ently dealing with both hard and soft constraints. TRMs
are grown to maximally cover the task-space while mini-
mizing costs. Unlike Jacobian-based methods, our algorithm
does not rely on calculation of gradients, making applica-
tion of the algorithm much simpler. We show how NGIK
outperforms recent related sampling algorithms. A video
demo (http://youtu.be/N6x2e1Zf_yg) successfully ap-
plies TRMs to an iCub humanoid robot with 41 DOF in its
upper body, arms, hands, head, and eyes. To our knowledge, no
similar methods exhibit such a degree of flexibility in defining
movements.

I. INTRODUCTION

Humanoid robots are designed to have the same degrees-

of-freedom (DOF) as humans which quickly add up to

more than 40. In contrast: a typical industrial robot arm

has 6 or 7 DOF. Planning coordinated movements with

such high DOF is still a major challenge in robotics, and

there is a need for frameworks that can achieve this. Most

humanoid control frameworks take a dynamical approach [1],

[2], [3]. These frameworks can combine several dynamical

constraints related to a task, and add them together as

forces to create combined movements. However, the forces

are computed locally and require intricate knowledge of

the robot’s dynamics, making them unsuited for employing

planning algorithms.

We introduce a novel framework that takes the more

traditional approach of inverse kinematics, but combines it

with recent inverse kinematics and planning approaches to

successfully plan complex movements on a humanoid robot.

By using sampling algorithms, complex postures can be

optimized using only the forward model [4], [5], [6]. To

this end we create a new inverse kinematics solver called

Natural Gradient Inverse Kinematics (NGIK) that uses the

Natural Evolution Strategies (NES) algorithm [7] to optimize

the posture of the robot. We show NGIK outperforms similar

approaches in this domain, and can successfully optimize

postures on a humanoid robot.

NGIK is combined with a novel roadmap construction al-

gorithm, that combines recent ideas from planning literature

∗ The authors are with the Dalle Molle Institute for Artificial Intelli-
gence (IDSIA) / SUPSI / Universitá della Svizzera Italiana (USI), Lugano
Switzerland. This research was supported by the IM-CLeVeR EU project,
contract no. FP7-ICT-IP-231722.

† Corresponding author: marijn@idsia.ch

Fig. 1. The framework is applied to the iCub humanoid [11], resulting in
smooth, natural motions.

to focus the search of the configuration space to subspaces

that are relevant to a task [8], [9], [10]. Our algorithm

iteratively constructs a roadmap to maximally cover a task-

space, freely defined by the user, resulting in task-relevant

roadmaps (TRM) that can be (re)used to plan motion tra-

jectories in task or configuration-space. Our framework puts

as little requirements on the constraints as possible, deals

with hard and soft constraints transparently, and allows us

to freely define the task-space. We show the effectiveness of

our approach on the iCub humanoid robot [11] using the 41

DOF of its upper body in different manipulation tasks.

II. BACKGROUND

The state of a robot is given by its joint angles q ∈
Q ⊆ R

n where n is the number of joints and Q is the

configuration space consisting of all valid robot states. A

typical approach to control a robot consists of the following

steps:

1) Inverse Kinematics: Define a desired posture of the

robot and find a corresponding robot state qgoal using

an optimization algorithm.

2) Planning: Find a path from the current joint-state

qcurrent to the goal-state qgoal.

3) Control: Use a controller to control the robot to its

goal over this path.

Our framework focuses on inverse kinematics and plan-

ning, and delegates control to a relatively simple controller.

Inverse Kinematics

Using the forward kinematics function f we can calculate

the pose of every body part, given the robot state. Calcu-

lating the inverse f−1 is known as the Inverse Kinematics

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5772

problem (IK), which would map our desired pose expressed

in operational space, to a configuration-state. Although f is

trivial to compute, even for complex robots, f−1 is non-

linear and has in general infinite solutions and does not exist

mathematically.

The traditional approach to IK is to explicitly find f−1

by constraining the problem until a closed form solution

is obtained [12], [13]. This approach is very fast, but

requires careful engineering and is restrictive in the con-

straints that can be used. Numerical approaches indirectly

find f−1 by iteratively optimizing using the gradient ∇f ,

often by calculating the pseudo-inverse or transpose of the

Jacobian [14], [15]. Recent work applies such methods to

humanoid robots [16] and adds an efficient way to handle

prioritized hard constraints. However, the constraints have to

be setup carefully and the dimensionality of the system has

to be controlled to compute the inverse efficiently. Although

these approaches are much more flexible than closed form

solutions, they are sensitive to singularities and require the

gradient/Jacobian to be known, which restricts the set of

constraints and kinematic chains that can be represented. It

also can not take the curvature and non-linearity of f into

account, and only looks locally at the slope.

Recently, sampling methods have tried to circumvent there

problems. Such methods never explicitly calculate f−1 or

the gradient ∇f , but estimate it by sampling from f , so they

can deal with arbitrary cost-functions, making them much

more flexible and robust than traditional IK algorithms. Also,

higher order interactions between dimensions that wouldn’t

be detected by a Jacobian approach, will be noticed by a

sampling based algorithm.

Several sampling optimizers have been used; such as Sim-

ulated Annealing [4], which is very flexible but has only been

used for small kinematic chains. Sequential Monte Carlo

(SMC) [5] uses a non-parametric distribution of particles,

but relies on good proposal distributions that put constraints

on the kinematic chain that can be used. A particle filter

method [6] was used in the computer game “Spore” that al-

lows the player to create their own widely different creatures,

dealing with unpredictable and complex kinematic chains.

Our method is based on these insights, but uses Natural

Evolution Strategies [7] (NES) as an optimizer, as will be ex-

plained in Section III. NES has state of the art performance,

beating its closest competitor CMA-ES on some tasks, and

is robust and easy to use. We show in experiments that NES

outperforms the other optimization approaches and can solve

the IK problem for complex poses on our iCub humanoid

with 41 DOF.

Flexible Inverse Kinematics with Planning in mind

Planning methods have a rich history and are an active

field of research [17]. Rapidly Exploring Random Trees [18]

randomly grow trees in configuration space Q that quickly

cover the search-space until a non-colliding path is found.

Probabilistic roadmap planning [19] is a popular method

where a traversable graph of robot states is constructed

by randomly sampling from Q creating a graph with non-

colliding edges in the process. By planning and moving

through this graph, the robot moves from one position to

the other while avoiding obstacles and self-collisions.

These planning methods have the disadvantage that there

is little control over how the configuration-space is searched.

Recent work has acknowledged the lack of control over the

search space: The STOMP algorithm [8] allows for flexible

arbitrary cost-functions and plans a path that minimizes these

costs. However, it plans directly in the configuration-space,

leaving the mapping between a task-space and configuration-

space open. CBiRRT [9] uses a rapidly exploring random tree

on a constrained manifold; a subset of the configuration-

space defined by constraints, and can create impressive

movements. CBiRRT was augmented with the concept of

task-space regions [10] to focus the search regions of the

configuration space. However, it can only use a restricted set

of projectable constraints and task-space regions. Berenson

et al. do mention they use a direct sampling algorithm that

allows for “arbitrarily complex” constraint parameterization,

but only use it to sample goals and not to plan paths as it

“can be difficult to generate samples in a desired region”.

Clearly it is desirable to have a maximum flexibility in the

defining constraints and task-spaces, but current approaches

either can’t handle such flexibility, use it only in a part

of their algorithm, or find only one posture and not a full

movement. Recently several frameworks have approached

both IK and planning, aiming to be generic and flexible to

use [1], [2], [3], [20]. These frameworks have impressive

results, but always put certain restrictions on constraints that

can be used and often have difficulty with high degrees of

freedom.

Our framework tackles complex IK and planning at the

same time by combining our novel sampling based inverse

kinematics solver NGIK with an iterative construction strat-

egy. It finds a family of reusable postures that are optimized

under constraints defined by arbitrary cost-functions, and at

the same time maximally covers a user-defined task-space.

Connecting these postures creates a traversable graph, called

a task-relevant roadmap (TRM). In other words, the task-

relevant constraints are built directly into the TRM. As shown

in Section V, it allows us to build TRMs that can perform

useful tasks in the 41-dimensional configuration space of the

upper body of the iCub humanoid.

III. NATURAL GRADIENT INVERSE KINEMATICS

We want to find a robot posture with desired properties.

Therefore we define cost-functions that calculate a cost from

robot state and a world state, represented by the poses of the

body parts and joint angles, and poses of objects in the world

respectively.

Let f : Q → P be the forward kinematics function that

maps the configuration-space to the operational space. The

set of poses of all l body parts p = {p1, p2..pl} ∈ P form

the operational space, where every body part is indexed by

5773

Type Purpose Formula

Home
Posture

Bias body posture search to a stable posture. In case multiple solutions exist
for a given point in task-space, the home posture allows to find a unique
solution. It also increases similarity in configuration space between nearby
points in task-space.

hhome = ∥q − q∗∥, where q∗ is a home posture and

∥∥̇ is the L2-norm.

Collision Penalize collisions. xNES is able to estimate a gradient over collisions
using the number of collisions. This number usually increases with deeper
penetration.

hcollision = |collisions|.

Position Attract a body part to a fixed position or to another body part. The target can
be specified as an area or volume in task-space, rather than a point.

hposition = ∥vbodypart−v∗∥, where v∗ is the desired
position.

Orientation Control the orientation of a body part. The desired orientation can be either
a fixed orientation in task-space, or the orientation of another body part.

horientation = (u⃗T
base

Rbodypartu⃗desired + 1)/2.
Here u⃗base is the unit base vector that has to point to
the desired direction u⃗desired after being rotated over
the transformation matrix Rbodypart of the body part.

Pointing Point a body part toward another body part or a certain position in task-space.
Optionally it also keeps the end effector at a fixed distance to this point or
body part.

hpointing = 1

2
u⃗T
base

Rbodypart
vtarget−vbodypart

∥vtarget−vbodypart∥
+

1

2
.

Repelling Repels two body parts away from each other. Repulsion can optionally start
after a minimum distance and is helpful for finding non-colliding postures and
to increase mobility in the map.

hrepel = min(0, d−∥vbodypart1−vbodypart2∥)/d.

TABLE I

A VARIETY OF COST-FUNCTIONS ARE SHOWN, DESCRIBING THEIR PURPOSE AND CORRESPONDING FORMULA.

a number1. Here pi ∈ SE(3), where SE(3) is the special

Euclidean group. SE(3) expresses both the position vi ∈
R

3 and the orientation of a body part, represented by Ri ∈
SO(3), where SO(3) is the special orthogonal group.

We sum all cost-functions together in one cost-function:

h(p, q, w) =
∑

i

aihi(p, q, w)

where hi : P×Q×W → R≥0 is the i-th cost-function with

as input the poses of all body parts p, the joint-state vector q,

and world state w, and output a non-negative cost. Each

function is weighted by ai to control its strength.

Because we use a sampling-based evolutionary algorithm,

the functions hi don’t have to be differentiable. This allows

us to transparently handle hard constraints and soft con-

straints with discrete and continuous functions respectively.

This setup gives us maximum flexibility in the expression of

constraints, leaving room for creative cost-functions.

We show several cost-functions in Table I. All cost-

functions have internal parameters to give finer control their

behaviour. For example, the home posture function can

penalize the torso more than its arms to prefer more efficient

movements. And the position and repel functions can ignore

certain dimensions, resulting in attraction toward a plane

instead of a point.

Natural Evolution Strategies (NES)

Finding robot postures under general constraints often

involves a non-convex and non-smooth search space, which

makes it particularly relevant to use the right search algo-

rithm. Comparing a range of optimization methods, Rios et.

al [21] found that evolutionary strategies perform exception-

ally well in non-convex non-smooth optimization problems.

1Instead of indexing a body part by a number we can also use the name
of a body part, e.g. pright hand, directly.

We use NES, a principled method for real-valued evo-

lutionary optimization [7], to minimize the cost-function.

It is shown to be beat its closest competitor CMA-ES on

some benchmarks while being based on a more principled

approach. It represents its current population as a Gaussian

distribution embedded in the search space, the configuration

space in our case, and samples from it. From these samples

it calculates the natural gradient to minimize the function.

We use the improved variant of NES called Exponential

NES (xNES), that is invariant to linear transformations to

the search space.

To create robust movements, the optimizer needs find

postures that are removed from sudden increases in the

cost-function (e.g. a millimeter away from a collision). We

can either create cost-functions that explicitly calculate and

penalize being close to collisions, but this can be computa-

tionally prohibitive, puts constraints on the possible colliding

shapes, and doesn’t take other cost-functions into account.

Instead we add a (small) Gaussian noise to the robot state.

The result is that NES optimizes the expected value of h

under noise on the robot state, implicitly finding robust poses

taking all constraints into account.

IV. CONSTRUCTING A TASK-RELEVANT ROADMAP

The forward kinematics function maps the configuration-

space to the operational space f : Q → P . Often, it is not

adequate to express a task directly in the operational space.

Therefore we introduce a task-space T that is calculated by

a freely chosen task-function:

g : P ×Q×W → T ⊆ R
m

Where P , Q, W are the poses of the body parts, the

configuration space, and the world state respectively. T is a

task-space of m dimensions. The task-function g can be any

real-valued function. An example of a task-space is shown

in Figure 2, and task-functions are shown in Table II.

5774

Type Task Space Dimension(s) Formula

Position The position of a body part. Can be masked to select only a certain dimension
of the position.

gposition = vbodypart

Rotation The rotation of a body part. Can be masked to select only a certain rotation. grotation = u⃗bodypart

Distance The distance between a body parts v1 and another body part or object v2. gdistance = ∥v1 − v2∥

Angle The angle of the vector from a body part v1 to another body part or object
v2, projected on a plane defined by u⃗dim1 and u⃗dim2.

gangle = arctan(u⃗T
dim1

(v1 − v2), u⃗T
dim2

(v1 − v2))

TABLE II

SEVERAL EXAMPLES OF TASK-FUNCTIONS.

Fig. 2. This example shows a task-space designed to inspect an object from
different angles and distances. The task-space is formed as {α, β, δ} = t ∈
T , where δ is the distance to the point, and α and β are angles that the
head makes with respect to the object.

Fig. 3. The map building constraint is minimized when a predefined
distance d to n nearest graph nodes is achieved. The number of nearest
neighbours corresponds to the dimensionality of the task-space as shown in
the figures.

TRM Construction Algorithm

Now we can introduce the TRM-constructing algorithm,

by augmenting NGIK with a map-constructing strategy. The

goal is to build a map of robot-states with corresponding

task-states {(q1, t1), (q2, t2), .., (qk, tk)} ⊂ M that have a

maximum coverage of the task-space T , while minimizing

the cost-function h for all states. To build the TRM we add a

special map-constructing cost-function to h which is defined

as follows:

hmap =
∑

{q′,t′}∈NN(m,t,M)

|d− ∥t− t′∥|
︸ ︷︷ ︸

construction

+ c∥q − q′∥
︸ ︷︷ ︸

smoothness

where t is the task-vector calculated by the task-function t =
g(p, q, w), q is the robot state, and NN(m, t,M) calculates

the m nearest neighbors to t in map M.

The first part constructs the map by pulling the solution

close to the previous points in task-space, but keeps it at

a certain distance d, growing the map. The second part

accounts for smoothness by minimizing the change in joint

angles over neighbouring states, where c is a weighting con-

stant. Figure 3 shows how the map is grown, in task-spaces

of different dimensions. Note that the number of nearest

neighbours is tied to the dimensionality of the task-space.

Depending on the sampled posture, different nearest neigh-

bours are found, resulting in an adaptive growing behavior.

Figure 5 shows a schematic of the TRM-building algo-

rithm, which works as follows: We are given a cost-function

h =
∑

i aihi and an empty map M = ∅. We create

an augmented cost-function by adding the map building

constraint h∗ = h + aconstructhconstruct. Then we repeat

the following until satisfied with the map:

1) Selection Select a point (t′, q′) ⊂ M to initialize

NGIK based on previous success rate. This favours

parts of the map that can easily expand, over parts of

the map that have, for example, reached physical limits

of the robot. If the map is empty, we use the standard

home posture.

2) Optimization Initialize NGIK with q′ and minimize

the augmented cost-function h∗ resulting in a new

configuration- and task-vector qnew and tnew.

3) Post-selection We check if the resulting point tnew
resides outside the current map, and check if qnew is

not a colliding posture. If this is true, add the point

to the map: (qnew, tnew)
add
−−→ M and increase the

success rate of (t′, q′).

After the algorithm is finished, a post-process step adds

edges to the map M using an n-nearest-neighbour connec-

tion strategy in the configuration space, resulting in a TRM.

As all maps are defined in the same configuration space,

we can connect several maps built for different tasks. This

allows us to plan movements through different maps for

combined tasks. To create adaptive planning, we use an A∗

planner which evaluates the traversability of edges online.

The algorithm heuristically searches for a free path to a goal

that is not obstructed under the current world-state.

V. EXPERIMENTS

For the forward kinematics we use the Modular Behavioral

Environment (MoBeE) [22], which calculates the forward

kinematics, and performs collision detection at a high fre-

quency. We specify a model of the iCub humanoid in XML.

The same model is used throughout the whole process, from

building TRMs to controlling the iCub. This allows us to

apply the framework easily to other robots. We use the upper

body of the iCub, comprising the torso (3 DOF), the arms

(2 × 7 DOF), the hands (2 × 9 DOF), the neck (3 DOF),

and the eyes (3 DOF) giving a total of 41 DOF.

5775

a) Reaching b) Investigate object

c) Bimanual grab d) Bimanual vertical rotation

e) Bimanual investigation f) Bimanual horizontal rotation

g) Pushing forwards h) Pushing sidewards

i) Reach with object in model j) Screwing motion

Fig. 4. Examples of movements made using task-relevant roadmaps.

We compared the performance of NGIK against two ver-

sions of Sequential Importance Resampling (SIR), Metropo-

lis Hastings (MH) sampling and the Simplex optimization

algorithm [23]. To make the comparison fair, we use simple

Gaussian proposal distributions for SIR and MC instead of

tailored distributions that use information about the robot [5],

as NGIK also doesn’t assume extra knowledge on the task

at hand. We don’t compare NGIK against CMA-ES as it

is already shown that performance differences are small [7]

with NES often beating CMA-ES on complex problems.

We also don’t compare to Jacobian inverse/transpose based

methods, as these can’t handle the cost-functions we use and

thus simply are not applicable in this framework.

SIR is the method closest to the capabilities of NGIK, as it

uses a population of samples for optimization. Every sample

has a corresponding weight, which is updated as new samples

are drawn from previous samples. SIR re-samples when the

effective weights are below a threshold, in which case a

new population is sampled according to the weights, and the

weights are reset. We found that using a threshold of 75% of

the number of particles works well. We also compare a direct

version of SIR that re-samples on every iteration, which we

call SIR direct (SIRD). The optimal standard deviation of the

initial search distributions were determined experimentally.

The Simplex optimization algorithm is meant for convex

optimization problems, which we compare to to show that

such algorithms are not suited for the optimization problem

at hand.

The algorithms are used to optimize two challenging

postures shown in Figure 6. The left posture (Fig. 6-1)

requires the left hand to be behind the table and the right

hand to be in front of the robot. The right posture (Fig. 6-2)

is more difficult and requires a reaching posture through a

loop.

NGIK evaluation

The results are shown in Table III, where we calculated the

average best fitness value after 30 runs, and the correspond-

ing standard deviation of the mean. The population size for

SIR, SIRD and XNES was 300; a relatively large population

size to prevent local optima. The standard deviation of the

proposal distributions was σ = 0.005 for MC, SIR and SIRD.

NES has an initial standard deviation of σ = 0.4, which

is higher than for the other methods as it can adjust the

distribution dynamically. The other algorithms don’t perform

5776

Fig. 5. TRM-building algorithm: The postures of body parts P are
calculated from the configuration space Q using the forward function f .
The information of the world state is represented in W . The TRM-building
algorithm will iteratively find postures that incrementally cover the task-
space T , while minimizing the cost-functions. Both the task-function g
defining the task-space, and the cost-function h defining the constraints, can
use any information from Q,P,W allowing flexibility in defining TRMs.

(1) (2)

Fig. 6. The two postures used to compare the different optimization
algorithms. Left posture is constrained to hold the left hand behind the
table and the right hand above it. The right posture is a challenging grabbing
posture through a loop using the thumb and index finger. The results are
shown in Table III

well unless the deviations are relatively small. All algorithms

keep track of the best encountered fitness and the time it was

encountered. If the best fitness doesn’t improve for a large

number of evaluations, the algorithm is stopped. We store

the number of evaluations at the time the best fitness was

encountered as the running time.

NGIK outperforms the other algorithms. The Simplex

algorithm has the lowest performance as it assumes a convex

problem and gets stuck early in the optimization. SIR and

SIRD have even performance, although their performance is

significantly lower than NES, as it can not adjust the proposal

distribution. MC is similar to the SIR algorithm with a

population of 1, which accounts for its bad performance

in such a high-dimensional search space. For posture (2),

both SIR and MC find their best result after relatively few

iterations and have trouble improving it afterwards, resulting

in the low reported running times.

Performance and Build Time: The time it takes to build

a map depends mainly on two factors: the desired density of

postures and the dimensionality of the task-space. The num-

ber of postures needed to cover the map, and thus the number

of times NGIK is run, scales approximately proportional to
l
d

n
, with l the approximate length to cover in a dimension,

TABLE III

COMPARISON OF NES VERSUS DIFFERENT OPTIMIZATION

ALGORITHMS. THE POSTURES ARE SHOWN IN FIGURE 6.

Algorithm Final Cost Posture (1) Nr. Evaluations

XNES 0.1122 ±0.0269 199290 ±11444
SIR 0.5068 ±0.0342 144920 ±16172

SIRD 0.4492 ±0.0356 158190 ±24613
MH 13.5507 ±5.7343 80432 ±17200

SIMPLEX 111.113 ±3.8616 420090 ±0

Final Cost Posture (2) Nr. Evaluations

XNES 0.1765 ±0.0207 239040 ±3824
SIR 1.3167 ±0.0278 9260 ±2181

SIRD 1.2835 ±0.0272 15330 ±3950
MH 1.4934 ±0.0352 11320 ±3009

SIMPLEX 1.661 ±0.019 420090 ±0

d the distance between points and n the dimensionality. For

most maps a distance of a few centimeters between postures

is enough (if the task-space is defined in Cartesian space). In

practice it takes a few minutes to build a 2d map, and tens of

minutes for a 3d map on a regular desktop PC. For higher

dimensions the search-time becomes prohibitive because it

scales exponentially with the number of dimensions. We

stress that, once created, the maps can be re-used in several

tasks and building time is not an issue anymore.

TRM examples

Maps a-j in Figure 4 show several examples of TRMs that

are tailored to certain tasks (a video-demonstration is shown

at: http://youtu.be/N6x2e1Zf_yg). All maps use

the collision cost-function and home-posture cost-function

to create collision free postures that look natural.

Basic Manipulation: Map–a was built for a grasping

task. As a task-space we use the position of the left hand.

The hand is free to move, but its orientation is kept upright

by an orientation cost-function. Finally a pointing constraint

is added from the head to the hand to keep the eyes fixed

on the moving hand, which would be required for a typical

grasping task. The table is added to the world model as a

static object. Map–b restricts the position of the right hand,

but allows it to rotate freely. By using the angles of the

hand relative to the head, the TRM allows the humanoid to

investigate an object in its hand from different angles.

Bimanual Manipulation: We created several maps that

can manipulate a box. Because the box is big, we use

bimanual manipulation. The left hand is constrained to point

to the right hand, and vice versa, using pointing cost-

functions. Map–c uses the point between the left and right

hand as the task-space, resulting in bimanual reaches. Map–e

fixes the position of the hands, and uses the position of the

head as a task-space, creating a TRM that can investigate the

box between the hands.

If we use the angle between a virtual ‘rod’, between the

left and right hand, and the z- or y-axis as a task-space,

we get vertical and horizontal rotating motions respectively

(maps d and f). By constraining the hands to be parallel

and fix their relative position, we can get pushing motions.

5777

We can create forwards and sidewards pushing motions by

controlling their orientation, shown in maps g and h.

Obstacles: To avoid obstacles we can either use our

planning algorithm on a general TRM to plan around it, or

put the object in the model while building the TRM. The

latter approach is shown in map–i, where a box is added,

while using the same constraints as the simple reach TRM of

map–a. This allows us to find difficult solutions that cannot

easily be found or specified without putting an object in the

model. To show the complexity of movements that TRMs

can express, we also build a map to perform a unscrewing

movement. By putting pointing cost-functions on the thumb

and index finger we can create a grasping posture. By fixing

the point between the two fingers and setting the angle of

one of the fingers as the task-space we can build a TRM that

creates a unscrewing motion, shown in map–j.

VI. CONCLUSION AND DISCUSSION

We presented a new framework to create task-relevant

roadmaps (TRMs) for planning complex movements on a 41

DOF humanoid. We introduced NGIK, a new evolutionary

strategies based inverse kinematics algorithm that is robust

for non-linear and non-differentiable optimization problems.

Its sampling-based nature allows us to use arbitrary cost-

functions and to transparently incorporate hard and soft con-

straints. We used NGIK to construct TRMs that maximally

cover a user-defined task-space, by iteratively searching for

new postures. The method is more flexible than related

methods and we showed its advantages by applying it to

the full 41-DOF of the upper body of the iCub humanoid

robot.

Currently TRMs are represented by discrete points in con-

figuration and task-space, densely packed to create smooth

trajectories. The number of points, however, scales exponen-

tially with task-space dimensionality. To efficiently deal with

higher dimensions, a single graph node could hold a linear

manifold representing a large part of the configuration space,

instead of only one point.

TRMs are built offline, making the framework less adap-

tive than dynamic full-body control frameworks [1], [2], [3].

But the algorithm can be easily parallelized since samples

within a NES iteration are independent, making online map-

building possible. Also, the natural gradient can be used

directly as a movement direction, allowing for direct control

while retaining the flexibility of the framework. Ongoing

work will extend TRMs to incorporate reinforcement learn-

ing algorithms. Since TRMs encode families of discrete task-

relevant postures, they lend themselves to repeatedly perform

similar interactions with an environment to learn the order

of actions needed to achieve a given goal.

REFERENCES

[1] L. Sentis and O. Khatib, “A whole-body control framework for
humanoids operating in human environments,” in IEEE Int. Conf. on

Robotics and Automation (ICRA). IEEE, 2006, pp. 2641–2648.

[2] J. M. Badger, S. W. Hart, and J. Yamokoski, “Towards autonomous
operation of robonaut 2,” 2011.

[3] K. Hauser, V. Ng-Thow-Hing, and H. Gonzalez-Baños, “Multi-modal
motion planning for a humanoid robot manipulation task,” Robotics

Research, pp. 307–317, 2011.
[4] M. Dutra, I. Salcedo, and L. Diaz, “New technique for inverse

kinematics problems using simulated annealing,” in Int. Conf. on

Engineering Optimization, 2008, pp. 01–05.
[5] N. Courty and E. Arnaud, “Inverse kinematics using sequential monte

carlo methods,” Articulated Motion and Deformable Objects, pp. 1–10,
2008.

[6] C. Hecker, B. Raabe, R. Enslow, J. DeWeese, J. Maynard, and K. van
Prooijen, “Real-time motion retargeting to highly varied user-created
morphologies,” in ACM Transactions on Graphics (TOG), vol. 27,
no. 3. ACM, 2008, p. 27.

[7] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber,
“Exponential natural evolution strategies,” in 12th annual conference

on Genetic and Evolutionary Computation. ACM, 2010, pp. 393–400.
[8] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,

“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE, 2011,
pp. 4569–4574.

[9] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” in IEEE Int. Conf. on Robotics and

Automation (ICRA). IEEE, 2009, pp. 625–632.
[10] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions a frame-

work for pose-constrained manipulation planning,” The Int. Journal of

Robotics Research, vol. 30, no. 12, pp. 1435–1460, 2011.
[11] N. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,

L. Righetti, J. Santos-Victor, A. Ijspeert, M. Carrozza, et al., “icub:
the design and realization of an open humanoid platform for cognitive
and neuroscience research,” Advanced Robotics, vol. 21, no. 10, pp.
1151–1175, 2007.

[12] A. Hemami, “A more general closed-form solution to the inverse
kinematics of mechanical arms,” Advanced robotics, vol. 2, no. 4,
pp. 315–325, 1987.

[13] M. Kauschke, “Closed form solutions applied to redundant serial link
manipulators,” Mathematics and Computers in Simulation, vol. 41,
no. 5, pp. 509–516, 1996.

[14] W. A. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in The 23rd IEEE Conference on Decision and Control,
vol. 23. IEEE, 1984, pp. 1359–1363.

[15] M. Zohdy, M. Fadali, and N. Loh, “Robust control of robotic manipu-
lators,” in American Control Conference. IEEE, 1989, pp. 999–1004.

[16] P. Baerlocher and R. Boulic, “An inverse kinematics architecture
enforcing an arbitrary number of strict priority levels,” The visual

computer, vol. 20, no. 6, pp. 402–417, 2004.
[17] S. M. LaValle, Planning algorithms. Cambridge university press,

2006.
[18] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive

configuration spaces,” in IEEE Int. Conf. on Robotics and Automation

(ICRA), vol. 3. IEEE, 1997, pp. 2719–2726.
[19] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566–580, 1996.

[20] M. Kallmann, Y. Huang, and R. Backman, “A skill-based motion
planning framework for humanoids,” in Robotics and Automation

(ICRA), 2010 IEEE Int. Conf. on. IEEE, 2010, pp. 2507–2514.
[21] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: A

review of algorithms and comparison of software implementations,”
Journal of Global Optimization, pp. 1–47, 2011.

[22] M. Frank, J. Leitner, M. Stollenga, S. Harding, A. Förster, and
J. Schmidhuber, “The modular behavioral environment for humanoids
and other robots (mobee),” in ICINCO. SciTePress, 2012, pp. 304–
313.

[23] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the nelder–mead simplex method in low
dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–
147, 1998.

5778

