
Collaborative Monocular SLAM with Multiple Micro Aerial Vehicles

Christian Forster1, Simon Lynen2, Laurent Kneip2, Davide Scaramuzza1

Abstract— This paper presents a framework for collaborative
localization and mapping with multiple Micro Aerial Vehicles
(MAVs) in unknown environments. Each MAV estimates its
motion individually using an onboard, monocular visual odom-
etry algorithm. The system of MAVs acts as a distributed
preprocessor that streams only features of selected keyframes
and relative-pose estimates to a centralized ground station.
The ground station creates an individual map for each MAV
and merges them together whenever it detects overlaps. This
allows the MAVs to express their position in a common, global
coordinate frame. The key to real-time performance is the
design of data-structures and processes that allow multiple
threads to concurrently read and modify the same map. The
presented framework is tested in both indoor and outdoor
environments with up to three MAVs. To the best of our
knowledge, this is the first work on real-time collaborative
monocular SLAM, which has also been applied to MAVs.

I. INTRODUCTION

A. Motivation

Micro aerial vehicles will soon play a major role in

missions, such as security surveillance, search and rescue,

and environment inspection. However, for such operations,

navigating based on GPS information only is not sufficient.

Fully autonomous operation in urban environments and in-

door spaces requires micro helicopters to rely on alternative

localization systems. However, weight restriction and battery

autonomy impose great limitations on the choice of the

sensors. For small-sized and lightweight platforms (less than

40cm and less than 1kg), laser scanners are still too heavy

and consume too much power. Therefore, the only viable

solution is to use a combination of onboard cameras and

IMU (Inertial Measurement Unit). Successful demonstrations

of a MAV performing autonomous basic maneuvers, using

only a single onboard camera, IMU, and an onboard Atom

computer, have been done in our previous work [1], [2]. In

this paper, we attempt to go one step forward, and address

the problem of collaborative localization and mapping with

multiple MAVs in unknown environments.

The application to multiple agents allows the use of

redundant and parallel mechanisms to achieve increased ro-

bustness and efficiency. Several tasks—such as the workload

of mapping an environment—can be shared among all the

agents. As a practical result, the shared map among the

1C. Forster and D. Scaramuzza are with the Artificial Intelligence Lab—
Robotics and Perception Group, University of Zurich, Switzerland—http:

//rpg.ifi.uzh.ch.
2S. Lynen and L. Kneip are with the Autonomous Systems Lab, ETH

Zurich, Switzerland.
This research was supported by the Swiss National Science Foundation

through project number 200021-143607 (”Swarm of Flying Cameras”) and
the National Centre of Competence in Research Robotics.

robots allows the computation of the relative configuration

of the agents, which forms a basis for multi-robot path

planning and cooperative behaviors. Despite these advan-

tages, solving the Simultaneous-Localization-And-Mapping

(SLAM) problem with multiple robots generally increases the

computational and inter-robot communication load.

B. Related Work

Most works in multi-robot SLAM have been done using

range sensors (e.g., laser, sonars, and stereovision) and/or

ground mobile robots moving in the same 2D plane [3]–[6].

Very little work has been done using bearing-only sensors

(monocular vision) and for unconstrained (6DoF) motion

of the agents (e.g., wearable sensors, hand-held cameras,

and flying robots). This problem—known as multi-camera

structure from motion or multi-camera SLAM—can be ap-

proached differently depending on whether the cameras (i.e.,

the robots) can “see” each other or not. If the former case,

their relative configuration can be inferred from the relative

bearing-angle observations [7], [8]. In the latter case, this

can be done starting from the common scene observed by

the cameras. The work described in this paper belongs to the

second category.

In [9], the authors use a single extended Kalman filter

SLAM algorithm with an extended state vector composed of

each camera pose and the observed features. Specifying the

relative configuration at startup, they demonstrate results on

two cameras attached to two bicycles. In [10], the authors

describe a system for cooperative mapping using both aerial

and ground robots equipped with stereo cameras. Each robot

creates local submaps using an extended Kalman filter and

maintains a global graph of submap positions. Rendezvous

between robots, feature correspondences, and absolute GPS

localization measurements, trigger loop closures which re-

sults in exchange of submap positions among the robots.

In [11], the authors study the case of two MAVs which,

equipped with monocular cameras and IMU, form a flexible

stereo rig. Using feature correspondence in the overlapping

field of view, the relative pose of the two robots can be

estimated. In [12], the authors process the video streams from

multiple hand-held cameras. The process is synchronized in

that the images from all the cameras are processed all at once

at each time step. This makes their system impractical for

robotic applications, where the input of each camera should

be computed asynchronously in order to cope with missing

data and delays. Additionally, it is assumed that all cameras

observe the same scene at start. In [13], a system was

presented, where a single robot has to continuously localize

within maps created during previous mapping sessions by

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3963

the same robot. Although this work was not applied to

multiple robots, it can, however, be seen as an instance of a

multi-robot mapping process where each map was created in

previous sessions by the same robot. Finally, in [14], a fully

decentralized SLAM system is presented where each robot

maintains a consistent augmented local map that combines

local and neighbourhood information. The system has been

validated in simulation.

C. Contributions and Outline

In the endeavor of enabling multi-robot navigation of

MAVs with very-low onboard computing power, our goal is

to employ the MAV onboard computer for low-level tasks—

such as feature extraction, relative-motion estimation, and

flight control—and delegate a ground station to higher-level

tasks—such as mapping, loop-closure detection and map

merging. The decoupling of motion estimation and mapping

is useful in real-world scenarios, where the robots have to

maintain some degree of autonomy in case of intermittent

communication with the ground station.

An overview of the proposed approach is depicted in

Figure 1. Each MAV estimates its motion individually by

running an onboard visual odometry (VO) algorithm that is

used to both track the robot motion and stabilize its 6DoF

pose during flight. The outputs of the VO—i.e. keyframe

features and relative-pose estimates between keyframes—are

streamed to a central ground station where our Collabora-

tive Structure from Motion (CSfM) system is running. The

CSfM system on the ground station creates an individual

map for each MAV and merges them together whenever

it detects overlaps. The ground station processes the data

asynchronously, as it arrives, which accounts for situations

where the robots do not start all at the same time or where

some data are missing due to a communication failure. To

achieve real-time performance, we design data-structures and

processes that allow multiple threads (one for each MAV) to

concurrently read and modify the same map. Additionally,

we devise a solution to tackle the scale-difference between

the onboard-estimated trajectories and those estimated on the

ground station.

The remainder of the paper is structured as follows. Sec-

tion II provides an overview of the CSfM system. Section III

details the general mapping pipeline. Section IV explains

how overlaps between maps are detected and how they are

merged into a single global map. Section V describes the

implementation design for concurrent map access. Finally,

Section VI provides the experimental results.

II. SYSTEM OVERVIEW

Each MAV tracks its own position using a keyframe-

based onboard monocular VO algorithm. We chose to employ

the VO presented in our previous work [15]. It is boosted

in terms of robustness and efficiency through the use of

the relative-rotation prior from the onboard IMU. However,

our proposed CSfM system is modular and, therefore, any

alternative keyframe-based VO algorithm (such as [16])

could be used.

VO 1

Place
Recognizer

CSfM

Frame

Handler

Thread 2

Frame

Handler

Thread 1

Map

VO 2
Key-Frame Message:

Key-frame features

Relative position to
previous key-frame

Overlap

Detector

Overlap

Detector

Fig. 1: The CSfM system—running on the ground station—creates a
separate thread for each MAV. Initially, each thread creates its own map.
However, the maps are merged when the Place Recognizer detects an overlap
between the two maps. Both threads then read and update the same map
simultaneously.

Figure 1 illustrates how the CSfM system is embedded

in the multi-robot mapping framework. For each MAV, the

CSfM system (running on the ground station) creates a

new frame-handler thread that receives directly the keyframe

messages from the corresponding VO. The frame handler

creates a new map for its MAV and processes the received

keyframe messages in parallel and asynchronously to the

other frame-handler threads. A keyframe message only con-

tains the extracted image features (i.e., image coordinates

and descriptors) along with a relative transformation to the

previous keyframe.

A keyframe is only added to a map when it provides new

information. Right after a frame handler decides to add a

keyframe to the map, it passes it on to its own overlap-

detection thread (see Figure 2). The overlap detectors in

turn pass the keyframes on to a place-recognition module.

The place recognizer accumulates the visual information

(i.e., feature descriptors), from all keyframes in every map,

and quickly detects whether a place has been visited be-

fore. Meanwhile, the frame handlers triangulate new points

and perform local Bundle Adjustment (BA) in the current

keyframe’s neighborhood. If the overlap detector detects an

overlap within the map of the same MAV, a loop-closure

optimization is initiated. Conversely, if the overlap occurs

with the map of another MAV, the affected frame handlers

are temporarily suspended to allow merging of the maps into

a single one.

After map merging, the frame handlers operate on the

merged map. Specially-designed data structures and the

use of C++ concurrency-control mechanisms allow multiple

frame-handler threads to safely access and update the com-

mon map, which is also the key to real-time performance.

III. MAPPING PIPELINE

Figure 2 illustrates the mapping pipeline as implemented

in the frame handler. The following sections detail the

individual building blocks.

3964

Visual Odometry

P
la

ce
R

e
co

g
n

iz
e

r

Overlap
Detector

Frame

Handler

CSfM

Read Frame

Map Reprojection

Triangulation

Local BA

Save Keyframe

Loop Closure/
Map Merging

Scale Difference
Estimation

Core & Periphery
Selection

Pose Optimization

is
Keyframe?

Yes

No

Yes

NoMap
Overlap?

Call Place
Recognizer

Geometric
����Ð�������

Fig. 2: Mapping pipeline executed inside the frame-handling threads of the
CSfM system.

A. Keyframe Message

Each MAV tracks its own position (with respect to its

own starting point) using a keyframe-based onboard monoc-

ular VO algorithm. When the onboard VO selects a new

keyframe, a message to the ground station is sent containing

the extracted features along with the relative transformation

(R̂k−1,k, t̂k−1,k) to the previous keyframe.

B. Handling the Keyframe Message by the Ground Station

When the ground station receives a keyframe message

from a MAV, there are two possibilities: (i) if this is the first

message from that MAV, then the CSfM system (running

on the ground station) creates a new frame-handler thread

and triangulates the received features into map-points as

soon as the next message arrives; (ii) if a frame-handler

for that MAV already exists, correspondences between the

existing 3D map-points and the features in the new keyframe

are identified. Additionally, the frame-handler updates the

absolute pose (tk,Rk) of the new keyframe in the map:

tk = tk−1 + Rk−1 t̂k−1,k

Rk = Rk−1 R̂k−1,k .
(1)

C. Pose Optimization

The CSfM system optimizes the absolute 6DoF pose of the

new keyframe within the map by minimizing the reprojection

error of all map-points visible by that keyframe using a

nonlinear least-squares solver [17].1

1The reprojection error is the Euclidean distance e between the repro-
jected point and the corresponding observed feature in the image plane.

MAV

Groundstation

CSFM

R, t

R, t

Fig. 3: The VO on the MAV maintains a map with a limited number of
keyframes (e.g., 5) for processing-speed reasons. Therefore, the scale of the
onboard VO drifts faster than on the ground-station. The relative translation
t̂ computed by the MAV’s onboard VO needs to be corrected with the scale
factor λ for the CSfM map.

D. Scale-Difference Estimation between VO and CSfM

Each MAV’s onboard monocular VO produces motion and

structure information only up to an unknown scale factor.

Furthermore, this scale factor is not constant, but drifts over

time. On the ground-station side, the CSfM system also

exhibits a scale drift as long as no loop closures occur.

These two scale factors are not equal and diverge at different

rates (see Figure 3). If the scale difference is not corrected,

scale jumps can occur as it is depicted in Figure 6 (refer to

Section VI). A scale jump occurs if the MAV’s VO’s scale

drifts too much with respect to the CSfM map such that in

the reprojection step no correspondences can be found and

thus the pose cannot be optimized anymore towards the right

position.

To correct this scale difference, we compare the estimated

relative translation t before and after the pose optimization

step:

λ̂k =
||tk−1,k after Optimization||

||t̂k−1,k before Optimization||
. (2)

Hence, we compute the new scale factor λk with the follow-

ing update rule:

λk = λk−1 + κ · (λ̂k − λk−1), (3)

where κ represents the smoothing factor. Empirically, we

found that κ = 0.05 is a good choice.

Using the estimated scale-difference factor λk, the relative

position received from the MAV’s onboard VO is corrected

by the corresponding frame-handler before a new keyframe is

used. The position computed by Equation (1) is then updated

to:

tk = tk−1 + λkRk−1 t̂k−1,k. (4)

This step further justifies why the pose of keyframes that

are later not inserted in the map must also be optimized. It

allows us to successfully track the robot’s pose with respect

to the map and to estimate the scale difference.

3965

E. Keyframe Selection

While the use of more map-points improves the accuracy

of the map, increasing the number of keyframes has only

minor effects once robustness is achieved [18]. Therefore,

similar to [16], new keyframes are only inserted in the map

if the distance to the closest keyframe is large enough.2

Depending on the trajectory, the CSfM system rejects on

average up to 85% of the received keyframes, which saves

processing time.

F. Selection of Core and Periphery Keyframes

The CSfM system follows the fundamental concept that no

temporal ordering of keyframes is retained. Keyframe neigh-

bourhoods for optimization and triangulation are selected

based only on spatial adjacency. This means that also older

keyframes—regardless of the MAV they originate from—are

taken into account for these operations, leading to a reduction

of redundant information inside the map. A set C of four

core keyframes is selected, which shares the largest number

of common map-point observations with the new keyframe.

The set of periphery keyframes P is defined by all keyframes

that share at least one common map-point observation with

C or with the new keyframe but which are not in the set C.

G. Triangulation

New map-points are triangulated when a new keyframe

is selected to be inserted in the map. For every unmatched

feature in the new keyframe, we search matching features

along the epipolar lines in the core keyframes. If a matching

descriptor is found, the point is triangulated and projected

into the remaining core and periphery keyframes to increase

the number of measurements. The creation of duplicate

points is inhibited by merging points in case a feature is

already associated with an existing map-point. The merging

step is essential for obtaining sparse and well constrained

maps.

H. Local Bundle Adjustment

Mouragnon et al. [19] have shown the feasibility of

creating an accurate 3D reconstruction in real-time using

incremental bundle adjustment. Therefore, the CSfM system

optimizes the set of core keyframes C together with the

new keyframe and along with the commonly observed map-

points using the g2o framwork [17]. The set of periphery

keyframes P is added to the optimization window with a

fixed pose. The periphery keyframes are required to fix the

scale of the structure and to ensure that the optimization is

optimal with respect to the boundary.

IV. MAP OVERLAP DETECTION AND

PROCESSING

A fundamental characteristic of the CSfM system is its

ability to detect if a MAV reenters an environment that

has already been visited, either by itself or by another

MAV which results in a loop-closure optimization or a

2We set the threshold to 15% of the average scene depth.

map merging respectively. Such overlaps are detected based

on the keyframe appearance (i.e., feature descriptors) and

subsequently geometrically verified.

A. Appearance-based Overlap Detection

If a keyframe is accepted for inclusion in the map, a

second overlap-detection thread is started, which calls the

place-recognizer module (see Figure 2). The external place

recognition module is the same for all frame handlers and

relies on a bag-of-words [20] approach. The exact type

of place recognizer in use depends on the employed local

invariant point descriptor. We initally tested OpenSURF fea-

tures [21], which allow the use of the OpenFABMAP place

recognizer [22]. However, for increased speed, we decided to

use BRISK features [23]. Since binary features have special

clustering properties, a dedicated place-recognition module

was implemented.3

B. Geometric Verification

Each time the place recognizer returns an overlap-

keyframe with similar appearance as the current keyframe,

the overlap detector geometrically verifies the result by ap-

plying the Perspective-Three-Point (P3P) algorithm from our

previous work [24]. The P3P algorithm derives the camera

pose from at least three 3D-to-2D feature correspondences.

These correspondences are established by identifying match-

ing descriptors between map-points—which the overlap-

keyframe observes—and features in the current keyframe. To

remove outliers, we integrated the P3P into a RANSAC [25]

procedure. The output of RANSAC is then the rigid body

transformation between the two keyframes.

C. Map merging

If the detected overlap occurred between two different

maps, the similarity transformation {R, t, s} returned by the

geometric verification step is used to merge the two maps

into one. The factor s accounts for the different scale between

the two maps and can be found by comparing the relative dis-

tances between any combination of 3D map-points which are

common between the two maps. All frame handlers working

on either of the two maps are temporarily suspended, and

the entire candidate map for which an overlap was detected

is subjected to the determined similarity transformation. To

improve the measurements of points and avoid redundant

information in the map, all map-points from each overlapping

map region are reprojected into the keyframes from the

other map and corresponding map-points are merged. A last

important detail consists of applying the scale factor s to

the scale difference factor (see Section III-D) of all frame

handlers that were operating on the transformed map. This

is necessary to ensure that the received relative position

estimates from the VO are correctly scaled with respect to

the map. The frame-handler threads are finally resumed, and

now operate in parallel on the same map. At this stage, it is

3The BRISK-based place-recognizer goes beyond the scope of this paper
and, therefore, it is not described here.

3966

important to design the algorithm and data structures such

that concurrent data access is possible (see Section V).

Note that the CSfM node creates references between two

maps only when a loop closure is detected. However, in

practice, the two maps may still contain overlaps in other

regions if the place-recognition or the geometric-verification

steps failed to detect them earlier. However, the CSfM system

is still able to detect and incorporate them in a later stage in

case a MAV retraverses the same environment.

D. Loop closure

The computed similarity transformation parameters

{R, t, s} also incorporate the amount of drift that has been

accumulated along the loop.

The standard solution to optimize both the full map and

keyframes after loop closure is to run global BA. However,

this approach is computationally demanding and may fail

completely due to convergence into local minima. There-

fore, we chose to split the optimization into two steps.

In the first step, we marginalize out the map-points. This

reduces the map representation to a pose-graph with edges

of different strength between poses. Strasdat et al. [26]

were the first to propose 7-DoF pose-graph optimization

including the scale as a drift parameter, which leads to a

substantial improvement in a monocular-SLAM context. The

parametrization of this pose-graph relaxation is included in

the g2o framework [17] and used by the CSfM system.

After pose-graph optimization, the map-points are updated

accordingly and global BA is run to further refine both map-

points and keyframe poses simultaneously.

V. IMPLEMENTATION DESIGN FOR

CONCURRENT MAP ACCESS

If two or more maps have been merged, multiple frame-

handling threads concurrently read and modify a single map

(as depicted in Figure 1). Processing keyframes in parallel

on a multi-core processor is the key to real-time performance

of the CSfM system. However, when multiple things happen

at the same time, special measures need to be taken both on

the data-structure and on the algorithm layout level.

The difficulty of shared memory between multiple threads

comes from the consequences of modifying data. We can

ensure the integrity of the shared data by using the concept of

mutual exclusion locks. This concept defines that if a thread

wants to access some data-object, it first needs to acquire the

data-object’s lock, which is only possible if no other thread

has previously acquired the lock without releasing it.

The design of data-structures defines the scope for simulta-

neous data access. Figure 4 illustrates the map data structure

of the CSfM system. The map consists of a list of keyframes

(KF-List), whereas each keyframe (KF) holds a list of

references to map-points (MP) that it observes. The map-

points in turn also have a list of references to keyframes

which they are observed by. There are only locks on the

keyframe list and on the individual keyframes. If a thread

owns the lock of a keyframe, it is allowed to read all map-

points which the keyframe observes. Hence—in order to

KF-List

KF KF KF

MPMP MP MP MP MP MP

Fig. 4: Data-structure design for concurrency.

modify a map-point—it is necessary to acquire the locks of

all keyframes that observe the map-point.

This property is used in the mapping pipeline: If a

frame-handler thread locks all core and periphery keyframes

{C,P}, it is allowed to modify these keyframes and all

map-points which are observed by at least one of the core-

keyframes C. Fortunately, this is exactly the set of objects

which change during local BA and triangulation.

Since no list of map-points exists, all map-points must be

accessed via a keyframe. Knowledge of the lock state of this

keyframe automatically inhibits that threads modify data that

are out of their scope. Moreover, this design eliminates the

overhead of locking individual map-points.

The employed locking strategy uses shared and upgrade-

able locks4 which allows other threads to simultaneously read

the data in the same neighborhood except for the negligible

time when updates are saved in the map. If the MAVs

operate in different parts of the map with non-overlapping

core and periphery keyframes, they can even update the map

concurrently.

VI. EXPERIMENTAL RESULTS

Experiments were performed using two AscTec FireFly

MAVs5 equipped with an IMU, a single downlooking cam-

era, and a Core-2-Duo computer. The ground-station was a

2.8 GHz i7 laptop. A video of the experimental results is

available at http://rpg.ifi.uzh.ch.

To evaluate its performance, our CSfM back-end was

tested in both indoor and outdoor environments. Indoors,

ground truth was obtained from a Vicon motion-capture

system that provides absolute position information with

millimeter accuracy at 100 Hz. The output of the CSfM was

evaluated by comparing the keyframe positions to the ground

truth.6 The indoor environment consisted of a flat surface of

approximately 8 by 8 meters. We added additional texture to

the surface such that the VO algorithm has always enough

features to track.

Figure 5 illustrates the influence of pose optimization

(Section III-C) and local BA (Section III-H) on the median

reprojection error of map-points. The peaks in the initial

reprojection errors (blue dots) originate from the scale dif-

ference discussed in Section III-D. As observed, they get

4Implemented e.g. in the Boost library: www.boost.org.
5www.asctec.de/Firefly
6Since the scale of the map created by the CSfM system and the

coordinate transformation between the computed and the ground truth
trajectories are unknown, we derived the aligning similarity transformation
{R̄, t̄, s̄} using a least-squares procedure.

3967

After local BA

After pose optimization

Initial error

M
e
d
ia

n
 r
e
p
ro

je
ct

io
n
 e

rr
o
r
[p

x]

Keyframe Id
0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 5: Influence of pose optimization and local BA on the reprojection error
in newly received keyframes.

(a) Without scale correction. Scale jump is marked with a blue arrow.

(b) With scale correction.

Fig. 6: Two maps of a flat surface seen from the side. The points on the
bottom represent the map-points and the triangles on the top the key-frames.
In (a), the scale jump of the map is clearly visible (blue arrow). In (b), the
scale-difference estimation was activated and no scale-jump occurs.

canceled after pose optimization and local BA. Moreover,

the peaks in the initial error disappear as soon as the scale

difference factor λk has adapted. Figure 6 shows the effect of

scale difference estimation and correction that we mentioned

in Section III-D. If the scale drifts, the system is able to

recover for reprojection errors up to 5 pixels. However, when

the drift becomes too large, the system looses connection to

the map and scale jumps occur. This effect does not arise if

the scale is estimated and corrected, as shown in Figure 6b.

The amount of drift depends on the chosen trajectory and on

the distribution of the features in the keyframes.

Figure 7 shows a large loop trajectory before and af-

ter pose-graph optimization. On this trajectory, the system

adopted 110 keyframes over 16.7m. The evolution of the

error over time is reported in Figure 8. The loop closure

occurs around 35s and measurements are only indicated at

times when a keyframe was created. The RMS error of

the keyframe positions right before and after loop-closure

detection and optimization was 0.1m and 0.04m, respectively.

Fig. 7: 3D visualization of a pose-graph before (blue) and after (green)
optimization on a loop trajectory.

With Loop Closure

No Loop Closure

Time [s]

Er
ro

r
[m

]

0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

Fig. 8: Evolution of the RMS error of the loop trajectory in Figure 7 with
and without explicit loop closure optimization. The loop closure occurs
around 35 s.

Figure 9a shows two MAVs simultaneously mapping two

distinct areas. As soon as the CSfM system detects an

overlap (b), it merges the two maps into a single, global

one. Figure 10 shows comparison with ground truth obtained

from a Vicon motion-capture system. Figure 11 indicates the

corresponding error for both trajectories. The length of the

combined trajectory was 30m, the total number of keyframes

in the final map was 154, and the final RMS error 0.06m.

Our CSfM algorithm was also tested on two outdoor

datasets from the European project sFly [27]. The combined

trajectory length was approximately 400m (see Figure 16).

Figures 12 to 15 show the mapping of the outdoor environ-

ment. Since both MAVs start at the same location, the two

maps are immediately merged. Hence, the relative pose of the

two MAVs is known from the beginning. Based on the color

of the map-points, which is set to the color of the last MAV

that observed it, one can see that both MAVs successfully

localize in parts mapped by the other MAV (e.g., compare

Figures 14 and 15). The GPS accuracy around the test area

was ranging between 5 and 15 meters because of foliage and

surrounding buildings. Therefore, GPS cannot be used as a

reliable ground-truth. Nevertheless, some drift is still clearly

visible between the estimated trajectory and the GPS. This is

due to the absence of loop closures between the trajectories

undergone by the two MAVs.

The most common failure case of the system occured when

the place-recognition module missed to detect an overlap.

In this case, after merging at a later stage, the global map

contained redundant and, because of drift and map alignment

errors, slightly misaligned map-points. The system was often

able to recover from such situations through loop-closure

detection and optimization at a second traversal.

By transmitting only binary features extracted from

keyframes, the required bandwidth can be kept at a con-

siderably low level (∼1 Mbit/s for 200 BRISK [23] features

3968

and 10 Hz keyframe rate) compared to streaming entire raw

images (∼86.6 Mbit/s for grayscale 752×480-pixel images

and 30 Hz framerate). Note that the reduced keyframe-rate

for our approach is because our VO already preselects a

subset of frames as keyframes.

The average keyframe processing time on the ground-

station ranged between 22ms and 45ms, resulting in a frame

rate of up to 45Hz for one MAV. The average computation

time per keyframe depends, to a large extend, on both the

trajectory and the environment. A MAV that is constantly

exploring new environments produces more keyframes—and,

thus, a higher workload for the CSfM system—than a MAV

that remains in previously-mapped areas. In the latter situa-

tion, most keyframes are dropped since they do not provide

new information. On average the CSfM system selects only

85% of all received keyframes. Regarding the environment,

an increased density of features implicitly leads to an in-

creased number of map-point references and, thus, higher

reprojection, matching and BA computation times. The aver-

age number or reprojected map-points ranged between 200

and 350. Furthermore, the efficiency of the algorithm also

depends on inherent parameters, such as keyframe-selection

criteria and size of the local BA window. The parallelized

system pipeline is designed such that the processing time

does not increase with higher numbers of MAVs—given that

for each MAV a processing core is provided. In experiments

on the mentioned 4-core laptop, the processing time with

two MAVs did not decrease significantly and with three

MAVs real-time performance could still be achieved. One

bottleneck is the place recognition module which currently

is not parallelized and sequentializes the requests.

VII. CONCLUSION AND FUTURE WORK

We proposed a system (named CSfM) for collaborative

monocular SLAM with multiple MAVs using a centralized

approach. By distributing the workload between the MAVs

and the ground-station, we save processing power, require

much less transmission bandwidth, and keep some autonomy

on the MAVs themselves, i.e. the stability of the MAVs

is not threatened by the reliability of the communication

link. The CSfM system is highly modular and can work

with different VO and place recognizer modules. We also

presented a method for scale-difference correction, which

solves an inherent problem of the decoupled system. The

algorithm employs state-of-the-art techniques for active loop

closure detection, bundle adjustment, and 7-DoF pose-graph

relaxation. Results on real data including a comparison to

ground truth demonstrate the high accuracy that can be

achieved with vision-only SLAM. Finally, real-time perfor-

mance was achieved with a system that allows multiple

threads to concurrently read and modify the same map.

Future work will leverage on the potential to localize

multiple MAVs in the same environment to allow purely

vision-based coordinated flight of multiple robots.

(a) before map merging

(b) after map merging

Fig. 9: Experimental results showing maps concurrently created by two
MAVs in a real indoor environment. (a) The maps shortly after an overlap
was detected by the place recognizer (red line). (b) The global map after
merging.

Vicon Groundtruth MAV 2

Vicon Groundtruth MAV 1

CSfM Estimate

y
[m

]

x [m]

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 10: The map of Figure 9b (after loop-closure and map-merging) is
compared to the ground-truth. The blue dots mark the keyframe positions,
while the green and purple lines are the ground-truth trajectories of both
MAVs.

2nd MAV

1st MAV

Er
ro

r
[m

]

Time [s]
0 10 20 30 40 50 60 70

0

0.05

0.1

Fig. 11: Evolution of the RMS error of the keyframes in Figure 10.

REFERENCES

[1] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
MAV navigation in unknown and unstructured environments,” IEEE

Proc. Int. Conf. on Robotics and Automation, 2010.

[2] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-SLAM-based
navigation for autonomous micro helicopters in GPS-denied environ-
ments,” Journal of Field Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[3] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
2000.

[4] R. Rocha, J. Dias, and A. Carvalho, “Cooperative multi-robot systems:
A study of vision-based 3-d mapping using information theory,”
Journal of Robotics and Autonomous Systems, Vol 52, No 3-4, 2005.

[5] A. Howard, G. Sukhatme, and M. Mataric, “Multi-robot mapping using

3969

Fig. 12: The first MAV takes off and starts building its map.

Fig. 13: The second MAV starts and immediately localizes in the map of
the first MAV. The relative position of the two MAVs is now known.

manifold representations,” Proceedings of the IEEE - Special Issue on

Multi-robot Systems, 2006.

[6] N. Trawny, S. Roumeliotis, and G. Giannakis, “Cooperative multi-
robot localization under communication constraints,” IEEE Proc. Int.

Conf. on Robotics and Automation, 2009.

[7] A. Martinelli, F. Pont, and R. Siegwart, “Multi-robot localization
using relative observations,” IEEE Proc. Int. Conf. on Robotics and

Automation, 2005.

[8] M. Cognetti, P. Stegagno, A. Franchi, G. Oriolo, and H. H. Buelthoff,
“3D mutual localization with anonymous bearing measurements,”
IEEE Proc. Int. Conf. on Robotics and Automation, 2012.

[9] J. Sola, A. Monin, M. Devy, and T. Vidal-Calleja, “Fusing monocular
information in multicamera SLAM,” Robotics: Science and Systems,
2008.

[10] T. a. Vidal-Calleja, C. Berger, J. Sola, and S. Lacroix, “Large scale
multiple robot visual mapping with heterogeneous landmarks in semi-
structured terrain,” Robotics and Autonomous Systems, 2011.

[11] M. Achtelik, S. Weiss, M. Chli, F. Dellaert, and R. Siegwart, “Col-
laborative Stereo,” IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2011.

[12] Z. Danping and T. Ping, “CoSLAM: Collaborative visual slam in
dynamic environments,” IEEE Pattern Anal. Machine Intell., 2012.

[13] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. J. Leonard,
“6-DOF Multi-session Visual SLAM using Anchor Nodes,” Proc.

European Conference on Mobile Robots, 2011.

[14] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0:
Consistent distributed smoothing and mapping,” IEEE Proc. Int. Conf.

on Robotics and Automation, 2013.

[15] L. Kneip, M. Chli, and R. Siegwart, “Robust Real-Time Visual
Odometry with a Single Camera and an IMU,” Proc. British Machine

Vision Conference, 2011.

[16] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” IEEE and ACM International Symposium on Mixed

and Augmented Reality, Nov. 2007.

[17] R. Kümmerle, G. Grisetti, and K. Konolige, “g2o: A General Frame-
work for Graph Optimization,” IEEE Proc. Int. Conf. on Robotics and

Automation, 2011.

[18] H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Real-time Monoc-
ular SLAM: Why Filter?” IEEE Proc. Int. Conf. on Robotics and

Automation, pp. 2657 – 2664, 2010.

[19] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“3D Reconstruction of Complex Structures with Bundle Adjustment:
an Incremental Approach,” IEEE Proc. Int. Conf. on Robotics and

Automation, 2006.

[20] J. Sivic and A. Zisserman, “Video Google: a text retrieval approach
to object matching in videos,” Int. Conf. on Computer Vision, 2003.

[21] C. Evans, Notes on the OpenSURF Library. University Bristol, 2009.

Fig. 14: The MAVs return to the take-off location.

Fig. 15: Note that the color of the map-points indicate which MAV has
last observed the points. One can observe that the red MAV observes and
localizes with the map- points created by the green MAV.

GPS

Fig. 16: Trajectories of the two MAVs in the outdoor experiment overlayed
with the GPS measurements.

[22] A. J. Glover, W. P. Maddern, M. J. Milford, and G. F. Wyeth, “FAB-
MAP + RatSLAM : appearance-based SLAM for multiple times of
day,” IEEE Proc. Int. Conf. on Robotics and Automation, 2010.

[23] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary Robust
Invariant Scalable Keypoints,” Int. Conf. on Computer Vision, 2011.

[24] L. Kneip, D. Scaramuzza, and R. Siegwart, “A Novel Parametrization
of the Perspective-Three-Point Problem for a Direct Computation of
Absolute Camera Position and Orientation,” IEEE Proc. Conf. on

Computer Vision and Pattern Recognition, 2011.
[25] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Communications of the ACM, 1981.

[26] H. Strasdat and A. J. Davison, “Scale Drift-Aware Large Scale
Monocular SLAM,” Robotics: Science and Systems, 2010.

[27] M. W. Achtelik, S. Lynen, S. Weiss, L. Kneip, M. Chli, and R. Sieg-
wart, “Visual-Inertial SLAM for a Small Helicopter in Large Outdoor
Environments,” Video Proc. Int. Conf. on Intelligent Robots and

Systems, 2012.

3970

