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Abstract— This paper proposes an identification technique
of a human standing controller. The dynamics of a human
is approximated by the macroscopic relationship between the
center of mass and the zero-moment point. The standing
controller is modelled by a piecewise-linear feedback, which
was originally developed for humanoid robots. In the previous
work, the authors found a qualitative similarity of the model
to an actual human behavior observed in a phase space, and
the next challenge was to identify the controller from those
data. A difficulty is that the observed dynamics is a piecewise
system due to the unilaterality of reaction forces, so that the
identification is not straightforward. It is not trivial how to
detect the switching point in each motion locus and how to
find the trust region of the supposed model. The recursive-
least-square (RLS) method, which can present the deviation of
identified parameters and that of the reliability of the results,
helps to estimate the trust region with a returning computation
process. Through the identification, the validity of the proposed
method was verified. More study about the availability of the
COM-ZMP model and the piecewise-linear controller for the
analyses of the human standing control is also reported.

I. INTRODUCTION

To understand motional properties of humans in a quantita-

tive manner provides lots of knowledge not only in biological

but also in engineering aspects. It is utilized to measure mo-

tion abilities and to model responsive characteristics of hu-

mans in medical diagnoses, athletic trainings, rehabilitations,

ergonomic designs and so forth. The recent advancement

of motion measurement technologies has enabled detailed

modeling of human bodies[1] and even realtime monitoring

of the internal activities of muscles and nerves[2]. However,

no matter how precisely the human motion is computed,

it doesn’t necessarily suggest a clear explanation about the

principle of motor control of humans. Although there have

been many important studies related with the identification

of human controllers, they basically targeted rather simple

motions comprising only a couple of joints such as an arm-

reaching[3], [4], [5] and a standing stabilization[6], [7], [8],

[9]. The dynamical complexity of the human motion which

is characterized by hyper-redundancy, underactuatedness and

structure-varying property makes the problem challenging.

On the other hand, several techniques to control humanoid

robots have been compiled in the field of robotics. It is known

in particular that the macroscopic relationship between the

center of mass (COM) and the center of pressure (COP),
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which is also named the zero-moment point (ZMP)[10],

works for a hierarchical design of the whole-body controllers

[11], [12], [13], [14], [15], [16], [17], [18], [19] for it

captures the macroscopic dynamics of a humanoid.

Sugihara[19] proposed a piecewise-linear feedback con-

troller for humanoid robots to stabilize COM during stand-

ing based on the above relationship between COM and

ZMP, which we call the COM-ZMP model hereafter. In

order to quantify a human’s overall motion ability such as

responsivity and equilibratory sense, it would be a better

thought to focus on that macroscopic dynamics than to pay

attention to each muscle, nerve or bone. In fact, Kaneta et

al.[20], [21] observed a human’s lateral COM movements in

a phase space and found that the controller also matches the

human’s standing behavior qualitatively. It had been required

to identify the controller from those data. A difficulty is

that the observed dynamics is a piecewise system due to the

unilaterality of reaction forces, so that the identification is not

straightforward. It is not trivial how to detect the switching

point in each motion locus and how to find the trust region

of the supposed model of each segment.

The main objective of this paper is to propose an identifi-

cation technique of a human standing controller utilizing the

recursive-least-square (RLS) method[22]. It is originally for

online parametric regressions and can present a history of the

deviation of identified parameters and that of the reliability

of the results. Those pieces of information help to estimate

the trust region of the supposed model with a returning

computation technique. The idea is that, when conducting

RLS computation along with a motion locus, the deviation is

reduced after going into the trust region, and by conducting

RLS computation inversely from the end of the locus, the

deviation increases after going out of the region so that we

can obtain more reliable estimation of the trust region.

We conducted the identification and verified the validity

of the proposed method, though it still has some problems

to be improved. We also learned more about the availability

of the COM-ZMP model and the piecewise-linear controller

for the analyses of the human standing control.

II. STANDING CONTROL SCHEME BASED ON THE

COM-ZMP MODEL

The dynamics of a humanoid, which could be either a real

human or a humanoid robot, is represented by a complex

equation of motion with a large dimensional generalized

coordinates and inequality constraints originated from the

limitation of reaction forces [23]. It is known, however, that

the relationship between COM and ZMP well approximates
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Fig. 1. The COM-ZMP model
of a lateral standing motion
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Fig. 2. Phase portraits of the COM-ZMP model and the piecewise-linear controller with respect to different eigenvalues

the macroscopic characteristics of a humanoid through many

studies on robot controls as referred in the introduction.

Let us consider a human motion in the lateral plane

as shown in Fig. 1. Suppose the torque about COM is

sufficiently smaller to be neglected than that due to the

translational movement of COM about ZMP, we get the

equation of motion as

ẍ = ω2(x− xZ) (1)

ω ≡

√

z̈ + g

z
(2)

where x is the lateral position of COM, xZ is the lateral

position of ZMP, z is the height of COM with respect to

the ground, and g = 9.8[m/s2] is the acceleration due to the

gravity. ZMP is constrained in the supporting region as

xZmin ≤ xZ ≤ xZmax, (3)

where xZmin and xZmax are the right and the left ends

of the supporting region in x-axis, respectively. The above

constraint comes from the unilaterality of reaction forces,

namely, the fact that any attractive forces cannot act at any

contact points.

Sugihara[19] proposed a controller in which the desired

ZMP dxZ is decided by a piecewise-linear feedback of COM

state as

dxZ =











xZmax (S1:x̃Z ≥ xZmax)

x̃Z (S2:xZmin < x̃Z < xZmax)

xZmin (S3:x̃Z ≤ xZmin)

(4)

x̃Z ≡ dx+ k1(x− dx) + k2ẋ, (5)

where dx is the referential position of COM and k1 and k2
are feedback gains. If the actual ZMP, which works as the

input to the system, is manipulated to track the desired ZMP,

the feedback system becomes

ẍ =











ω2x− ω2xZmax (S1)

−ω2(k1 − 1)(x− dx)− ω2k2ẋ (S2)

ω2x− ω2xZmin (S3)

. (6)

If we suppose that the COM height is invariant during

the motion, namely, z is constant, ω is also constant and

accordingly the system is piecewise-affine. In the case of

Fig. 3. Motion measurement system setup

robot control, the gains can be defined based on the pole

assignment technique. Suppose the desired poles in (S2) are

given as −ωq1 and −ωq2. Then, k1 and k2 are

k1 = q1q2 + 1, k2 =
q1 + q2

ω
. (7)

Fig. 2 shows phase portraits of the feedback system with

respect to some different poles. The red lines a and b in

the portraits mean the switching plane between (S1), (S2)

and (S3); the region between a and b is (S2). (S1) and (S2)

are separated by a, and (S2) and (S3) by b. The blue dotted

areas are stable regions, where COM stably converges to the

referential position.

Although this controller is simple with a small number

of parameters for modelling the human behavior, it has the

following virtues comparing to the previous standing models

[6], [7], [8], [9].

1) It is almost free from body constitution of the subject,

so that it suggests a macroscopic understanding of the

whole-body behavior.
2) Effects of body constitution appears as perturbations,

which is rather easily separated from the dominant

behavior of the system, so that it suggests a hierarchical

structure of the controller.
3) It explicitly deals with the dynamical constraint due to

the unilaterality of reaction forces, which is hard when

observing only behaviors of each joint.
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(a) COM movement around the referential position (c) over-accelerated movement, eventually falling down

(d) recovery movement from a point beyond the stance (e) unrecovered movement outside of the stance

Fig. 4. Snapshots of experimental scenes

4) It enables quantitative evaluation of the controller.

Stabilizability and responsivity are quantified by the

system eigenvalues.

III. VISUALIZATION OF THE COM-ZMP DYNAMICS

When considering to apply the model in the previous

section to the identification of a human controller, a sufficient

number of loci of COM in a phase space have to be collected.

For this purpose, Kaneta et al.[20] conducted a motion

measurement experiment. They found that the visualized loci

qualitatively conform the phase portrait of the model, while

they learned that the dispersion of convergence points and

variation of the COM height during motions influence the

reliability of data more than expected. Based on this, Kaneta

et al.[21] redesigned the protocol and conducted another

experiment in order to improve the accuracy of measurement

by visually presenting the referential position and to see the

effect of linear approximation in the model by controlling

and uncontrolling the height of COM of the subject as

illustrated in Fig. 3. This section summarizes it.

The subject was a 21-year-old male, who was 181[cm]

tall and weighed 70[kg]. His kinematics and dynamics were

modeled and identified before the experiments based on

a method proposed by Ayusawa et al.[24]. The subject

was informed the objective and risk of the experiment and

understood them in advance. In the system, 3D loci of a set

of the retroreflective markers attached to the subject’s whole-

body were measured every 5[ms] and were converted to a

locus of the whole-body configuration through the inverse

kinematics. The locus of COM was computed through the

forward kinematics based on the subject’s mass property.

Measurement noises were reduced by a second-order Butter-

worth filter with 2[Hz] of cutoff frequency. By numerically

differentiating it, a history of the velocity and acceleration of

COM were computed. The locus of ZMP was also computed

from a record of force plates. Fig. 4 shows snapshots of

scenes of the experiment, where (a) is a recovery motion

to the referential position against a perturbation, (c) is a

falling-down motion over the point of equilibrium, (d) is

a stabilization from a state in a distance of the point of

equilibrium, and (e) is an unreaching motion from a state

outside of the stable region to the point of equilibrium. 8 loci

for the above 4 types of motions were collected in symmetric

-2

-1

 0

 1

 2

-1 -0.5  0  0.5  1

v
e
lo

c
it
y
 [

m
/s

]

position [m]

(a)

(c)

(d)

(e)

(A) COM height uncontrolled

-2

-1

 0

 1

 2

-1 -0.5  0  0.5  1

v
e
lo

c
it
y
 [

m
/s

]

position [m]

(a)

(c)

(d)

(e)

(B) COM height controlled

Fig. 5. Loci of COM of standing motions

manners with respect to the point of equilibrium under the

condition with both uncontrolled and controlled COM height.

Hence, the number of the loci was 128 in total. For the detail

of the experiment, refer the original paper.

As the result, two sets of loci were obtained as Fig. 5(A)

and (B), where the referential position is set to be the original

point, namely, dx ≡ 0. (A) is one with uncontrolled COM

height, while (B) is with controlled COM height. Though

the global structure of the measured behaviors in the two

cases are similar, the difference of the condition qualitatively

appears in the two figures; the loci of (A) in a distance of the

point of equilibrium are distorted from the theoretic curves

of the linear dynamics, while that of (B) are not.

Note that this study doesn’t aim at making statistics to

generalize the model but currently at presenting a method

to identify an individual controller, so that the number of

subjects doesn’t concern.

IV. IDENTIFICATION OF A PIECEWISE-LINEAR

CONTROLLER USING RLS METHOD WITH A RETURNING

PROCESS

Now, our objective is to identify the system parameters ω,

xZmin and xZmax in Eqs.(1), (3), and the control parameters

k1 and k2 in Eq.(5) from the result in the previous section,

and have the following two problems to be solved:

1) Though ω is assumed to be constant in the model

for simplicity, in fact, it varies during the motions

particularly due to the limitation of leg length and

accordingly the variation of COM height. How can the

trust region of the model be bounded?
2) The control scheme might have been switched during

a stable motion in accordance with Eq.(5). How can
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discrete time

p
a
ra

m
e
te

r

Forward RLS

Backward RLS
True value

trust region

Identified value

w/o segmentation

Θ

k N1

Θ [k]B

Θ [k]F

error

candidate of
switching point

Fig. 7. RLS method with a returning process to estimate the trust region

discrete time

p
a
ra

m
e
te

r Backward RLS

True value

trust region

Θ

k N1

Θ [k]B

error

switching point
maybe here...?

Fig. 8. If only conducting backward RLS, it is hard to find the boundary
of the trust region

the switching point be detected?

Basically, the above problems have a common structure.

Namely, both of them require the segmentation of data set

based on the reliability of the supposed model and the

parametric identification from the segmented data, which

is one of the difficulties of the identification of piecewise

systems.

Figs. 6 and 7 depics our idea to solve this by utilizing

the recursive-least-square (RLS) method[22] with a return-

ing process. Suppose we have a locus of the state vector

q(t), which is discretized with a sampling interval ∆t into

{q[k]} (k = 1 ∼ N), where q[k] ≡ q(k∆t) and N is the

number of samples. Let us consider a model of the system

Θ
T
q = 0 (Θ is a set of parameters to be identified), which

is valid only when q ∈ S , and a situation that the boundary

of S is unknown. We have to detect the switching point at

which the locus enters the trust region of S , and identify Θ

only from the data within the trust region.

By applying the RLS method from q[1] to q[N ] (forward

RLS) under the model, the identified value of Θ, Θ̃F [k],
is optimally updated at each step in the sense of the least

square. Since the former part of the locus is not in S as

illustrated in Fig. 6, the behavior of q[k] is inconsistent with

the model and Θ̃F [k] unconverges. After the locus enters the

trust region and matches the model, Θ̃F [k] is expected to

converge gradually to a certain value as the red solid line in

Fig. 7. The final value Θ̃F [N ] would have an error from the

true value of Θ due to the influence of the model mismatch

in the former part. Then, by applying the RLS method again

but from q[N ] to q[1] (backward RLS) with the initial guess

Θ̃F [N ], the identified value Θ̃B [k] is expected to converge

to a certain value with better accuracy than the forward RLS

as the blue dashed line in Fig. 7. After the locus goes out of

the trust region, the behavior becomes inconsistent again with

the model and Θ̃B [k] begins to fluctuate as well as the former

part of Θ̃F [k]. The final value Θ̃B [1] equals to Θ̃F [N ] if

the forward RLS starts with a sufficiently large covariance.

Through this returning process, we can guess that the point

from which Θ̃B [k] begins to stray is the switching point and

the partial locus after this point is within the trust region.

Only the backward RLS might work if the convergence

within the trust region is sufficiently rapid. We think that the

above reciprocal process is preferable for more reliable esti-

mation since in some cases the estimation doesn’t converge

to the true value within the trust region as Fig. 8 depicts.

In the case that a locus starts within S and goes out of it,

the process in the reverse order is available, namely, one can

conduct the backward RLS first and then the forward RLS.

V. RESULTS AND DISCUSSION

A. Identification of the system parameters

The proposed idea is applicable to the identifications of

both the system parameters and the control parameters. First,

the identification of the system parameter ω was conducted

in accordance with all the collected loci. 8 examples of the

RLS computation with a returning process for each motion

with uncontrolled and controlled COM height are shown in

Fig. 9, where the red lines and the blue lines correspond to

the lines of the same attribute in Fig. 7. Though they are

no more than examples, the other also show similar profiles.

As expected in the previous section, the estimated value of ω

begins to converge to a certain value at a point in the forward

RLS computation, while it begins to vary at another point in

the backward RLS computation. Also as expected, the latter

point in the backward RLS is earlier than the former point in

the forward RLS in some cases, although those points don’t

differ much from each other in the other cases. It is contrary

to the expectation, but the differences between the identified

values in each computation are small. It means that the effect

of model mismatch is not large at least on the sampled loci.
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Fig. 10. Identified trust region of ω

Fig. 10 shows the resultant trust region with respect to

ω. It was also unexpected, but the identified values were

clustered to two groups in the both cases with uncontrolled

and controlled COM height. In Fig. 10(A), which are the loci

with uncontrolled COM height, the deep green lines mean

those around ω ≃ 2.117 while the light green lines mean

those around ω ≃ 2.740, where each value was identified

through a batch least-square method of each clustered group.

The reason why such clustering happened is easily imagined

that the COM height is necessarily lowered in the distance of

the point of equilibrium due to the limitation of leg length. In

Fig. 10(B), which are the loci with controlled COM height,

the deep green lines mean those around ω ≃ 2.808 while

the light green lines mean those around ω ≃ 2.914, where

each value was identified by the same method. Obviously,

the difference between those two values is smaller than that

of the case with uncontrolled COM height.

In the above procedures, the boundaries of the trust region

were detected manually with respect to each locus. The

identified values for each locus are not directly associated

with the value computed throught the batch identification.

B. Identification of the control parameters

Next, the identification of the control parameter k1 and k2
was conducted as well. In this case, only the loci which stably

converge to the referential position are available. Moreover,

since the identified ω converged to two values, only the

partial loci with a larger ω, namely, ω = 2.740 for the cases

with uncontrolled COM height and ω = 2.914 for the cases

with controlled COM height, were used.

Fig. 11 are examples of the RLS computation with a

returning process, where the red line and the blue line

correspond to the lines of the same attribute in Fig. 7. As well

as the cases of the estimation of ω, the forward RLS and the

backward RLS show similar profiles to that expected, and
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Fig. 12. Identified trust region of k1 and k2

the boundaries of the trust region were manually detected

with respect to each locus. Fig. 12 shows the resultant

trust region with respect to k1 and k2, where xZmin and

xZmax, which are necessary to draw the blue asymptotic

lines, were estimated from the record of the reaction force

plates. The identified values are (k1, k2) = (4.038, 0.875)
for the cases with uncontrolled COM height, and (k1, k2) =
(2.204, 0.549) for the cases with controlled COM height. In

the figures, the red part of the loci are evaluated to be within

the trust region of (S2), while the blue part are within that of

(S1) and (S3). Since (S2) are depicted as the region between

the red lines, which are defined by ω, k1 and k2, one can

see that the result shows a good estimation in the case with

uncontrolled COM height (Fig. 12(A)). On the other hand,

it is not clear whether the estimation is successful in the

case with controlled COM height (Fig. 12(B)), since almost

all the loci to which the proposed method was applied are

evaluated to be within (S2). It was possibly because the trust

region with respect to the identified ω is too conservatively

estimated.

VI. CONCLUSION

An identification technique of a piecewise system utilizing

RLS method was proposed and applied to a human standing

controller. As the result, we have the following conclusions.

1) The availability of the COM-ZMP model and the

piecewise-linear feedback controller was quantitatively

assessed, though they still have some problems to be

improved in terms of accuracy.
2) Though the assumption that the COM height is con-

stant is violated in a distance of the point of equi-

librium, the trust region of the linearlized COM-ZMP

model under that assumption has a fair area.
3) The proposed technique works to find the trust region

and the switching points of both the system parameters

and the control parameters on each motion locus. The
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Fig. 11. History of the estimated k1 and k2 corresponding to each locus with controlled COM height (top) and uncontrolled COM height (bottom)
through returning RLS, red&magenta=forward RLS, blue&green: backward RLS

authors had a good estimation of the trust region of the

piecewise-linear controller in one case. In another case,

however, the estimation was not very convincing. The

estimation accuracy of the system parameter affected

it.
4) Presently, the switching points are manually detected

based on the history of the recursive estimation. They

should be found numerically based on the reliability

of the model. From this viewpoint, we might have to

focus on the change of covariance. Other techniques

for the identification of piecewise-affine systems[25],

[26], [27] should also be examined.
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