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Abstract— Monitoring and estimation of marine pop-
ulations is of paramount importance for the conservation
and management of sea species. Regular surveys are used
to this purpose followed often by a manual counting pro-
cess. This paper proposes an algorithm for automatic de-
tection of dugongs from imagery taken in aerial surveys.
Our algorithm exploits the fact that dugongs are rare in
most images, therefore we determine regions of interest
partially based on color rarity. This simple observation
makes the system robust to changes in illumination.
We also show that by applying the extended-maxima
transform on red-ratio images, submerged dugongs with
very fuzzy edges can be detected. Performance figures
obtained here are promising in terms of degree of
confidence in the detection of marine species, but more
importantly our approach represents a significant step in
automating this type of surveys.

I. INTRODUCTION

The conservation and management of many ma-
rine mammal (whale, dolphin and dugong) pop-
ulations relies on accurate and precise estimates
of their abundance, distribution and habitat use.
The estimation of a population and its geograph-
ical distribution is not only important for gaining
understanding of particular species, but often gov-
ernment regulations impose strict requirements to
industry working in the vicinity of their habitat.

In Australia, regular surveys have been con-
ducted since the 80s, most notably in Queensland
and Torres Strait [1][2], and since the 1990s in
Shark Bay and Exmouth [3][4][5][6]. Whales [7]
and Sea Lions [8] have also been monitored using
aerials surveys. In the US, the Marine Mam-
mal Protection Act (MMPA) of 1972, requires

aSchool of Electrical Engineering and Computer Science,
Queensland University of Technology, Brisbane, Australia.
f.maire@qut.edu.au

bAustralian Research Centre for Aerospace Automation
Brisbane, Australia. luis.mejias@qut.edu.au

c Murdoch University Cetacean Research Unit,
Murdoch University. A.Hodgson@murdoch.edu.au

d Wildlife Image Processing Solutions for Environmental Assess-
ments, gwenael.duclos@gmail.com

an annual stock assessment of all marine mam-
mal species in US waters. Many of these stock
assessments and the consequential management
actions to conserve marine mammals are based
on minimum population estimates from aerial sur-
veys. In Europe [9] and Canada [10] abundance
estimates of cetaceans also rely on aerial surveys.
The datasets produced from aerial surveys form the
basis of many studies to determine the ecological
requirements of species [11][12][13][14], they are
also used to assess the effectiveness of marine
mammal sanctuaries [15].

There exist already procedures and standards
in place for conducting marine mammal aerial
surveys. They often require manned aircraft with
specialised equipment and onboard crew for man-
ual counting of the species. This process is time
consuming and requires very specialised skills for
the identification of species in the data collected.
Therefore, automation of whole or part of this pro-
cess would greatly benefit researchers and hence
the conservation of marine mammal species.

In this paper we propose an approach to auto-
matically detect marine mammals in aerial imagery
taken using custom payloads onboard aircraft, and
hence contributing to overcome the limitations of
current data analysis. We derive a novel pattern
recognition algorithm that exploits specific features
of the environment.

This paper is structured as follows. Section II
reviews recent work. Section III describes the
approach developed. Section IV-A outlines the data
used in the experiments. Section IV-B presents the
outcomes and analysis of data. Finally, section V
describes some of the lessons learnt and future
work planned.

II. BACKGROUND

The detection and monitoring of marine mam-
mal species can be conducted using a variety
of different sensors complementary in the type
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of information they provide. For instance, active
sensors (such as radar or sonar) are used to detect
marine species [16][17]. They offer robustness
against environmental conditions, however they
tend to be complex and computationally intensive
in terms of signal processing.

Passive sensors (such as imagery or acoustic)
are also used in surveys. Acoustic sensors rely on
mammal vocalisations and a low ambient noise
so the sound is distinguishable from the back-
ground. Acoustic approaches are often less than
desirable because they introduce anthropomorphic
noise into the marine environment potentially af-
fecting cetacean behavior [18]. Imagery or visual
observation approaches are limited by atmospheric
conditions and greatly affected by illumination
conditions [19], [20], [21]. Infrared (IR) imagery
has the potential to improve upon visual observa-
tions by enabling nighttime detections [22], [23].
Despite its limitations, visual imagery or vision
is an attractive solution given it offers a rich
source of information. Cameras are inexpensive
and low power consumption which provides great
advantages considering the inherent limitations in
size, weight and power of many light aircraft or
small/medium Unmanned Aerial Vehicles (UAVs).

III. DETECTION APPROACH

What makes the detection of dugongs partic-
ularly challenging is that their appearance varies
dramatically with the sea conditions. Their appar-
ent color changes with the depth and the turbidity
of the water. Although the shape of a dugong is
relatively rigid, their tail is not always visible.
Moreover, parts of their bodies can be covered by
small waves with breaking crests or whitecaps.

The strategy that we adopted consists in two
main stages. In the first stage, we determine re-
gions of interest through a number of color and
morphological filters (details in Section III-A). In
the second stage, the regions of interest produce
a number of candidate blobs obtained by local
segmentation (details in Section III-B). The shape
of these blobs is then analysed with geometric
features and later compared with a small set of
shape templates.

A. Regions of interest determination

In a nutshell, a blob is of interest if it is salient,
has an interesting color and is not created by
whitecaps. Experimentally, we discovered that the
blobs corresponding to dugongs are locally maxi-
mal plateau regions in the scalar image Irr derived
from the original color image by computing for
each pixel (R,G,B) the ratio ρ = R

G+B
. We call

ρ the red-ratio of the pixel.
1) Red-ratio computation: The bottom right

plot of Figure 1 is the red-ratio image of the
bottom left image. The bottom left image was
derived from the original image (top left) by identi-
fying the whitecaps (top right) and inpainting them
(bottom left). That is, for each color channel, the
whitecaps are replaced by smoothly interpolating
inward from the pixel values on the boundary of
the whitecaps by solving Laplace’s equation. In
Matlab R©, this can be done by calling the roifill
function on each color channel. The benefit of
inpainting the whitecaps is clearly visible when
comparing Figure 3, the surface plot of the red-
ratio of the image in Figure 2, and Figure 4, the
surface plot of the red-ratio of the same image but
with the whitecaps inpainted. The red top of the
central plateau in Figure 4 is smoother and flatter
than the one in Figure 3. The steps leading to the
computation of the red-ratio image Irr are spread
from Line 2 to Line 5 in Algorithm 1.

A pixel p = (vr, vg, vb) is considered to be
part of a whitecaps if for each color channel c ∈
{R,G,B}, the pixel value of channel c satisfies
vc > 1.3 × µc where µc denotes the mean of the
color channel c in the image. The factor 1.3 was
chosen empirically and its exact value is not a
critical factor. The binary image Iwc is dilated into
image Iwcd with a disk of radius 5 as the structuring
element.

2) Pixel rarity and entropy filtering: Another
strong clue that a dugong is present is the rarity of
the color of a blob. To approximate the (R,G,B)
probability distribution of the pixels in a given
image, we compute a 20 × 20 × 20 frequency
table of the (R,G,B) triplets occuring in the
image. A triplet (R,G,B) is considered rare, if
the probability mass of the associated cell in the
frequency table is less than 0.02. Figure 8 shows
that the 3 dugongs in the image of Figure 5 have
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a rare color.
There are many locally maximal plateaus in

the red-ratio image that occur by chance in the
sea background. To eliminate most of them, we
compute a seed image I2s (Line 8 to Line 10 of
Algorithm 1). Plateaus in the red-ratio image that
do no meet any seed pixels are discarded. In Figure
8, the dugongs appear clearly as local maxima of
the red-ratio image.

The binary seed image I2s captures the regions of
pixels with rare color that also contains some high
entropy pixels. Here, the pixel entropy denotes the
entropy of its 9× 9 neighborhood. The entropy of
a faint edge pixel of a dugong below the surface
is typically above 4.2. Figures 5 and 6 show that
the seed regions cover the dugongs.

To determine the plateaus of the red-ratio image,
we compute the extended-maxima transform [24]
with threshold t taking 8 values logarithmically
spaced between 0.02 and 0.2 (Lines 11 and 12 of
Algorithm 1).

3) Morphological computation of the plateaus
of Irr: As can be seen from Figure 4, the plateaus
of Irr corresponding to dugongs can have a blunted
and shallow relief for underwater dugongs (not
much difference with the surroundings) or can be
very sharp and high for dugongs on the surface of
the water (strong contrast with the surroundings).
These subtle variations in red-ratio can happen at
any level. It is theoretically possible to thresdhold
Irr with many values, but this would be computa-
tionally very expensive. A more efficient approach
is to apply the extended-maxima transform.

The extended-maxima builds on the t-maxima
transform ([24, pp. 170-171]). Conceptually, the
t-maxima transform removes all local maxima
whose height with respect to their (lower) neigh-
bors is less than t. In other words, every peak
that stands out by less than t disappears as if
pushed down to the level of its neighbors. Then,
the regional maxima of the t-maxima transform
are computed. Regional maxima are connected
components of pixels with a constant intensity
value, and whose external boundary pixels all
have a lower value. The t-plateaus on Line 12
in Algorithm 1 are the regional maxima of the t-
maxima transform.

input : Irgb a RGB color image
output: L a list of blob bounding boxes

believed to contain dugongs
begin1

Iwc ←− whitecaps image (binary)2

Iwcd ←− dilatation of Iwc3

Iip ←− inpaint Irgb with mask Iwcd4

Irr ←− red ratio of Iip5

If ←− color frequency image6

Ihe ←− high (> 4.2) entropy regions7

(binary)
I0s ←− rare color pixels (If < 0.02) not8

in Iwcd

I1s ←− blobs of I0s intersecting Ihe9

I2s ←− eliminate small blobs from I1s10

for t ∈ logspace(0.02, 0.2, 8) do11

I0t ←− t-plateau regions of Irr12

I1t ←− blobs of I0t intersecting I2s13

I2t ←− blobs of I1t of right size14

I3t ←− blobs of I2t with low15

proportion of Iwcd

for blob in I3t do16

if hasDugongShape(blob) then17

Add blob to L18

end19

end20

end21

end22
Algorithm 1: Dugong Detector Algorithm

B. Shape analysis

When scanning the blobs of I3t (Line 15 of
Algorithm 1), we perform a shape analysis on
the blob itself and on a twin blob obtained by
local binary segmentation of the 30 × 30 window
centered at the centroid of the first blob.

1) Local segmentation: The local segmentation
of the 30 × 30 window is performed on the grey
image in the four quadrants using Otsu method
[25]. The four segmented binary images are then
merged after flipping labels if necessary to ensure
that the core blob receives consistent labels. This
situation can arise when one part of the dugong
is on a light background (sand for example), and
the rest of the dugong is on a darker background
(seagrass for example).
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Fig. 1. Top left: original window. Top right: whitecaps. Bottom left:
inpainted whitecaps. Bottom right: red-ratio of bottom left image.

Fig. 2. A dugong partially covered with whitecaps. The dugong’s
tail is on the right.

2) Shape features: The shapes of a blob and
its twin are tested in the same way. A number
of geometric measurements are extracted into a
feature vector. Then this vector is classified using a
hand coded decision list (comparing combination
of measurements to thresholds). A blob is more
likely to relate to a dugong if its shape is elliptical.
A good measure of this property is the following
ratio

π ×MajorAxisLength×MinorAxisLength
4× Area

The closer to 1 is this ratio, the more elliptical the
shape of the blob is. We call this ratio the elliptic

Fig. 3. Red-ratio image of the raw image of Figure 2

Fig. 4. Red-ratio image of the inpainted image of Figure 2

ratio. The feature vector used for shape classifi-
cation includes a template similarity measure, the
blob diameter, the length of major and minor axes
of the blob, and the elliptic ratio.

IV. EXPERIMENTATION AND ANALYSIS

A. Data collection and experiment setup
Our testing dataset consisted of pictures cap-

tured in Shark Bay (Western Australia) using
a UAV during seven flights. Onboard the UAV
a Nikon 12 megapixel digital SLR camera was
mounted downward-looking with a standard 50
mm lens and a polarising filter. Each image was
tagged in real-time with GPS information from
a dedicated receiver. During each flight a set of
10 transects were flown at three different alti-
tudes: 500 ft., 750 ft. and 1000 ft. Transects
were designed to cover different habitats (i.e. open
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Fig. 5. Contours of the seed regions

Fig. 6. Binary represention of the seed regions (an alternative view
of Figure 5)

Fig. 7. Color rarity (from the same image as Figure 5)

Fig. 8. Red-ratio (from the same image as Figure 5)

Fig. 9. Before comparing a blob (top right) to a template (top
left), the blob is normalized by rotating it so that its principal axis
is horizontal (bottom left), and rescaling it so that its area is the
same as the template. Then the ratio of the intersection set over the
union set of the two shapes produces a similarity score.
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water and sea grass banks) in an area where large
numbers of dugongs were expected to occur, and
were performed in different sea state conditions.
Sea condition were defined using the Beaufort
scale [26].

An evaluation dataset with 28 pictures of res-
olution 4288 by 2848 (equivalent to 1113 VGA
pictures) was used to represent the variability of all
environmental conditions. These 28 pictures were
manually labelled by a marine biologist.

B. Analysis
The lack of published benchmarks for algorithm

of this type only allows to draw conclusions in
a limited context. A preliminary and unpublished
version of this approach was used to evaluate
the performance of the current algorithm. Previ-
ous versions were based on color thresholding in
the HSV space for segmentation and blob profile
measurements for shape classification. The perfor-
mance of this base-line system was as follows; The
recall was 51.4% and the precision was 4.97%.
The large number of false positives explains the
low score for precision. The system presented in
this paper was tested on the same dataset. These
previous results are improved with a recall of
69.4% and a precision of 30%. As expected, the
performance of the system is very sensitive to
the sea conditions. In calm sea conditions, like in
Figure 10, the system performs very well. But as
the sea surface becomes rougher the performance
of the system degrades (Figures 11 and 12). The
performance of the system restricted to calm con-
ditions (one third of the dataset) is significantly
better with a recall of 75.4% and a precision of
87.5%, which is comparable to non-expert human
performance. While it is difficult to benchmark
to the human visual in identifying same type of
marine mammal in images, performance figures
obtained by our approach are promising in terms
of degree of confidence in detection dugongs from
aerial images. Further efforts will involve creating
a baseline benchmark for quantitative evaluation.

V. CONCLUSION

This paper introduces a number of features (like
the rarity of a color and the red-ratio) to help
determine regions of interest. The application of
the extended-maxima transform allows us to detect

Fig. 10. Result image 8739: 17 out 19 dugongs detected, 1 false
positive.

Fig. 11. Result image 0774: 7 out 13 dugongs detected, no false
positives.

dugongs hardly visible to the naked eye. When
the sea condition is mild, the performance of
the presented system is satisfactory for practical
purpose. Robustness with respect to illumination
is achieved by the combination of color rarity and
extended-maxima transform. However, the system
still requires some improvement (mainly to reduce
the number of false positives) when there are
breaking waves.

With our detection system, all dugongs present

Fig. 12. Result image 0241: 3 out 4 dugongs detected, 14 false
positives.
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in an image are tagged as regions of interest.
Unfortunately, the shape filtering module misclas-
sifies some of them. We hope to further improve
this module by replacing our hand-coded shape
classifier with a learnt one (a neural network or a
support vector machine) fed with the same feature
vector as the one described in Section III-B.2.
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