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Abstract— The acoustical dynamics of reverberation in an enclosed
environment poses a problem to human-robot communication. Any
change in the azimuthal orientation of the speaker contributes to
unpredictable acoustical activity resulting in a degradation in the
performance of the automatic speech recognition (ASR) system. Thus,
dereverberation techniques need to address this issue prior to ASR.
Dereverberation in multi-channel applications primarily evolves in the
adoption of a suitable reverberant model that results to a compu-
tationally feasible solution and at the same time yields an accurate
estimate of the harmful reflections (i.e., late reflection) for effective
suppression. In this paper we address this problem by introducing
a hybrid method based on multi-channel processing on a single-
channel reverberant model platform. The proposed method is capable
of accurate signal estimation, a property inherent to a multi-channel
system, and at the same time bears the computational efficiency derived
from single-channel reverberant model approach. The proposed method
is summarized as follows; First, multi-channel sound-source processing
is employed to obtain the full reverberant and the late reflection signal
estimates. Then, equalization is employed to update the late reflection
estimate reflective of the change in azimuth prior to dereverberation.
The equalization parameters for azimuthal change are obtained through
an offline optimization procedure. Experimental evaluation in an actual
human-robot communication environment shows that the proposed
method outperforms existing methods in terms of robustness in the
ASR performance.

I. INTRODUCTION

Research in speech-based human-robot interaction has advanced
rapidly nowadays. After all, speech is one of a human’s most
preferred mode of communication, it is just fitting to harness the
speech modality in interacting with robots. Consequently, the pur-
suit of achieving a seamless human-robot communication is coupled
with the very challenging issue on robustness. Prior to machine
understanding, the system has to recognize the spoken utterance
and the speech recognition system has to deal with contamination
issues attributed by the environment to the acoustic speech signal. It
is extremely difficult to control the environment (e.g. room) where
the human-robot communication takes place. The speech signal is
reflected onto the walls, ceilings, obstructions, etc. as it travels in
free space and arrives at the microphones with different time delays.
This results in a phenomenon called reverberation which manifests
a smearing effect to the clean speech. The effect of reverberation is
very detrimental to the model-based speech recognition system as it
causes mismatches to the original model condition which is usually
trained using a clean speech database. To minimize the effects
of mismatches caused by reverberation, waveform enhancement
referred to as dereverberation is employed [1][2].

Reverberation problems become more complicated due to the
active nature of the parties involved. In a practical scenario as
shown in Fig. 1, it is impossible to fixate the azimuthal orientation
of the user when conversing with a robot and the changes in
the azimuth (i.e., θ1,...,θg,...,θG) often lead to the degradation in
ASR performance. It is important to stress that when a person
changes face direction, the directivity of the speech is also changed
which impacts the reflection of speech. Moreover, the asymmetrical
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Fig. 1. Acoustic dynamics inside a reverberant room as a function of
variable azimuth orientation θ .

configuration of the room setup due to the mobile nature of both
the robot and the user further contributes to the problem. In general,
it is prudent to assume the existence of a very dynamic acoustic
activity in scenarios involving robots.

Multi-channel analysis using microphone sensors embedded on
a robot have been proven effective in capturing these dynamics.
However, dereverberation based on a true multi-channel model is a
computationally daunting task. On the other hand, a purely single-
channel dereverberation platform may be computationally feasible
but ineffective in capturing the acoustical dynamics inside the room.
We have extended the single-channel reverberant model to a multi-
channel system in our previous work [3]. Although this approach
works, most of its methodologies are based on a single-channel
processing concept (i.e., late reflection estimate) in which the full
potential of microphone array processing is not utilized. The main
problem of [3] is that, computational efficiency is favoured over
effectiveness and accuracy.

In this paper we address the problem in [3] through a hybrid ap-
proach. We propose a combination of multi-channel signal analysis
and a single-channel dereverberation model. First, multi-channel
signals are transformed to a single-channel source (separated sig-
nal) via microphone array sound source separation. This results
in an accurate late reflection signal and full reverberant signal
estimates. After this, the reverberation problem is addressed via
the single-channel model dereverberation platform. In this manner,
optimization and dereverberation is performed on the reverberant
separated signal (single-channel), instead of performing to each
channel independently. Thus, more computationally tractable and
faster implementation is achieved. To simulate the effects of the
changes in the azimuthal orientation of the speaker, equalization
is employed to the late reflection. This scheme mitigates the need
of using multiple RTF measurements that match the corresponding
azimuth change which is required in our previous work [3]. In
effect, the equalization scheme digitally steers the signal simulating
the actual physical change in azimuthal orientation. Although, a
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Fig. 2. Different reverberant speech models.

number of dereverberation techniques utilize pre-measured RTFs
[4][5], a specific measurement for every possible azimuthal change
may be impractical to realize.

This paper is organized as follows; in Section II, the background
of dereverberation is discussed. We show the proposed method in
Section III and in Section IV, we discuss the experimental setup,
followed by ASR recognition results using real reverberant data
collected in a human-robot communication environment in Section
V. Finally, we conclude the paper in Section VI.

II. BACKGROUND

A. Single-Channel Reverberant Model

The reverberant speech model r(ω) as shown in Fig. 2(a) can be
expressed as

r(ω) = e(ω) + l(ω), (1)

where e(ω) and l(ω) are the early and late reflections. The model
in Eq. (1) is adopted from [6][7] with the assumption that both are
uncorrelated and independent. If the single channel room transfer
function (RTF) A(ω) is available and the boundary attributed for
the early and late reflections are identified, Eq. (1) can be expressed
as

r(ω) = AE(ω)c(ω)+AL(ω)c(ω), (2)

where c(ω) denotes the clean speech, AE(ω) and AL(ω) are the
early and late reflection coefficients of the full RTF A(ω) which
are experimentally pre-determined in [1][2]. The late reflection
which is considered harmful to the ASR can be treated as noise
[1][2], and dereverberation is defined by suppressing l(ω) while
recovering e(ω) estimate. The early reflection is further processed
with Cepstrum Mean Normalization (CMN) within the ASR system.
By inspection, Eq. (1) resembles a denoising problem, thus dere-
verberation can be treated as such. Specifically, through spectral
subtraction (SS) [8], the estimate ê(ω) in frame-wise manner t is
expressed as

|ê(ω, t)|2 =


|r(ω, t)|2−|l(ω, t)|2

if |r(ω, t)|2−|l(ω, t)|2 > 0

β |r(ω, t)|2 otherwise.

(3)

where β is the flooring coefficient. In real condition, l(ω, t) is
not accessible, precluding the power estimate |l(ω, t)|2. Thus, an

approximation scheme in [1][2] is employed, estimating |l(ω, t)|2
directly from the observed reverberant signal r(ω, t) through the
minimization of the error:

Ep =
1
T ∑

t
∑

δp∈Bp

|l(ω, t)−δp(ω, t)r(ω, t)|2, (4)

and for the given set of bands BBB = {B1, . . . ,BP}, the weighting
parameter δp is determined through minimum mean square error
criterion via offline training [9]. The new early reflection estimate
ê(ω) becomes

|ê(ω, t)|2 =


|r(ω, t)|2−δp|r(ω, t)|2

if |r(ω, t)|2−δp|r(ω, t)|2 > 0

β |r(ω, t)|2 otherwise.

(5)

The details of the single channel model-based dereverberation is
discussed in [1][2].

B. Multi-Channel Reverberant Model

Let M and K be the number of microphones and sound sources,
respectively such that M (≥ K) as shown in the multi-channel
setup in Fig. 2(b). The multi-channel reverberant model can be
expressed in the same manner as that of the single channel in Fig.
2(a) except for a total of K reflections (early and late) which are
observable (i.e., rm(ω)) for each microphone m. In this case, all of
the processes discussed in Sec. II-A will be implemented across M
channels which is exhaustive in nature. To illustrate the complexity
of this model, let us examine the optimization of the multi-band
scaling parameters δp [9] expanded across m microphone channels,
Eq. (4) becomes

Emp =
1
M

1
T ∑

m
∑
t

∑
δp∈Bp

|l(ω, t,m)−δp(ω, t,m)r(ω, t,m)|2. (6)

This optimization is executed all throughout the speech utterances
in the training database. Thus, the true multi-channel reverberant
model would definitely strain the system both at training and at
runtime, precluding realtime processing. We note that due to battery
issues, robots are often equipped with an onboard computer having
limited computational power. The very limited computing resources
are often shared by several critical processes, not just by the ASR
system.
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Fig. 3. Proposed hybrid dereverberation method.

C. Hybrid: Multi-Channel Signal Processing in Single-Channel
Reverberant Model Platform

A temporary solution is presented in our previous work [3]
but this approach requires multiple unique RTF measurements for
each microphone, to match each possible change in the azimuth
since RTF interpolation works only for changes in radial position.
Multiple RTF measurements may be physically impractical but the
most compromising attribute of our previous work presented in [3]
is the inaccurate estimation of the late reflection based on single-
channel processing. The method [3] is dependent on δ and its
optimization (Eq. 6) is computationally expensive when done in
multi-channels, thus, the method [3] is constrained to a single-
channel based late reflection estimation, wasting the more accurate
multi-channel processing advantage. In general, [3] can be viewed
more of an engineering approach which renders the dereverberation
task to be computationally feasible with less consideration on
performance. Thus, we propose a hybrid scheme shown in Fig. 2(c),
built on multi-channel signal processing analysis of superior signal
estimation, having the efficiency of a single-channel model dere-
verberation platform. First, the multi-channel signals, as observed
at the microphones xxx, are resolved via sound-source separation into
s(ω) (full reverberation) and sL(ω) (late reflection), respectively.
Then single-channel reverberant model analysis is applied to s(ω)
decomposing s(ω) into early and late reflections where the latter is
equivalent to the estimate sL(ω). This hybrid mechanism is possible
due to the elimination of the scaling parameters δ which will be
explained in Sec III.

III. METHODS

The proposed hybrid dereverberation method is shown in Fig. 3.
Microphone array processing and source-separation is employed
resulting to single-channel reverberant signal s(ω) and the late
reflection signal sL(ω) estimates. Feature parameters fL are ex-
tracted from the latter which are then used to identify the azimuthal
information used to select the appropriate equalization parameter
H

θ̂
. Then, the late reflection is equalized to sL

θ̂
(ω). Finally, dere-

verberation is applied to the reverberant signal prior to the ASR
system.

A. Multi-channel Processing

Let uuu(ω) be the vector that consists of K sources as uuu(ω) =
[u1(ω), · · · ,uK(ω)]T , where T represents the transpose operator.
And the vector containing the observed signals by the M micro-
phones is

xxx(ω) = [x1(ω), · · · ,xM(ω)]T (7)

is the vector containing the signals received by M microphones.
Suppose that the multi-channel RTFs in matrix form between the

sources and the microphones are given as AAA(ω) ∈ CM×K , Eq. (7)
can be expressed as

xxx(ω) = AAA(ω)uuu(ω), (8)

Assuming that the late reflection coefficients AAAL of the full RTF
AAA(ω) is identified in advance as described in [2], the observed late
reflection is given as

xxxL(ω) = AAAL(ω)uuu(ω). (9)

In our method, the Geometrically constrained High-order Decor-
relation based Source Separation (GHDSS) which is a combination
of beamforming and blind source separation is employed for spatial
separation of the multi-channel signals [10][11]. The separated full
reverberant and late reflection estimates are expressed as

s(ω) = GHDSS[xxx(ω)] (10)

and
sL(ω) = GHDSS[xxxL(ω)], (11)

respectively.

B. Feature Parameterization

The late reflection sL(ω) contains redundant information in the
time domain. Thus, we extract only relevant information that best
describes the signal characteristics of the late reflection. It was
verified in our experiments that 12-order MFCCs, 12-order ∆

MFCCs and 1-order ∆ Energy are sufficient to effectively represent
the late reflection characteristics. The parameterization process is
expressed as

fL = F [sL(ω)], (12)

where F denotes the feature extraction procedure resulting to the
vector of features fL.

C. Azimuth Selection

The feature vectors fL are evaluated based on likelihood score
given as

θ̂ = argmax
θg

p(fL|µθg), (13)

where µθg is the probabilistic model for {θ1,...,θg,...,θG} azimuthal
orientations. The corresponding θg that maximizes the likelihood
score is used to select the appropriate equalizer parameter H

θ̂
for

equalization (Sec. III-D). We note that Eq. (13) is conducted at
runtime, and requires an offline training procedure to train the
probabilistic models prior to classification.

In the offline training of µθg , a synthetic late reflection signal
is generated sL = A(ω)u(ω) similar to that in Eq. (11) except
that we are operating in a single-channel. Then, the synthetic
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Fig. 4. Room configuration in our experiment

signal is passed to an equalization process (Sec III-D) with various
equalization templates Hθ which is then parameterized to

fL
θ = F [sL(ω)Hθ ], (14)

where Hθ is the equalization process discussed in Sec III-D.
Consequently, models are trained for {θ1, . . . ,θg, . . . ,θG} using the
training vectors in Eq. (14) as

µ̂θ = argmax
µ

I

∏
i=1

max
θ

P(fθ i ; µ), (15)

where µ is unknown model parameters, fθ i is the i-th late reflection
training vector which is equalized with Hθ . We note that as G is
increased in θ1,...,θg,...,θG, the azimuthal resolution is improved
and may positively affect system performance as discussed in Fig.
9 in Sec. V.

D. Late Reflection Equalization

In theory, multiple unique RTFs are needed to match the cor-
responding change in azimuthal orientation θ for each channel
(i.e., AAAθ (ω)). This is because when θ changes, the acoustical
dynamics inside the room is perturbed as the concentration of
speech power changes as a function of θ . In short, the late reflection
also varies with θ in reverberant environments like the ones in our
experiment as verified in Sec IV-B. However, it is impractical to
measure all possible θ variations since it requires a corresponding
RTF measurement for all M microphones. To mitigate this, we
employed an equalization scheme, by dealing with the source-
separated late reflection sL(ω) instead of the multi-channel RTF
characteristics. This scheme simplifies the supposed complicated
analysis of the effect of the azimuthal orientation with respect to
the multi-channel RTFs into simple single channel filtering. The
equalized late reflection signal becomes

sL
θ (ω) = sL(ω)Hθ . (16)

where sL(ω) is the separated late reflection using a generic (un-
matched) RTF while Hθ is the equalizer.

Hθ is a filter derived experimentally during the offline mode
by analyzing the response of the late reflection as a function of
the actual azimuthal change θ . Suppose that sL

AAAθ
(ω) is the actual

late reflection with a corresponding multi-channel RTF AAAθ (ω).
The filter design involves the poles positioning method on a
logarithmic frequency grid based on [12][13]. The target response
is set to sL

AAAθ
(ω) and Hθ for {θ1, . . . ,θg, . . . ,θG} are derived by

properly positioning the poles to achieve the target response sL
AAAθ
(ω)

Fig. 5. Hearbo: The Honda Research Institute Robot platform.

[14]. Note that the target response sL
AAAθ
(ω) was preprocessed via

smoothing to avoid direct inversion problems [14].
At runtime, after the selection of the optimal H

θ̂
in Sec IV-C,

Eq. (16) is used to correct the separated late reflection through
equalization without requiring the matched RTFs AAAθ (ω). With
an effective θ selection procedure as discussed in Sec III-C,
the equalization process virtually transforms the supposed multi-
channel analysis into simple single channel filtering.

E. Dereverberation

After multi-channel signal processing analysis in which s(ω)
and sL(ω) are estimated, the single channel reverberant model is
used as the dereverberation platform (see Fig. 2(a) ). We note that
the scaling parameters δ in Eq. (4) were employed to correct the
late reflection estimate for the single channel model. Since late
reflection is accurately estimated in the proposed method through
multi-channel processing, δ is eliminated and so is its optimization
process in Eq. (4). The effects of δ can be easily absorbed by the
equalization process which also includes azimuthal correction as
described in Sec III-D. The SS in Eq. (5) is modified to

|e
θ̂
((ω, t)|2 =


|s(ω, t)|2−H

θ̂
(ω)|sL

θ̂
(ω, t)|2

if |s(ω, t)|2−H
θ̂
(ω)|sL

θ̂
(ω, t)|2 > 0

β |s(ω, t)|2 otherwise.

(17)

where s|(ω, t)|2 is the power of the separated reverberant signal
(s|(ω, t)|2 ≈ r|(ω, t)|2) and sL|(ω, t)|2 is the separated late reflec-
tion power. We note that the equalization process is key to the
hybrid approach as it eliminate δ in the Eq. (17). In our previous
method [3], the dependence on the δ parameter was the stumbling
block towards the utilization of multi-channel processing since the
optimization of δ is computationally expensive for multi-channel
signals. This limitation is rectified in the proposed method.

IV. EXPERIMENTAL SET-UP

A. Speech Database for ASR

The Japanese Newspaper Article Sentence (JNAS) corpus is used
as the training database. The open test set is composed of 200
utterances from 24 speakers. The language model is a standard
word trigram model while the acoustic model is a phonetically
tied mixture (PTM) of Hidden Markov Models (HMMs) with 8256
Gaussians in total. Recognition evaluation is conducted on a 20K
vocabulary Japanese dictation task in a human-robot communication
setup as shown in Fig 4. Occlusions from tables, chairs, etc. are
considered during testing to recreate a realistic environment. The
proprietary humanoid robot, Hearbo of Honda Research Institute
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Fig. 6. Principal Component Analysis.

as shown in Fig. 5 is used as the experimental robot platform in
which a microphone array is embedded on the head of the robot.

Real reverberant data are recorded inside two different reverber-
ant rooms (Room A and Room B) with reverberation time (RT) of
240 msec. and 640 msec., respectively. Room B (Fig 4) is more
acoustically challenging than Room A. There are six different lo-
cation points {0.5m,1.0m,1.5m,2.0m,2.5m} and five azimuths are
considered, {θ1 = 30o,θ2 = 15o,θ3 = 0o,θ4 = −15o,θ5 = −30o}
where 0o is the reference axis perpendicular to the robot. Thus, each
location point has a combined total of 1000 test utterances (200 utt.
x 5 = 1000 utt.) for all of the five azimuth values. These utterances
are then processed with different methods for comparison. We note
that in the proposed method, we use the same room RTF for all
the different test locations and angles as discussed in Sec III-D (no
multiple RTFs are required).

B. Late Reflection Investigation

One of the contentions of this paper is that the late reflection
varies with respect to the change of the azimuth θg. To effectively
estimate the late reflection is to use multiple RTFs matched to
the θg or through the proposed method using a generic RTF with
equalization. In Fig. 6 we extract the principal components of the
feature vectors of the late reflection at θ = 30o and θ =−30o (0o

is the reference axis perpendicular to the robot). The room setup is
altered to simulate occlusions and symmetry. There are 4 levels of
symmetry (setup 1 - setup 4) from a very symmetric room setup
1 towards an asymmetric room setup 4. It is shown in this figure
that the late reflection can be approximated to be similar at either
azimuth values when the room is symmetric (setup 1) as shown by
the overlapping concentration of the red and blue crosses. However,
this presumption fails as the room tends to become asymmetric
(setup 4).

TABLE I
CLASSIFICATION ACCURACY OF AZIMUTH (θ̂ ) SELECTION.

Position 1Position 1Position 1 Position 2Position 2Position 2 Position 3Position 3Position 3
Room setup 1 (Sym.) 100 % 100 % 100 %
Room setup 2 (Less sym.) 98 % 99 % 98 %
Room setup 3 (Less asym.) 94 % 95 % 95 %
Room setup 4 (Asym.) 89 % 88 % 90 %

C. Effectiveness of Azimuth Classification

The proper identification of the azimuth θ̂ is instrumental in
selecting the optimal equalization parameter H

θ̂
. Thus the overall

performance of the proposed method depends on the correct identi-
fication of θ̂ . We show the effectiveness of correctly classifying the
azimuthal orientation using the scheme discussed in Sec. III-C in
four different room setups used in Sec IV-B. In each room setup,
three random positions (Positions 1-3) are selected in which the
azimuth classification experiment is conducted. The classification
accuracy is shown in Table 1 and it is apparent that azimuth clas-
sification performance is best when the room is more symmetric.
Although, the level of performance achieved in an asymmetric room
(setup 4) is slightly lesser than that achieved in symmetric rooms,
the values are sufficient for the overall method to work well which
is verified in the recognition performance in the following section.

V. RESULTS AND DISCUSSION

The ASR results in terms of word accuracy are shown in Fig. 7
for Room A with RT = 240 msec. and Fig. 8 for Room B with RT =
640 msec., respectively. Recognition results for all of the different
azimuths {θ1 = 30o,θ2 = 15o,θ3 = 0o,θ4 =−15o,θ5 =−30o} are
averaged in each location points {0.5m,1.0m,1.5m,2.0m,2.5m}.

The methods (A) and (B) are respective results of using single
and multi-channel microphones with no dereverberation. In the
latter, sound-source separation is employed. In the methods (C)-
(G), multi-channel processing is employed, in which the resulting
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Fig. 7. Recognition results for room A.

  

Fig. 8. Recognition results for room B.

separated reverberant data from method (B) is processed with differ-
ent dereverberation methods, and will be compared in this section.
The method (C) is a wavelet-based dereverberation technique [15]
using a human speech production model in suppressing reverberant
effects. An improvement in accuracy is achieved when suing the
method (D) based on blind dereverberation [16]. Our previous work
[3] is shown in method (E) while the proposed method based on a
hybrid approach is shown in method (F). Method (G) is the same
as that in method (F) except that method (G) does not employ
equalization, instead it uses the actual multiple RTFs matching each
θg (upper limit).

The results show that the proposed method (F) outperforms
methods (A)-(E) and this can be attributed to the fact that the

proposed method is accurate enough in capturing the acoustical
dynamics of the late reflection as a function of azimuthal change
θg. We note that in Fig. 6, the late reflection cannot be assumed to
be the same for all θg which is a common assumption in the rest of
the methods. The proposed method addresses this problem through
effective late reflection estimation via multi-channel signal analysis
and through equalization. Moreover, there is insignificant change
in performance for matched RTF in method (G) as compared to
the proposed method (F). We note that it is impractical to measure
different RTFs as the speaker changes azimuthal orientation. The
proposed method on the other hand only uses a single RTF, the
same RTF used by the microphone array processing in sound-source
separation.
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Fig. 9. Performance of the proposed method as a function of azimuth resolution.

In Fig. 9 we show the performance of the proposed method (F)
while increasing azimuth resolution from 30o-5o. In this figure,
(A): Single-channel no-dereverberation, (B): Multi-channel no-
dereverberation, (E): Previous work [3] and (G): Upper limit. Only
the proposed method (F) is a function of the variable resolution,
the rest are constant. The result is averaged for all location points
{0.5m,1.0m,1.5m,2.0m,2.5m}. In this figure, it is apparent that the
performance of the proposed method improves as the resolution is
increased and it saturates at around 5o resolution. Moreover, it is
verified that even with a very coarse resolution of 30o, the proposed
method still outperforms the previous work [3] in method (E). We
note that both the methods (E) and (G) require multi-channel RTFs
matched to the corresponding azimuth change while the proposed
method uses only a single generic RTF.

Due to the different room setups (i.e., different RT), the recog-
nition performance between Fig. 7 and Fig. 8 is disparate. Room
A has lesser occlusions and shorter RT = 240 msec. while the
latter is more reverberant (RT = 640 msec.) and with more occlu-
sions. In addition, we stress that the experimental evaluation was
conducted on a large vocabulary continuous dictation task. Unlike
an isolated word recognition task, continuous dictation tends to
be more susceptible to the effects of reverberation due to long-
duration utterances. Consequently, the latter considers insertion
errors, deletion errors, etc., and vocabulary size is at least 100
times more than isolated word recognition. Thus, recognition for
a continuous dictation task is always lower than the isolated word
task. The negative recognition values in Fig. 8 are attributed to
insertion and deletion errors.

VI. CONCLUSION

We have shown a hybrid method by combining multi-channel
signal processing analysis and a single-channel dereverberation
model. This results in an effective late reflection estimate utilizing
all of the microphones and at the same time, a simplified dere-
verberation procedure reminiscent of a single-channel reverberant
model. The synergy of the proposed hybrid method renders the
recognition performance of the system to be robust to the azimuthal
change through a simple equalization in the late reflection signal.
Traditionally, robustness to the change in azimuth is achieved by
matching the RTFs for all of the microphones in accordance to the
change in the azimuth. The proposed method mitigated this through
a simple equalization without the need of dealing with multiple
channels. We have shown that the the difference in recognition
performance between the matched RTF and the proposed method is
negligible and yet the latter is more simple and convenient. Since
we are currently dealing with static occlusions inside a room, in the

future, we will investigate the effects of moving occlusions towards
a more realistic human-robot communication environment.
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