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Abstract— This paper introduces a new time oriented visual
feature extraction method developed to take full advantage of an
asynchronous event-based camera. Event-based asynchronous
cameras encode visual information in an extremely optimal
manner in term of redundancy reduction and energy consump-
tion. These sensors open vast perspectives in the field of mobile
robotics where responsiveness is one of the most important
needed property. The presented technique, based on echo-state
networks will be shown particularly suited for unsupervised
features extraction in the context of high dynamic environments.
Experimental results are presented, they show the method
adequacy with the high data sparseness and temporal resolution
of event-based acquisition. This allows features extraction at
millisecond accuracy with a low computational cost.

I. INTRODUCTION

Feature extraction is at the basis of almost every machine

vision system. They represent valuable information coming

from the environment. A feature is always sought as a spatial

patch due to the current use of images as the structure to

acquire and store light intensities reflected by objects in

a scene. But images deal poorly in capturing the valuable

temporal information present in natural scenes because they

are static snapshots. Increasing the dynamics of the acqui-

sition implies higher frame rates that then produce high

amount of data. This approach is in general incompatible

with embedded systems and is very limiting to high-level

applications as it requires a lot of computational power which

is problematic for embedded robotic tasks.

On the other hand, biological observations confirm that

images are unknown to the visual system. Biological retinas

encode visual data asynchronously as sparse spiking outputs

rather than frames of pixels’ values [1] which allows the

whole perceptual system to be massively parallel and data-

driven.

This paper introduces an unsupervised system that allows

to extract visual spatiotemporal features from scenes. It does

not rely on images but on the precise timing of spikes

acquired by an asynchronous event-based silicon retina.

The development of asynchronous event-based retinas has

been pioneered by the work of Mahowald and Mead [2].

Neuromorphic asynchronous event-based retinas allow, as

we will show, to derive new insights into the study of

perceptual models and the introduction of time oriented

visual features. Current available event-based vision sensors

output compressed digital data in the form of events, re-

ducing latency and increasing temporal range compared to
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conventional imagers. A complete review of the history and

existing sensors can be found in [3].

The presented model is based on Echo-State Networks

(ESN) which is a reservoir computing based technique of

recurrent neural networks particularly suited for dynamical

signal learning [4][5]. ESNs allow to preserve the dynamic

of input signals and to extract complex temporal patterns.

The primitives extraction from asynchronous event-based

inputs combines the use of a set of Echo-State Networks

and a Winner-Take-All (WTA) technique allowing automatic

selection among the ESNs [6][7]. This selection introduced

by the WTA network forces each ESN to learn different

primitives based on movement prediction. The methods and

algorithms presented in this paper have all been used on real

data.

II. EVENT-BASED ASYNCHRONOUS SENSORS

The Dynamic Vision Sensor (DVS) used in this work is

an Address-Event Representation (AER) silicon retina with

128 × 128 pixels [8] (Fig. 1(a)). The DVS output consists

of asynchronous address-events that signal scene luminance

changes at the times they occur. Each pixel is independent

and detects changes in log intensity larger than a threshold

since the last event it emitted (typically 15% contrast).

When the change in log intensity exceeds a set threshold

(see Fig. 1(b)), an ON or OFF event is generated by the

pixel depending on whether the log intensity increased or

decreased (see Fig. 1(c)). Since the DVS is not clocked like

conventional cameras, the timing of events can be conveyed

with a very accurate temporal resolution of approximately

1µs. Thus, the ”effective frame rate” is typically several kHz.

We can define an event occurring at time t at the pixel [x, y]T

as :

e(x, y, t) = p (1)

where p is the polarity of the event which can take the value

+1 or −1 if the event encodes a change of the measured

signal toward respectively higher or lower value. This data-

driven process suppresses redundancy and the coding of the

exact time of input signal’s changes allows a very high

dynamic of acquisition.

III. FEATURE EXTRACTION

A. General architecture

The idea developped in this work is to identify and

select features for spiking retinas using an unsupervised

and less redundant representation of temporal and spatial

input patterns of asynchronous events. To achieve this, we

use a set of independent Echo-state networks (ESNs) as
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Fig. 1. 128 × 128 pixel array DVS (a), typical signal showing the log
of luminance of a pixel located at [x, y]T (b) and asynchronous temporal
contrast events generated by this pixel in response to this light variation (c).

predictors of future outputs. Fig. 2 provides the general

scheme of the method. The output of the DVS retina is

sent to each ESN after a conversion process. Each ESN

will then represent an abstract spatiotemporal sequence of

events and predict the content of the environment in the

next step. The input neurons of each receptive field receive

converted spikes streams from the DVS into analog signals

in order to comply with the ESNs’ input format. Each

ESN is trained to predict the analog input signal one time

step ahead. The last layer of the system implements a

Winner-Take-All (WTA) neural network to select the best

predictor among the set of ESNs. The WTA inhibits poorly

predicting ESNs to ensure that the best predictor receives

sufficient time to learn a particular spatiotemporal sequence.

This selected ESN can then specialize in recognizing the

spatiotemporal pattern and predicting its temporal evolution.

The WTA mechanism ensures that each ESN focuses on an

independent feature. The system thus enforces the rule that

a same pattern can not be predicted by two different ESNs.

Consequently, at a given time, the winning network in the

WTA layer will indicate which feature is present. With each

ESN being randomly initialized, the WTA layer makes the

learning process completely unsupervised. The features are

automatically extracted by the system from the input signal.

The following subsections will describe in more details the

different layers presented in Fig. 2.

B. Signal pre-processing

The DVS spiking retina used is of size 128×128, meaning

that there are about 16K pixels in total. A direct use of

reservoir computing on these pixels would lead to a network

with 16K input neurons and 10 to 100 times more hidden

neurons (a typical setup of the reservoir). To simulate and

train such a huge network is certainly far beyond the reach

of modern computers. Some preprocessing steps are then

needed to reduce the input dimension.

After being resampled, the events output by the DVS are

divided into several receptive fields RF (x0, y0, t1, t2) which

represent some spatio-temporal volumes of spikes defined
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Fig. 2. Unsupervised feature extraction: spikes from the DVS are
transformed into analog inputs that are sent to a set of Echo-state networks
(ESNs). Each ESN is trained to predict future outputs based on current and
passed activities. They output S

p

k
, a representation of their prediction quality

which is fed into a Winner take all network. This WTA selects the best
predicting ESN and allows it to train on the sequence. The combined use
of prediction and inhibition allows each ESN to specialize in the prediction
of a particular feature and thus act as a feature detection.

by :

RF (x0, y0, t1, t2) =

{e(x, y, t) | t ∈ [t1, t2],

x ∈ [xo −∆x, xo +∆x],

y ∈ [yo −∆y, yo +∆y]}

(2)

Finally, we can consider a decay function G(t, t0):

G(t, t0) = e−(t−t0)/τ (3)

which is applied to all the spikes emitted from the pixels of

a receptive field. It provides an analog output signal A for

each pixel (x, y) covered by RF (x0, y0, t0, t) :

A(x, y, t0, t) =
∑

e(x,y,ti)∈RF(x0,y0,t0,t)

|e(x, y, ti)| ·G(t, ti) (4)

This analog signal can then be used as an input for the ESNs.

The output of the input neurons layer is the vector

constituted of all the A(xi, yi, t0, t) of the different pixels

contained in RF (x0, y0, t0, t). In the following, for clarity,

we will consider only one receptive field and will thus call

this vector A(t) :

A(t) =







A(xi, yi, t0, t)
...

A(xM , yM , t0, t)






(5)

C. ESN layer – Input prediction

This layer, marked as (1) in Fig. 2, refered to as the

prediction layer, is made of N ESNs. An ESN k is defined by

its internal state sk, and some weight matrices W k
out, W

k
in

and W k
r . These weight matrices are random and different

for each ESN. They are used to compute the evolution of
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the internal state of the ESN and its output (outk) with the

following relations :

sk(tn) = Wr · s
k(tn−1) +Win ·A(tn) (6)

outk(tn) = Wout · s
k(tn) (7)

Each ESN is trained to predict A(tn) one time step ahead

according to the relation (8), with k refering to the kth ESN

:

Âk(tn + dt) = outk(tn) = W k
out · s

k(tn), (8)

The training process is based on an online recursive least

squares method described in [9] using the prediction error

vector ǫpk(tn) :

ǫpk(tn) = Âk(tn)−A(tn), (9)

The output signal of the Prediction Layer (see Fig. 2), is

the similarity measure Sp
k(tn) between the input signal A(tn)

and the prediction Âk(tn) provided by ESN k whose value

inscreases with the quality of the prediction.

If we denote Vi the ith component of the vector V , then

Sp
k(tn) is :

Sp
k(tn) =

∑

i

∣

∣

∣A(tn)i · Âk(tn)i

∣

∣

∣

∑

i |A(tn)i| ·
∑

i

∣

∣

∣
Â(tn)i

∣

∣

∣

, (10)

where A(tn) and Â(tn) have been normalized between 0 and

1.

D. Winner-Take-All selection

The third layer of the model selects the best predictor

among the N ESNs. A WTA network is constituted of the

neurons W1 . . .WN and of an inhibitory neuron ([6][7]).

This WTA aims at selecting its input which shows

the maximum similarity measure. The similarity measures

Sp
k(tn) obtained from layer (1) are first transformed into

spike trains via a first layer of non-leaky Integrate-and-

Fire (IF) neurons. For the system to be more reliable, these

neurons (see Fig. 3) do not directly integrate the value of

SP
k but a value transformed through a sigmoid-shaped gain

gIF:

gIF(x) = Gmin +
Gmax −Gmin

1 + exp(−(x− x0)/λ)
, (11)

where Gmin, Gmax, x0 and λ are tunable parameters.

The values of Gmin and Gmax determine the minimum and

maximum values of the firing rates output by the IF neurons

and are set in the experiment for spike rates spanning from

5kHz to 15kHz. The value of λ determines the shape of the

sigmoid. Higher values of this parameter allow the system

to efficiently discrimine values closer to each others.

Finally, a regulator is introduced to dynamically set the

value of x0 close to the current value of Sp
k .

The output of the network is then the best predictor W (t) :

W (t) = arg max
k=1..N

Sp
k(t). (12)
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Fig. 3. The WTA network is composed of excitatory neurons W1 . . .WN

and one inhibitory neuron. This network is fed by a first layer of non-
leaky Integrate-and-Fire neurons which transforms the similarity measures
S
p
1
. . . S

p

N
into spike trains with an adaptive gain assuring a correct response

of the WTA when S
p

k
varies largely. The WTA network allows the selection

of the best predictor W (tn) among the N ESNs of the previous layer.
To prevent several networks to be selected by the same input feature, an
expectation minimization mechanism is added. It inhibits the neuron Wk if
it is possible to predict its selection by the WTA based only on S

p
i , i 6= k,

thus preventing two networks from carrying the same information.

This adaptive WTA achieves good performance in the

selection of the best predictor even if the mean value of

the similarity measurement varies a lot during an experiment

(for instance if the system is presented with some very

different kind of input stimuli). By construction, this WTA

architecture always outputs a result which can be filtered by

looking at the global input activity if necessary.

E. Expectation minimization

The layer (2) of Fig. 2 contains the WTA network and an

expectation minimization mechanism, which is detailed in

Fig. 3. This mechanism ensures that each ESN is specializing

in predicting independant features of the input signal. Thus,

it implements a criterion as described in [10] to evaluate the

relevance of the prediction of each ESN.

An ESN is said to be relevant if its prediction is not

redundant with the other ESNs’ predictions. For each ESN k,

we implement the estimator Ŵk of the WTA output which

is only fed by the other ESNs’ similarity measures. If the

estimator and the WTA outputs are both giving k i.e. Ŵk

satifies at tn:
{

|Ŵk(tn)−W (tn)| < ǫw
W (tn) = k

, (13)

where ǫw is a threshold determined experimentally, then

the kth ESN is not learning a new feature. In this case,

the corresponding output of the WTA is inhibited. We use
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Fig. 4. (a) Experimental setup with a DVS looking at patterns moving on a treadmill. (b) Dynamics learned by some of the ESNs, left column shows
a selection from the different input patterns, the others show different prediction obtained from the ESN which specialized in the given pattern. The 5
presented predicted patterns are spaced by 0.01 seconds.
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Fig. 5. Output of the WTA network when presented with a repetitive serie
of each of the patterns.

ESNs to implement the estimators for the same reason we

mentioned in the introduction.

IV. RESULTS

Experimental results are carried out with the DVS and

the setup is shown in Fig. 4(a). A treadmill is presenting

nine printed bars with different orientations to the camera,

at different speeds.

The first experiment is setup with less individual ESNs

(8) than features to detect (9 orientations), then we increase

the number of ESNs to show how this parameter affects

the learning mechanism. Each ESN is made of 15 hidden

neurons interconnected randomly and the spectral radius as

defined in [4] is set experimentaly to 0.7. To validate the

feature extraction process, only one RF is used and composed

of 17× 17 groups of 5× 5 DVS’s pixels.

At a given time each ESN outputs a different prediction of

the input signal. The WTA succeeds in selecting the correct

network corresponding to the best predictor for the current

input. The best predictions for 4 of the 8 used ESNs are given

in Fig. 4(b). As expected, results show that every network

has specialized in the prediction of the temporal evolution

of a specific oriented pattern. To be closer to a real world

case very rich in term of independent features, we chose

to use less ESNs than input features. We can then observe

that, because the system does not have enough outputs, some

ESNs can learn to code for more than one feature so that the

output of the system can represent all possible inputs. It is

the role of another upper-level system to process the output

of the ESNs and to detect these cases.

This behavior can also be observed in Fig. 5 which

summarizes the extraction process on the full length of the

input signal. The figure emphasizes the output of the WTA

network for three presentations of the stimulus. We can

see that each ESN is correctly responding to a particular

orientation of the bars. Moreover, the process is repeatable

over the three presentations with a difference in the temporal

span of the responses. This is due to the increase of the

translation speed of the bars during the recording to show

that the stimuli velocities have little effect on the network

performances.

Fig. 6 plots the prediction error of each ESN during several

presentations of the stimulus. Large errors are produced by

the ESNs that do not “suit” the stimulus. The ESN giving

the smallest prediction error is selected as the best predictor.

This is shown in the figure by the red underlining. Note that

the time periods where all the prediction errors are close to

zero correspond to period without input stimulus.

Fig. 7 emphasizes the repeatability of the network output.

This figure presents spikes rasters from the eight ESNs

during several presentations of the input stimulus. Vertical

dimension shows ten repeated stimulus trials (we limited the

representation to ten trials to improve readability). We can

see that the response is the same for the ten presentations.

We can also notice that for some orientations, an ESN starts

to respond but finally another one is the best predictor in the

end. For instance, at t = 0.5s, ESN 6 starts to respond to the

stimulus but the best predictor will be ESN 4. We can also

note that ESN 1 is still responding when there is no input.
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Fig. 6. Prediction error of the different ESNs during several presentations
of the input stimulus. The plot shows the evolution of the prediction error
for each of the eight ESNs used during the experiment. Under each plot
is represented the output of the associated WTA neuron showing when a
given predictor is selected.

This is caused by the fact that ESN 1 is selected by the WTA

network which keeps selecting it in absence of input since

all predictors’ configuration are unchanged.

One fundamental question raised by this architecture is

of the number of networks necessary to represent all of

the elementary features. Learning statistics are presented in

Fig. 8. We can see the number of sampling during which each

network has learned some input signal in two cases. First in a

setup composed of 8 ESNs for 9 orientations (Fig. 8(a)), we

can see that each one of the 8 ESNs was active for a similar

number of samples. This underlines the fact that no particular

ESN takes over the learning process. This is coherent with

the output of the system where one ESN codes for one or

several orientations and so there is not enough networks to

code all of the elementary features. Fig. 8(b), we still use 9

orientations but now with 20 ESNs. What we can observe is

that only 9 of the ESNs were activated during the learning

process, each one focusing on a particular orientation.

V. CONCLUSIONS

We presented in this paper an event-based architecture to

learn and extract features from asynchronous event-based

visual streams. The architecture’s performances have been

tested with different visual stimuli that are presented to the

camera at speeds ranging from slow to extremely high where

conventional imaging approaches would fail to run in real

time. Results show that the method allows to extract features

ESN 1

ESN 2

ESN 3

ESN 4

ESN 5

ESN 6

ESN 7

ESN 8

inhib.

0 0.5 1.0 1.5
t (in s)

No input

N
o
in
p
u
t

(a)

Fig. 7. Examples of spikes rasters from the eight ESNs during the
presentation of the serie of nine lines. Each dot represents the time of a
spike; vertical dimension shows 10 repeated stimulus trials.
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Fig. 8. Number of training samples per reservoir for different numbers of
used ESNs, showing that when the pool of ESNs is bigger that the number
of features present in the input stimulus, only the necessary portion of the
pool is used to learn these features and that the rest of the ESNs are left
untouched for future features.

in a reliable and repeatable manner. This is an important

property essential to ensure a stable vision-based navigation.
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These results open new perspectives to the development of a

new kind of bioinspired visual algorithms more robust to

environments’ conditions but also efficient in energy and

computation resources.
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