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Abstract— Eye movements play an essential role in planning
and executing manual actions. Eye-hand coordination is a
natural human skill. We exploit this skill for an intuitive remote
manipulation system that allows even non-expert users to
operate a robot safely without prior experience. Specifically, we
propose a visio-haptic approach to controlling a 7-DOF robotic
arm. Our system is fully mobile, allowing for unconstraint
operation in any environment. An eyetracker captures the
operator’s gaze. The end effector or particular joints are
selected by simply fixating the to-be-controlled segment. A
sensor-equipped tangible object provides a haptic interface
between the operator’s hand and the focused part of the robotic
arm. The system features two operation modes, direct joint
rotation and 3d end effector control in a global cartesian
frame. We evaluated the system in a proof-of-concept study
with untrained users. The participants safely operated the robot
and accomplished an obstacle avoidance task. For this purpose,
they used both operation modes.

I. INTRODUCTION

Remote manipulators are used in various fields like manu-
facturing, mining or scientific research. They are preferably
applied in environments that are too complex for today’s
autonomous robots. In these situations, a human operator
usually directly controls the manipulator. Therefore, the
human-robot interface ought to be intuitive and adapted to
the user’s skills. Researchers have proposed several operation
approaches beyond classical keyboard or joystick control.
Hand or arm tracking permits online mapping of human body
joints to the joints of a robotic hand [1] or a mechanical arm
[2]. Robots may be operated through gestures [3] and even
thoughts [4]. While all these interfaces try to take advantage
of one or another natural human ability, none of them take
into account the interplay of eye gaze and manual actions.

Humans rely on a well-organized interaction between
vision and haptics in many everyday tasks. The capability
to perform hand and eye movements simultaneously in
order to reach a common goal is referred to as eye-hand
coordination. Eye gaze supports hand motion planning by
identifying landmarks that are critical for the completion of
a task [5]. Most manual tasks involve a number of subgoals
like touching, grasping or moving an object. Here, gaze is
directed to the target object for a certain period of time until
shortly after the subgoal was reached [6].

We argue that gaze reveals the operator’s intentions during
remote manipulation. Operating a robot is a task that consists
of multiple subtasks and as such generates eye movements

that give us an indication of the user’s motion planning.
Gaze can be measured with an eyetracker. Eyetracking is
not only a popular research method in psychology and
neuroscience, but has also been used online in order to
implement input devices for handicapped people [7]. Gaze-
based human-machine interfaces are now becoming more
and more interesting for a wider range of user groups as
eyetrackers are getting smaller, cheaper and more portable.

We have developed a system that combines gaze-control
with haptic remote manipulation, thus allowing the user to
intuitively operate a robotic arm. Our human-robot interface
consists of two basic input components, namely an eyetracker
and a tangible object equipped with tactile and inertial
sensors. During operation, the user is free to walk around the
robot as the interface is mobile and fully wireless. He should
feel as if he could touch and grab the robot, but without the
risk of real physical contact.

II. RELATED WORK

Several robot control devices based on accelerometers
or inertial measurement units have been proposed recently.
Uribe et al. [8] used a Wiimote game controller to teleoperate
a holonomic robot and found it to be more intuitive than
other haptic user interfaces. Wrist rotations turned out to
be a very natural way to control a robot. Neto et al. [9]
operated an industrial robotic arm using predefined gestures
which were captured by accelerometers. Systems trying to
estimate position from acceleration always suffer from errors
accumulating over time. Smith and Christensen [10] cope
with this issue by assuming a parameterized human motion
model.

Eyetracking has been considered to be helpful in teleop-
eration. Remote cameras can be gaze-controlled in order to
solve the hands-busy problem and to reduce the perceptual
load [11]. Atienza and Zelinsky [12] used 3d gaze tracking
to detect objects fixated by the user. A robotic arm picked
up these objects of interest and handed them over to the
user. Contrary to this task-level approach, Latif et al. [13]
presented an interface for immediate gaze-based motion
control. For example, looking at the right part of a live video
image triggered a turn right movement of a mobile robot.

While both haptic and gaze-control have been well studied,
interfaces that combine these two modalities are less com-
mon. However, a few multimodal approaches exist. Latif et
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al. [13] extended their interface by a foot pedal accelerator
because the exclusive use of eye gaze led to an increase in the
task’s workload. Úbeda et al. [14] proposed a video-based
teleoperation system that allows the user to move a robot end
effector in a two-dimensional plane with a combination of
eye and hand movements. To the best of our knowledge, the
prototype we have developed is the first completely mobile
remote manipulation interface to integrate gaze and touch.

III. VISIO-HAPTIC REMOTE MANIPULATION

Our robot control interface exploits the fact that humans
are usually very good at coordinating eye and hand move-
ments. Gaze determines what is to be handled while manual
action specifies how something is handled. In our scenario,
the user remote controls a redundant robotic arm. The user
wears a head-mounted eyetracker that tracks his gaze during
the manipulation task. Also, he holds a sensor-equipped
object (called iObject) in his hand. The robot can be operated
in two different control modes which are shown in Figures
1(a) and 1(b). The workflow of our system is as follows:
• Joint control: Concurrently looking at a segment of the

robotic arm and gently squeezing the iObject, the user
can rotate the respective joint by rotating the object in
his hand. As soon as the object has been pressed, the
user is not bound to continuously gaze at the segment.
The joint remains selected until the user releases the
object.

• End effector control: It is also possible to move the
robot end effector in the 3d global frame by moving the
iObject. This operating mode is activated by looking at
the end effector and pressing the object at the same time.
Afterwards, the user is again free to look around. After
two seconds, he must release the object, stop, and grip it
again in order to move on. This is due to stability issues
with position estimation from acceleration (see section
V-E). Hence, 3d end effector control is a step-by-step
process.

The end effector control mode is very helpful for roughly
positioning the robot since the system supports the operator
by computing the inverse kinematics. Direct joint control,
in contrast, can be used to cope with singularities and to
avoid obstacles. There is no need for explicit mode switches
as the system ”reads” the user’s intentions from his eyes.
For example, fixating the end effector automatically triggers
a mode switch to end effector control. Considering more
complex scenarios, the visio-haptic approach is highly ex-
tendable. Quickly selecting from a number of manual actions
with gaze is even more reasonable in situations with multiple
tools or robots.

IV. SYSTEM SETUP

A. Robotic arm

We use the Kuka Lightweight Robot, a highly redundant
7-DOF robotic arm. We have marked the arm segments
with either colored paper or BCH code fiducial markers (see
Figure 5). This makes the segments detectable in the scene

Robotic arm with
color-marked
segments

iObject

Eye gaze

Eyetracker

(a)

(b)

Fig. 1. General functionality of the visio-haptic interface. (a) Direct joint
control. (b) 3d end effector control.

camera image from the eyetracker. Also, instead of a real tool
or gripper, we have attached a cube with fiducial markers at
the end effector. Thus, no sophisticated object recognition
algorithm is required for our testing purposes.

B. Eyetracker

We chose the monocular SMI iView X eyetracker which
is head-mounted and can be used in dynamic environments.
The controlling laptop can be carried in a backpack so that
the system is fully mobile. The eyetracker is video-based
having both an eye- and a scene camera attached to a helmet.
The scene camera records the user’s field of view. The eye
camera tracks the pupil and the corneal reflection in order to
determine the gaze direction in real-time. The output of the
eyetracking module is a scene video stream plus the current
gaze point in scene image coordinates.

C. iObject

iObject (intelligent Object) is a novel tangible interface
that has been presented by Kõiva et al. [15]. It has been
modelled on the shape and size of a standard beverage
can (see Figure 2). Thus, it perfectly fits in an average
human hand and is suited for all kinds of manipulation tasks.
The object’s surface is equipped with ten 2 × 11 tactile
sensor arrays. Furthermore, there is an Xsens MTx inertial
measurement unit (IMU) integrated inside the iObject. Xsens
MTx measures acceleration, orientation and the magnetic
field. All captured data are wirelessly streamed via bluetooth.
We utilize tactile data as well as acceleration and orienta-
tion data. Orientation is represented as a quaternion which
describes the rotation of a vector in the sensor coordinate
system to a global coordinate system with respect to local
magnetic north (see sections V-D and V-E).
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Fig. 2. The intelligent object (iObject). (a) iObject with the local coordinate
system of the Xsens MTx IMU depicted in red. (b) Tactile sensor arrays
placed on the iObject’s surface.
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Fig. 3. Communication between the components of the visio-haptic remote
manipulation system.

D. Communication

Our framework is a distributed system that consists of five
main hardware components. First, we have the input devices,
iObject and eyetracker. Then, there is the robotic arm which
is to be controlled. In between are two computers A and
B, one processing the input data, the other controlling the
robot and generating acoustic feedback. The input devices
must be untethered in order to allow the user to move freely
around the robot. Therefore, the iObject sends its data via
bluetooth while the eyetracker is connected to the stationary
computer A over WiFi. Computers A and B communicate
in a message-oriented manner using the middleware RSB
[16]. OpenKC [17] encapsulates the UDP package exchange
between Computer B and the robot controller. Figure 3 shows
an overview of the communication between the components.

V. METHODS

A. Robot control

Position and velocity control is performed in joint space.
For this purpose, we use OpenKC [17], an open source real-
time control library for the Kuka robotic arm. The library
provides a callback function which is executed once at each

control step. The function supplies the currently measured
joint positions and passes the requested joint corrections
back to the robot. The Kinematics and Dynamics Library
(KDL)1 is used to solve the inverse kinematics in end effector
control mode. We must take into account not only joint angle
limits but also 3d workspace limits. Therefore, the forward
kinematics is solved for the end effector and for individual
segments of the robotic arm.

B. Scene image processing

The eyetracker provides us with a scene video stream
reflecting the operator’s field of view and with the current
gaze point in scene image coordinates (see Figure 4(a)).
From this information, we try to determine whether the user
looks at a segment or at the end effector of the robotic arm.
It is non-trivial to locate and recognize parts of the robot in
the scene image.

We implemented a marker-based solution. The segments
were marked with either colored paper or BCH code fidu-
cials. Color detection is very sensitive to lighting conditions
and background distractions. In our environment, the number
of distinguishable colors was limited to four. BCH code
marker detection, in contrast, is error-correcting but fails if
the fiducials are bent or partially covered. A combination
of both approaches gave the best results. We put BCH code
fiducials on the first and last segment as well as on the end
effector. The other segments were color-marked.

We use the Image Component Library (ICL)2 for the
processing of the scene image. Color segmentation is accom-
plished by accessing a lookup table that maps color values to
class labels. The YUV color space is used in order to achieve
a certain degree of independence from lighting conditions.
We apply an erosion filter followed by a dilation filter on
the color segmented scene image so as to remove smaller
unconnected areas. If the number of pixels of a specific color
class exceeds a predefined threshold, we suppose that we
found a color-marked segment of the robotic arm.

ICL implements a BCH code marker detection algorithm
that outputs the coordinates of the fiducial markers found
in the scene image. The color segmentation and marker
detection results are shown in Figure 4(b). We determine the
minimum distance between the gaze point and all detected
fiducial markers and color regions. If the minimum distance
is below a threshold, we assume that the user is looking at
the respective segment.

C. iObject grip detection

Both joint control and end effector control are activated by
slightly squeezing the iObject and deactivated by releasing it.
We average over all 120 measured values tac from the tactile
sensor arrays placed on the object’s surface. Then, we define
two thresholds θpress and θrelease with θpress > θrelease.
Joint or end effector control is (gaze-dependently) activated,
if tac > θpress and deactivated if tac < θrelease.

1http://www.orocos.org/kdl
2http://www.iclcv.org
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Fig. 4. (a) Scene image from the eyetracker’s front camera. The gaze
point is depicted in green indicating that the image processing algorithm
has correctly determined that the user’s focus is on the green segment of
the robotic arm. (b) Color segmented scene image. Detected fiducial markers
are depicted in gray and orange, respectively.

D. iObject rotation tracking

The iObject can be thought of as a haptic representation of
the focused segment of the robotic arm. Therefore, in direct
joint control mode, we directly map a rotation around the
object’s local x-axis to a joint rotation (in an angle ratio of
4:1). The calculation of the amount of object rotation around
the x-axis is described below.

The Xsens MTx sensor has been configured to output the
object orientation as a quaternion representing the rotation
of a vector in the object frame to a north-based global
coordinate system. Quaternions form a four-dimensional
number system which can be used to describe orientations
and rotations. Let q be a unit quaternion, and let v be a
vector in R3. Then, qvq−1 is a rotation of v where q−1

is the conjugate of q. Quaternion multiplication is a non-
commutative operation which results in a quaternion that
represents the composition of the input rotations.

In our case, we have two orientation quaternions q1 and
q2 from two consecutive measurements. We can compute a
quaternion q′ representing the rotation between both mea-
surements. q′ expressed in the object’s frame is

q′ = q−11 q2. (1)

When we convert q′ to its axis-angle representation,
angle(q′) gives us the angle of rotation. However, we are
only interested in the part of the rotation which is around
the x-axis. axis(q′) is a vector with length one representing
the rotation axis. Hence, the requested x-axis part rotiObject

of the rotation can be calculated from angle(q′) and the x-
component of axis(q′) as

rotiObject = axisx(q
′) · angle(q′). (2)

The direction of rotation is correct as long as the segment
of the robotic arm and the iObject’s x-axis roughly point
in the same direction. But robot segment and iObject are
contrarotating when, for example, the segment points down-
wards and the user holds the object upwards. In these cases,
we invert the direction of rotation in order to make the be-
haviour more intuitive. This is accomplished by multiplying
rotiObject by the sign of the scalar product of both axis
vectors:

rot′iObject = rotiObject · sgn(viObject · vsegment) (3)

Here, viObject is the iObject’s x-axis expressed in the
global frame. vsegment is the selected robot segment repre-
sented as a vector which is calculated by solving the forward
kinematics. The vector viObject must be transformed to fit the
robot’s coordinate system (see section V-E).

E. iObject position tracking

In end effector control mode, iObject movement in the
3d global frame is mapped to the corresponding robot end
effector movement. We do not use any external references
for iObject position tracking so as to keep the interface
mobile and portable. Position can, in principle, be determined
iteratively from acceleration which is called dead reckoning.

For this purpose, the object referenced acceleration vector
a from the Xsens MTx sensor is transferred to the global
coordinate system using the current orientation quaternion
q:

a′ = qaq−1 (4)

In the global frame, we substract the gravity vector g:

a′′ = a′ − g (5)

Then, velocity v is calculated by integrating a′′ over time:

v =

∫
a′′dt (6)

A second integration step gives us position p:

p =

∫
vdt (7)

The dead reckoning approach is known to accumulate er-
rors. According to Walchko and Mason [18] bias and drift are
the most devastating sources of error. Xsens MTx internally
compensates for drift in an appropriate way. However, we
still have to cope with the bias issue. Bias is a small offset
in acceleration data that grows quadratically over time in
terms of position estimation.

Xsens MTx has an acceleration bias of 0.02 m/s2. Hence,
after ten seconds, the position error has already grown to
one meter. We handle the bias problem by defining a usage
constraint. End effector position control is only allowed for
two seconds after having pressed the iObject. Then, before
he can move on, the operator must release the object and
stop. We suppose that there is no hand motion when the user
presses the object again and reset velocity to zero. Thus, the
accumulated position error for each manual action is limited
to about 4 cm. This strategy is sometimes referred to as
ZUPT (Zero Velocity Updates) [19].

So far, we have assumed that the global frame of the
iObject and the robot’s coordinate system are identical. In-
deed, both are right-handed systems. But the object’s global
frame is north-based (x-axis points to local magnetic north)
while the robot’s frame depends on the specific installation.

5466



Also, the Xsens MTx compass is not perfectly reliable
because of magnetic disturbances. This is why we align
the coordinate systems by means of a calibration process.
Before using our interface, the operator should position the
iObject on a table in such a way that its x-axis is parallel
to one of the robot’s horizontal axes. Then, the rotation
quaternion between the measured and expected orientation
is determined. This quaternion is used to perform coordinate
transformations during runtime.

F. Acoustic feedback

We generate acoustic feedback in two different situations.
First, there is speech output (”white”, ”red”, ”pink” etc.)
when the operator presses the iObject and concurrently gaze-
selects a color-marked segment or the end effector. Thus,
the user is informed about the system’s success or failure to
determine his intention. Second, an acoustic signal warns the
user when he tries to exceed a joint or workspace limit.

VI. USER STUDY

We conducted a proof-of-concept study with six subjects
(two female, four male). The accuracy of the system mainly
depends on the lighting conditions and on the third party
products used, namely the eyetracker and the IMU. There-
fore, our primary goal was a qualitative evaluation of the
visio-haptic interface. We also measured how well the system
performed and which control mode was preferred in an
obstacle avoidance task compared to a task without obstacles.

A. Procedure, tasks and measures

After a written and oral introduction, the participant put
on the eyetracker helmet. The system was calibrated and ini-
tialized. Then, the participant had time to familiarize himself
with the robotic arm and the control interface. Afterwards,
the robot was moved to a defined starting position.

The subject’s task was to navigate the cube attached to the
robot’s end effector to a target object which was positioned
on a table. The task was finished when the end effector cube
touched the target object. The subject performed two runs. In
the first run, there were no obstacles. In the second run, two
boxes had to be avoided. The obstacle avoidance task could
not be accomplished without using the direct joint control
mode. Figure 5(a) shows a participant operating the robot.
The setups for both experimental conditions are depicted in
Figures 5(b) and 5(c).

We measured the time the participant needed to complete
the tasks and how often specific segments of the robotic
arm were selected for moving. Furthermore, the subject was
asked to fill in a questionaire. The questions were on prior
experience with robots, usability of the visio-haptic interface
and how hard or easy the subject perceived the tasks.
Also, the participant was interviewed about his subjective
experience with the system.

B. Objective Results

All subjects successfully navigated the end effector cube to
the target object in both experimental conditions. However,

(a)

Target object

(b)

Target object

Obstacles

(c)

Fig. 5. Experimental setup of the user study. (a) Participant operating the
robot with the visio-haptic interface. (b) Setup without obstacles. (c) Setup
with obstacles.
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Fig. 6. Gaze-selections during the user study tasks. The amount of joint
and end effector selections is plotted against the task condition.

one subject touched one of the boxes in the obstacle avoid-
ance condition. The average time needed for the completion
of the no-obstacle task was 72.5s (SD = 93.8s) and
208.1s (SD = 123.8s) for the obstacle avoidance task.
This difference in duration between the conditions is not
significant (t(5) = 2.08; p = 0.09).

In the no-obstacle condition, the subjects made, on av-
erage, 3.3 joint selections and 9 end effector selections by
gaze. During the obstacle avoidance task, in contrast, single
joints were selected more often (29 times) than the end
effector (17.7 times). The results are visualized in Figure
6. Expressed as percentages, direct joint control was chosen
significantly more often (t(5) = 3.58; p < 0.05) in the
obstacle avoidance condition (69.8 percent, SD = 17.8
percent) than in the no-obstacle condition (30.3 percent,
SD = 32.4 percent).

C. Subjective Results

The degree of familiarity with robots varied largely among
the subjects. However, no influence on the performance could
be noticed. In general, the subjects rated both gaze-selection
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and robot control with the iObject as ”intuitive”. Only half of
the subjects experienced the audio feedback as ”helpful” or
”very helpful”. One participant rated the obstacle avoidance
task as ”very difficult” and the no-obstacle task as ”neutral”.
All other subjects found the navigation task without obstacles
”very easy” and rated the obstacle avoidance task as ”easy”
or ”neutral”.

Some of the subjects said they found the end effector
control inaccurate or did not like the two second limit. Others
would have wished to rotate the iObject with their fingers
or with both hands because they found it tedious to keep
the object pressed during the whole rotation process. Also, it
happened in a few cases that the gaze-selection failed. Haptic
or visual feedback was suggested as an alternative to audio.
One participant remarked that the combination of color and
BCH code markers confused him a little. Another subject
said that sometimes he was not sure about the direction of
joint rotation. Nevertheless, most subjects expressed that they
liked to operate the robot with the visio-haptic interface.

D. Discussion

The results of the proof-of-concept study show that the
visio-haptic interface enables untrained subjects to control
a robotic arm and to accomplish simple navigation tasks.
Both operating modes were used by the participants. The
results confirm that direct joint control is especially helpful
for obstacle avoidance.

Increasing the speed of robot joint rotations could mitigate
the tediousness issue. External references would probably
improve the position estimation accuracy in end effector
control mode but might decrease the mobility of the system.
Gaze-selection failures dramatically reduce the usability.
Therefore, it is worthwhile improving both the eyetracking
accuracy and the computer vision approach. Acoustic feed-
back might not be the best way to convey the system state
to the user. An alternative solution would be to equip the
iObject with tactile stimulators. Generally, the capabilities
of tangible interfaces like the iObject could be used for even
more complex remote manipulation tasks like controlling a
gripper mounted at the end effector.

VII. CONCLUSION

The objective of our work was to develop a visio-haptic
human-machine interface to operate a complex robotic arm
in a natural way. This goal was achieved by combining input
from a mobile eyetracker and a tangible object called iObject.
The presented system exploits human eye-hand coordination
by directly mapping iObject movements onto movements
of gaze-selected robot segments. Our proof-of-concept study
showed that naive users perceived the interface as intuitive
and easy to use.

Although this system is only a first prototype, there is
potential for future applications in industrial or disaster
robotics. In our current setup, the user and the robot are
located in the same room. However, gaze-based segment
selection is also possible from a screen image showing a
camera stream, so that our basic approach is equally suitable

for teleoperation scenarios. Future versions of the interface
should incorporate even more haptic features replacing au-
ditory by tactile feedback.
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