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Abstract— This paper proposes a scheme that exploits syner-
gies between RSSI and camera measurements in object local-
ization and tracking using Wireless Camera Networks (WCN).
It is based on three main mechanisms: a training method that
accurately adapts RSSI-range models to the particular environ-
ment; a sensor activation/deactivation method that balances the
different information contribution and energy consumptions of
camera and RSSI measurements; and a distributed Information
Filter to integrate the available measurements. The joint use
of these mechanisms drastically reduces energy consumption
-40%- with no significant degradation w.r.t. existing schemes
based on only cameras and shows better robustness to target
occlusions. The scheme has been implemented and validated in
the indoor CONET Integrated Testbed.

I. INTRODUCTION

In the last decade the re-configurability and ease of deploy-

ment of Wireless Sensor Networks (WSN) has motivated in-

tense research in applications such as localization and track-

ing in GPS-denied environments. Wireless Camera Networks

(WCN) have gained increasing interest. They can implement

multi-camera perception schemes typical of standard camera

networks with the flexibility and re-configurability of WSN.

Various tracking methods for WCNs have been developed.

However, the great majority of them rely only on cameras

ignoring Radio Signal Strength Indicator (RSSI). Fusion of

bearing and range measurements -like RSSI- can originate

interesting synergies. Both individually provide partial obser-

vation but combining one measurement of each type suffices

to constrain a location. Moreover, RSSI can be used when

the object is occluded in the images or is out of the cameras

field of view. Despite these advantages very few methods

integrating cameras and RSSI have been developed even

taking into account that RSSI can be measured by almost

all nodes with negligible additional energy or computer

cost. Many RSSI-based localization and tracking methods

have been developed. However, RSSI is highly affected by

radio reflections and other interactions with the environment,

frequently resulting in poor performance.

This paper proposes a new scheme that exploits synergies

between RSSI and camera measurements in localization and

tracking. It is based on the combination of three main

mechanisms: 1) a distributed Extended Information Filter

(EIF) to efficiently integrate available -camera and/or RSSI-
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measurements in the same probabilistic frame; 2) a training

method that adapts RSSI-range models to the particular

environment and radio reflections and interactions; and 3)

a sensor activation/deactivation method that balances the

accurate sensing -but high energy consumption- of cam-

eras with RSSI-based localization, which is more energy

efficient. The interaction between these mechanisms allows

tracking targets with similar errors than schemes based only

on cameras but with drastic energy savings, allowing 40%

longer batteries lifetimes. The scheme has been validated

in the indoor CONET Integrated Testbed [1] showing good

robustness against target occlusions and camera errors.

The paper is organized as follows. Related work is in

the next subsection. The general description of the proposed

scheme is in Section II. The distributed EIF, the RSSI-range

model training and the sensor activation/deactivation mech-

anisms are described in Sections III, IV and V, respectively.

Section VI presents experimental results and performance

and robustness analysis. Conclusions is the final section.

A. Related Work

Most existing localization and tracking methods for WCNs

rely on integrating measurements only from cameras using

tools such as Kalman Filters [2], Particle Filters [3] and

Information Filters, which are more efficient than Kalman

Filters in case of a large number of measurements [4].

A high number of RSSI-based localization methods have

been developed. Range-based methods, such as multilater-

ation [5] or least squares [6], use RSSI measurements to

estimate distance to anchor nodes. Reflections and other

interactions with the environment make RSSI models very

dependent on the setting, making them unpredictable. Range-

free methods, such as ROC-RSSI [7] or APIT [8], avoid these

drawbacks by relying on geometric considerations. However,

their accuracies are usually poorer. Another approach is to

learn RSSI characteristics from the environment. Fingerprint-

ing methods, see e.g. [9], compare measurements with a

previously obtained RSSI map. They require accurate RSSI

maps of the environment and should re-obtain the map if

the setting changes. In [10] each node uses the location of

surrounding nodes to train its RSSI-range model. However,

the method cannot capture the interactions with the local

environment surrounding the target.

Bearing and range measurements have interesting com-

plementarities. However, the number of Wireless Camera

Networks that use RSSI is very low. Miyaki et al. proposed

to estimate target location individually using cameras and

using RSSI and then, to integrate both estimates using a
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sensor fusion method [11] or a Particle Filter [12]. These

methods do not fully exploit synergies of bearing and range

measurements. Moreover, they were validated in outdoor

tests but accuracy and robustness were not analyzed.

Camera nodes tracking a target are usually organized

dynamically in clusters triggered by external events. Tracking

a moving target requires dynamically including and exclud-

ing nodes in the cluster: nodes out of the cluster can be

switched-off, saving energy. Some tracking methods, such

as [13], use distance to the target as main node activation

criterion. However, proximity does not imply that the camera

is capable to acquire information about the target. Most

methods activate one camera when the object is estimated

to enter its field of view and deactivate the camera when

it comes out [2]. This criterion leads to keeping active a

high number of cameras, many of which can be unnecessary

unless the camera deployment has been optimized [14].

II. GENERAL DESCRIPTION

Assume that a number of static nodes each equipped

with one camera, from now on camera nodes, have been

deployed in an environment. Camera nodes are assumed to

have sufficient computer capacities to execute simple image

processing methods: each can measure the coordinates of

the target center in its image plane. Also, each camera

node can measure the RSSI of the messages received from

the target, assumed tagged, e.g. with a WSN node. The

proposed method adopts a semi-decentralized scheme based

on clustering. Camera nodes sensing one target organize in

a cluster. Thus, several simultaneous targets can be tracked,

each with its cluster. Each cluster has one cluster head -in

our case the mobile node- that executes the tracking method.

Thus, the message flow is kept within the cluster at the

surroundings of the target, simplifying transmissions.

This paper proposes a new scheme that employs prob-

abilistic and training mechanisms to exploit synergies be-

tween RSSI and camera measurements, see Fig. 1. Lack

of accuracy of RSSI models is the main drawback when

using RSSI measurements. The proposed scheme includes

a mechanism in which each node uses target locations

estimated by cameras to train its own RSSI-range model

adapted to the local environment surrounding the node and

the target. Training is performed dynamically to adapt to

the target motion. Thus, it is capable of learning multi-path

reflections of the radio signal even in indoors scenarios. In

very complex scenarios the accuracy of the trained RSSI

is monitored, disabling the mechanism if necessary. As a

result, when camera and RSSI measurements are available,

this mechanism significantly improves the RSSI accuracy

and makes it robust to reflections and interactions with the

environment, see Section IV.

Our scheme also includes a mechanism for activa-

tion/deactivation of sensors balancing cost (energy) and

reward (information gain), see Section V. Its objective is to

limit the number of active sensors to those essential reducing

energy consumption. This mechanism tends to activate nodes

with trained RSSI models. Finally, a distributed Information

Filter (IF), see Section III, is used to integrate the available

camera and/or RSSI measurements.

Fig. 1. Schematic illustration of the proposed scheme.

The combination of these mechanisms originates a self-

regulated feedback effect: camera measurements are used to

calibrate RSSI models and once calibrated, the sensor selec-

tion method tends to deactivate cameras due to their higher

consumption. Thus, the proposed scheme highly reduces

energy consumptions with similar accuracies than schemes

based only on cameras. It has superior robustness against

target occlusions and similar robustness to camera errors.

III. MEASUREMENT INTEGRATION USING INFORMATION

FILTERS

Recursive Bayesian Filters (RBFs) are well-founded tools

for sensor integration assuming the prediction and measure-

ment models are subject to noise. Information Filters (IFs)

are parametric RBFs that employ the so-called canonical

representation consisting of an information vector ξ = Σ−1µ
and matrix Ω = Σ−1. Dual of Kalman Filters (KFs), the

update stage of IFs is more efficient than that of KFs.

That makes them more convenient in cases with a simple

prediction model and high number of measurements, as in

our problem, in which many inexpensive camera nodes can

be used. Besides, IFs are numerically more stable and more

suitable for representing lack of information.

We adopted a state vector qk typical in localization and

tracking problems with 6 components: 3D current target loca-

tion and 3D target current velocities. More complex models

require a priori knowledge, which is often unavailable.

One observation model is required for each type of mea-

surement. The camera observation model is derived from the

pin-hole model. Assume that Pk is the location of the target

in the global reference frame G at time k. Assume that pi,k
is the projection of the target on the image plane of camera

node i expressed in the local reference frame of camera,

Fi, related to G by transformation matrix Ti. The following

observation model for camera i holds:

pi,k = hci(Pk) =

[

ti,1
[

Pk 1
]T

/ti,3
[

Pk 1
]T

ti,2
[

Pk 1
]T

/ti,3
[

Pk 1
]T

]

, (1)

where ti,j is the j− th row of Ti. This observation model is

nonlinear. Its linearization leads to the Extended Information

Filter (EIF), which uses the Jacobian of hci, HCi,k, at the

EIF update stage, see [15].
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Our method includes a mechanism in which each node

trains its own RSSI model. If the training RSSI model mech-

anism is active the EIF uses the model trained as described

in Section IV. Otherwise, the EIF uses the following widely

accepted model [16] -we will call it default RSSI model:

RSSIi,k = hri(Pk) = a log di,k + b, (2)

where di,k is the distance between the target and node i
at time k and a and b are model parameters. The default

RSSI model is given by aD, bD and the model variance

σ2
D. This default model, taken from works such as [16],

is not suitable for indoors and does not address multipath

reflections. However, it is used very scarcely, only when

the training-based RSSI-range model is not available or not

accurate, see Section IV. The RSSI model in (2) is nonlinear

and the EIF uses its Jacobian:

Hri,k =
∂hri
∂di,k

∂di,k
∂qk

(3)

For robustness and scalability the proposed EIF uses

a distributed implementation. At each time k the cluster

head executes the EIF prediction stage computing Ωk, ξk
and µk and broadcasts µk within the cluster. Each node i
in the cluster takes measurements from its active sensors,

integrates its local measurements computing Ωi,k and ξi,k -

its contribution to the overall EIF update stage- and transmits

Ωi,k and ξi,k to the cluster head. Then, the cluster head

computes Ωk summing Ωk and the contribution of each node

Ωi,k. It also computes ξk summing ξk and the contribution

of each node ξi,k. The computing time of the distributed

EIF is roughly constant regardless the number of cluster

nodes. RSSI between the target (cluster head) and the nodes

is measured from the messages they interchange without

additional energy consumption, computer burden or delays.

IV. RSSI-RANGE MODEL TRAINING

When measuring the RSSI between two nodes the local

environment around both nodes critically affects the observa-

tion model. In fact, if we make RSSI measurements without

changing their local environments, we can notice that all

the values are very similar: it is reflections and other inter-

actions with the environment and not measurement errors

themselves what originate RSSI difficulties for localization

and tracking. Our method includes a mechanism in which

each node uses the current target location to dynamically

adapt its own RSSI-range model to the particularities of the

environment. The resulting trained models are adapted to

the local environments of the emitter and receiver -and its

reflections and interactions with the environment- and present

good accuracies making them suitable for tracking problems.

Let Pk be the target location at time k. Let RSSIi,k be the

RSSI measured by node i from the messages received from

the target. Assuming each node knows its location, node i
can collect a set of the last M measurements {(RSSIi,j ,

di,j)} j = k−M +1 : k, where di,j is the distance between

the node i and Pj . The objective is to obtain a RSSI-range

model for node i adapted to the local environment of the

target at time k. These local models can be assumed linear,

RSSIi,k = aidi,k + bi, and can be efficiently trained using

a simple linear regression:

ai =

∑

j RSSIi,jdi,j −RSSIi
∑

j di,j
∑

j(di,j)
2 − di

∑

j di,j
, (4)

bi = RSSIi − (adi), (5)

where rssii and di stand for the mean of RSSIi,j and

di,j . To cope with the target motion, node i trains its model

with the last M pairs collected. M is typically selected with

low values. If the target moves, high M can involve RSSI

measurements with different target local environments.

Of course, in our system Pk, the actual location of the

target, is not known. Instead, we use estimates of the target

location obtained by an auxiliary EIF as that presented in

Section III but that only integrates camera measurements. If

not addressed carefully this approach may introduce cameras

inaccuracies into the RSSI training.

Assume d′i,k = di,k + ui, where d′i,k is the distance from

node i to the target location estimated by the auxiliary EIF,

di,k is the actual distance and ui is the estimation error.

Assume that RSSIi,k = aidi,k + bi is the exact RSSI-range

model and the measured RSSI is RSSI ′i,k = RSSIi,k + vi,
where vi is the RSSI measurement error. The training method

uses pairs {(RSSI ′i,k, d′i,k)} to fit the model RSSI ′i,k =
aid

′

i,k + bi + vi. It is easy to check that the following

expression holds:

RSSI ′i,k = ai(di,k+ui)+bi+vi = RSSIi,k+aiui+vi (6)

Assuming ui and vi are Gaussian White noises with zero

means and variances σ2
ui

and σ2
vi

, the variance of the trained

model can be expressed as:

σ2
tm,i = a2iσ

2
ui

+ σ2
vi

(7)

The variance of the trained RSSI model depends on σ2
vi

,

σ2
ui

-the variance of the target error estimated by the auxiliary

EIF- and ai, the slope of its RSSI-range model. Trained RSSI

models with higher a are more sensitive to target location

errors. If a trained model has 1/a = 0, it is approximated

by 1/a = ǫ and b is recomputed using (5) with the new a.

Figure 2-top shows the default RSSI model computed by

fitting (2) with RSSI measurements (in red color) from every

pair of nodes deployed in the CONET Integrated Testbed.

Figure 2-bottom shows two trained RSSI models for node

i computed with measurements between node i and the

target at two different times along its path. Differences in

fitting error between both models are evident. Trained RSSI

models are specific for each node and valid only for local

surroundings around the target but they are significantly

more accurate than the RSSI default model and is capable

of capturing existing reflection and interactions with the

environment.
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activate its camera (Action2) or can be fully deactivated

(Action4). Each action involves different costs and rewards.

Figure 3-right shows the cost of each action using c1 and

c2 as defined above. Costs when deactivating are negative

meaning energy savings. As in the full camera node activa-

tion scheme, costs are considered the same for all the nodes.

Fig. 3. Adopted transition model and action costs.

This approach allows more flexibility and can better use

the RSSI training mechanism. Nodes in CameraOff mode

with trained RSSI models produce accurate RSSI measure-

ments originating further reductions in energy consumption,

as is shown in the examples in Section VI.

Algorithm 2 Sensor activation mechanism

Require: qk
1: A+ = Ø
2: for all ak ∈ A do

3: r(qk, ak) = H(qk)−H(q∗k+1
)

4: if r(qk, ak)− c(qk, ak) > 0 then

5: A+ ← ak
6: end if

7: end for

8: âk = argmax
ak∈A+

(r(qk, ak)− c(qk, ak))

9: Perform action âk

VI. EXPERIMENTS

The implemented version of the scheme executes the

three mechanisms (RSSI-model training in Algorithm 1, EIF

and the sensor activation in Algorithm 2) one after the

other at each time step. It has been evaluated in series of

experiments performed in the CONET Integrated Testbed [1].

The objective was to track a moving robot, which ground

truth location was computed using the AMCL method [17].

A total of 21 camera nodes were deployed on the room floor,

each implemented with a CMUcam3 camera connected to

one Crossbow TelosB, see Fig. 4. Each CMUcam3, internally

calibrated with the model in [18], captures 352x288 RGB

images and executes efficient color and motion segmentation

methods. The CMUcam3 sends to its node the coordinates

of the center of the region segmented in each image. Camera

nodes also measure the RSSI of the messages received from

the robot, tagged with another TelosB. Nodes implement

the Flooding Time Synchronization Protocol (FTSP) [19] to

ensure synchronization errors of few ms within the cluster.

Instead of using a default RSSI model taken from the

literature, we performed preliminary tests to obtain a model

for our specific environment by fitting the RSSI measure-

ments between each pair of nodes. We used that model,

Fig. 4. Left) Picture of the CONET Integrated Testbed taken in the
experiments. Right) Camera node used in the experiments.

depicted in Fig. 2-top, as our default RSSI model. It was

found that the image segmentation methods had errors with

a standard deviation of 18 pixels in X and Y axes: we

took them as the camera measurement covariance. For the

activation/deactivation method we adopted the energy con-

sumption given by the manufacturers. CMUcam3 consumed

650 mW when active and 0 when switched off. TelosB

nodes can be in two modes: inactive, a.k.a. low-energy mode,

which consumes 7.2 mW, and the active mode, in which it

consumes 69 mW. Costs c1 and c2 are taken proportional to

the consumptions of active TelosB and the CMUcam3.

A. Performance evaluation

Figure 5 shows an scheme of the environment with the

21 camera nodes. The cameras local frames can be seen: Z
represents the optical axis. Figure 5 also shows the result

of one experiment with the proposed methods comprising

the three mechanisms: the EIF, the RSSI model training and

the sensor selection method described in Section V-B. The

estimated target location is represented in red and the ground

truth location is in blue. The average error in this experiment

was 32.9 cm, with errors of 21.3 cm and 25.07 cm in X and

Y , respectively. The mean overall power consumed by all

devices along this experiment was 2019 mW.

Its performance was compared with other methods. The

same experiment was executed 40 times. Camera and RSSI

measurements of all the camera nodes were logged and off-

line processed using different methods. Table I summarizes

the main results. All the methods used the same parameters

including observation and prediction covariances and c1 and

c2 costs. Method1 implements an EIF using only camera

measurements and without any mechanisms: all cameras are

kept active while seeing the object. It obtained the highest

accuracy at the expense of requiring an average of 11.5 active

cameras along the experiment, which consumed an average

of 9001 mW. Method2 is Method1 with the camera selection

method proposed in [20]. It dynamically deactivated the

camera nodes that do not provide informative measurements

and only an average of 40% of the cameras that sense the

object were kept active. It achieved a reduction of 60% in

energy consumption.

Traditional integration of RSSI in camera-based systems

does not improve performance w.r.t. using only camera mea-
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Fig. 5. Result of the proposed scheme: estimated location (in red) and
ground truth in solid (blue).

TABLE I

EVALUATION AND COMPARISON OF THE PROPOSED METHOD IN SERIES

OF 40 EXPERIMENTS.

Method1 Method2 Method3 Proposed

method

Mean error (cm) 28.59 32.50 32.95 33.54

Std (cm) 21.41 23.63 23.31 24.91

Average number of

active cameras

11.50 4.59 3.11 2.56

Average number of
RSSI measurements

- - 3.11 3.38

Average power (mW) 9001 3418 2364 2024

surements, as is analyzed later. Method3 integrates camera

and RSSI measurements using the RSSI model training

method proposed in Section IV and the sensor selection

method in Section V-A. In this case an average of only 3.11

camera nodes (which provide simultaneously camera and

RSSI measurements) were active in the experiment, which

consumed 30% lower than Method2 with almost the same

accuracy.

The proposed scheme is the same as Method3 but using

the sensor selection described in Section V-B. While in

Method3 active camera nodes provide camera and RSSI

measurements, in the proposed method they can also be

in the CameraOff mode and only RSSI measurements are

taken keeping cameras off. The proposed method required

an average of only 2.56 active cameras and 0.86 nodes in the

CameraOff mode. While having almost the same errors, our

method consumed 14% less than Method3. It consumed less

than methods based on only cameras: 40% less than Method2

and 77% less than Method1. In the proposed method batteries

last more than 4 times longer than in Method1.

In the proposed method the joint execution of the three

mechanisms generates a behavior in which camera mea-

surements are used to train RSSI models and once trained,

the sensor selection method tends to deactivate cameras due

to their higher consumption. The behavior is self-regulated.

When too many cameras are inactive, the accuracies of RSSI

models degrade, involving higher uncertainty in the overall

target estimation, which makes the sensor selection method

to activate cameras again to reduce uncertainty.

B. Robustness analyses

Now we analyze the accuracy of the training RSSI model

method proposed in Section IV. We employed the same

setting in the CONET Integrated Testbed and tracked the

robot using an EIF that integrates only RSSI measurements.

We compared the performance of the EIF with three different

RSSI models: the default RSSI model, the RSSI calibration

method presented in [10] and the RSSI model training

method proposed in this paper. The experiment was repeated

40 times. Figure 6 shows the cumulate robot localization er-

rors obtained when using the three RSSI models. The method

proposed in this paper has significantly higher accuracy: the

mean error is 55 cm and the error was lower than 90 cm

in 80% of the samples. Errors were significantly higher in

the other two cases even considering that both RSSI models

were generated for that specific environment.
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Fig. 6. Cumulative robot localization errors obtained by RSSI-only tracking
using: the default RSSI model, the RSSI calibration method in [10] and the
training method proposed in Section IV.

Our RSSI training mechanism behaves better because it

estimates target location with cameras and trains the RSSI

model dynamically considering the local surroundings of the

target and of the static node. As presented in Section IV

the proposed scheme includes self-corrective mechanisms

that improve robustness against camera errors. In the next

experiments we analyze the robustness of the RSSI trailing

method against the most common errors in the cameras.

Three cases that compromise the accuracy of the auxiliary

EIF are analyzed: camera failures, camera pointing errors

and errors in target segmentation in the images. These errors

were simulated in these robustness experiments. Figure 7

compares the mean error (blue color) and energy consumed

(red) by the proposed method (solid line) and the aforemen-

tioned Method2 (dashed), which uses only cameras.

Figure 7-top analyzes robustness assuming each camera

can fail randomly with a probability in the range [0, 50] %.

The mean tracking error behaves similarly in the proposed

method and in Method2. Our method consumes an average
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Fig. 7. Robustness against different types of camera errors between
Method2 and the proposed method: top) camera failures, center) target
segmentation errors and bottom) camera pointing errors.

of 43% lower than Method2. Figure 7-center analyzes ro-

bustness against errors in the image segmentation methods.

In preliminary tests we noticed that the measured center of

the object had errors with a standard deviation of 18 pixels.

In these experiments we added additional random errors

so that the total error had standard deviations in the range

[18, 36] pixels. Both methods had similar performance with

low image segmentation errors but our method performed

22% worse with high image segmentation errors. Again,

the proposed method saved a mean of 41% energy w.r.t.

Method2. Figure 7-bottom analyzes robustness assuming that

the all cameras pointing contain random yaw errors with

standard deviations in the range [0, 0.2] rad. The mean

error increases in a similar way in both methods and energy

consumption in the proposed method is 42% lower than in

Method2.

One further advantage of the proposed method is robust-

ness against camera occlusions. We repeated the experiments

deploying two walls in the environment such that no camera

could see the target during an interval in its path. These walls

are represented in Fig. 5 with dashed lines. We focus on their

performance during the occlusion. Their operation before and

after is as described above. Figure 8 shows the estimated path

(red line) and ground truth (blue). In the occluded section the

lack of camera measurements prevented the EIF in Method2

from updating the state vector resulting in a mean error of

188 cm. The proposed method had a mean error of 68 cm.

Occlusions originated high uncertainties in the RSSI training

method and the default RSSI model was selected. However,

the integration of RSSI measurements even using the default

RSSI model was a significant advantage when no camera

measurements were available.
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Fig. 8. Comparison of the robustness against occlusions between Method2

and the proposed scheme.

The proposed method, consuming 40% less, has robust-

ness against camera errors comparable to that of Method2

and is significantly more robust to target occlusions.

VII. CONCLUSIONS

This paper presents a scheme that employs three mech-

anisms for the efficient integration of RSSI measurements

in target localization and tracking with Wireless Camera

Networks. Besides a distributed EIF, it includes a training

method in which each node dynamically adapts its RSSI-

range model considering the target current location and a

sensor selection method that balances the different accuracies

and energy consumptions of cameras and RSSI.

The joint use of these mechanisms generates a self-

regulated behavior in which camera measurements are used

to train RSSI models and once trained, the sensor selection

method tends to deactivate cameras due to their higher con-

sumption. As a result the proposed scheme strongly reduces

energy consumption -40%- with almost no performance

degradation w.r.t. schemes based on only cameras.

These mechanisms have been implemented with TelosB

nodes connected to CMUcam3 modules and validated in

the indoor CONET Integrated Testbed. The experiments

confirmed its performance: its robustness against camera

errors is comparable to that of Method2 and is significantly

more robust to target occlusions.

The work presented opens wide fields for future applica-

tion and research. In this work the costs taken for the sensor

selection method were static. It can be interesting to make

them dependent on the number of active sensors in order to

avoid big clusters. Design of WCN deployment to improve

tracking is also object of current research.
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survey of wlan location fingerprinting methods,” in 6th Workshop on

Positioning, Navigation and Communication, 2009, pp. 243–251.
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