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Abstract—1In a series of papers, we have formalized an active
Bayesian perception approach for robotics based on recent
progress in understanding animal perception. However, an issue
for applied robot perception is how to tune this method to a
task, using: (i) a belief threshold that adjusts the speed-accuracy
tradeoff; and (ii) an active control strategy for relocating the
sensor e.g. to a preset fixation point. Here we propose that these
two variables should be learnt by reinforcement from a reward
signal evaluating the decision outcome. We test this claim with a
biomimetic fingertip that senses surface curvature under uncer-
tainty about contact location. Appropriate formulation of the
problem allows use of multi-armed bandit methods to optimize
the threshold and fixation point of the active perception. In
consequence, the system learns to balance speed versus accuracy
and sets the fixation point to optimize both quantities. Although
we consider one example in robot touch, we expect that the
underlying principles have general applicability.

I. INTRODUCTION

A main principle underlying animal perception is the
accumulation of evidence for multiple perceptual alterna-
tives until reaching a preset belief threshold that triggers
a decision [1], [2], formally related to sequential analysis
methods for optimal decision making [3]. In a series of
papers [4]-[10], we have formalized a Bayesian perception
approach for robotics based on this understanding of ani-
mal perception. Our formalism extends naturally to active
perception, by moving the sensor with a control strategy
based on evidence received during decision making. Benefits
of active Bayesian perception include: (i) robust perception
in unstructured environments [8]; (ii) an order-of-magnitude
improvement in acuity over passive methods [9]; and (iii)
a general framework for Simultaneous Object Localization
and IDentification (SOLID), or ‘where’ and ‘what’ [9], [10].

This work examines a key issue for applying active
Bayesian perception to practical scenarios: how to choose
the parameters for the optimal decision making and active
perception strategy. Thus far, the belief threshold has been
treated as a free parameter that adjusts the balance between
mean errors and decision times (e.g. [7, Fig. 5]); furthermore,
the active control strategy was hand-tuned to fixate to a re-
gion with good perceptual acuity [8]-[10]. Here we propose
that these free parameters should be learnt by reinforcement
from a reward signal evaluating the decision outcome, and
demonstrate this method on a task in robot touch.

Past work on reinforcement learning and active perception
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Fig. 1. Experimental setup. (A) Schematic of tactile sensor tapping against
a cylindrical test object: the fingertip taps down and then back up again to
press its pressure-sensitive taxels (colored) against the test object; each tap
is then followed by a horizontal move. (B) Forward view of the experiment
showing the fingertip mounted on the arm of the Cartesian robot.

has been confined to active vision, and was motivated ini-
tially by the perceptual aliasing problem for agents with
limited sensory information [11]-[13]. Later studies shifted
emphasis to optimizing perception, such as learning good
viewpoints [14]-[16]. Just one paper has considered active
(not reinforcement) learning to optimize active touch [17].
There has also been interest in applying reinforcement learn-
ing to visual attention [18]-[20]. We know of no work on
learning an optimal decision making threshold and active
control strategy, by reinforcement or otherwise.

Our proposal for active Bayesian perception and reinforce-
ment learning is tested with a simple but illustrative task
of perceiving object curvature via tapping movements of a
biomimetic fingertip with unknown contact location (Fig. 1).
We demonstrate first that active perception with fixation
point control can give robust and accurate perception, but the
decision time and acuity depend strongly on the fixation point
and belief threshold. Next, we introduce a reward function of
the decision outcome, which for illustration is a linear Bayes
risk of decision time and error. Interpreting each active per-
ception strategy (parameterized by the threshold and fixation
point) as an action, then allows use of multi-armed bandit
methods to balance exploitation and exploration of the most
rewarding strategies [21]. In consequence, the appropriate
decision threshold is learnt to balance the risk of making
mistakes versus the risk of reacting too slowly, while the
fixation point is tuned to optimize both quantities.

Although we consider one example in robot touch, we ex-
pect that the underlying principles are sufficiently general to
be applicable across a range of other percepts and modalities.
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Fig. 2. Algorithm for active Bayesian perception with reinforcement
learning. Active Bayesian perception (left) has a recursive Bayesian update
of the posterior beliefs, marginalized over ‘what’ identity and ‘where’
location, while also actively controlling sensor location according to those
beliefs; decision termination is at sufficient ‘what’ belief. When the sensor
moves, the ‘where’ component of the beliefs are re-aligned with the new
location. Reinforcement learning (right) modifies the belief threshold and
active control strategy based on rewards derived from the decisions.

II. METHODS

A. Active Bayesian perception with reinforcement learning

Our algorithm for active perception is based on including
a sensorimotor feedback loop in an existing method of
Bayesian perception, whereby beliefs are recursively updated
during perception while relocating the sensor based on those
beliefs [9], [10]. Following sequential analysis methods for
optimal decision making, the belief threshold to complete the
decision is a free parameter that adjusts the speed-accuracy
tradeoff [3]. In active perception, a control strategy relocates
the sensor, here to attain a preset fixation point that is another
free parameter. This study applies reinforcement learning to
set these two free parameters according to a reward function
of the speed and accuracy of the decision outcome.

Reinforcement learning is concerned with how agents
should take actions to maximize a cumulative reward that
asses the outcome of those actions. In doing so, the agent
should balance exploration of new information against ex-
ploitation based on current knowledge. Multi-armed bandit
problems consider an agent sequentially selecting one of
multiple actions, and have well-known algorithms for action
selection, e.g. [21]. Interpreting the choices of decision
threshold and fixation point as potential actions, we can thus
apply these bandit methods to optimize active perception.

Because the active perception part of these methods has
been presented in other work [9], [10], we give a brief
summary of active Bayesian perception and refer to pre-
vious work for more details. Our methods are framed in a
general notation for any simultaneous object localization and
identification task, with V), ‘where’ location classes x; and
Niq ‘what’ identity classes w; comprising N = Nijo.NVig

joint classes ¢, = (x;,w;). Each contact gives a multi-
dimensional time series of sensor values z = {s;(j)} over
time samples j € [1, Nyamples] and sensor channels k €
[1, Nehanneis]- The tth contact in a sequence is denoted by
z¢ with 21,1 = {z1,- -, 21} its contact history.
Measurement model and likelihood estimation: The like-
lihoods of all perceptual classes are found using a measure-
ment model of the contact data, by applying a histogram
method to training examples of each perceptual class [4],
[5]. First, the sensor values s for channel £ are binned into
100 intervals; then, given a test tap z, the log likelihood is
given by the mean log sample distribution for that tap

Nchannels

Nsamples
log P(bx(7)|cn,
PGl = 3 Y o8 POcGllen k) - g

Nsamplcs channels

where by (j) is the bin occupled by sample s (7).

Bayesian update: Bayes’ rule is used after each successive
test contact z; to recursively update the posterior beliefs
P(cp|z1.4) for the perceptual classes with the estimated
likelihoods P(z¢|c;,) of that contact data

P(cplz14) = P(zt[cn)Plen|z1:6-1)
o N (Zt|Cn)P(Cn‘21:t,1)7

Zn:l P

from background information P(c,|z1.;—1) initialized from
uniform priors P(cy|20) := P(cy) = %

Marginal ‘where’ and ‘what’ posteriors: Because each
class ¢, = (z;,w;) has a ‘where’ location z; and ‘what’

identity w; component, the beliefs for just location or identity

)

Nia

P(zilze) = Y Plag,wilzi), 3)
i=1
Nloc

P(wi\znt) = Zp(xlvwi‘zlzt)a 4
=1

are found from marginalizing the joint ‘where-what’ beliefs
over all identity classes w; or location classes x; respectively.

Final decision on the ‘what’ posteriors: The Bayesian
update stops when the marginal ‘what’ identity belief passes
a threshold, giving a final decision

if any P(w;|z1:¢) > 0iq then wiq = argmax P(w;|z1.¢).

w;
(&)
This belief threshold 64 is a free parameter that adjusts the
balance between decision speed and accuracy.
Active control strategy: Here we consider a ‘fixation point’
control strategy that relocates the sensor to a point xgy
assuming its present location zj,. is the most probable:

Tsensor < Tsensor + A (xloc) ) A(zloc) = Tfix — Lloc, (6)
Tloe = argmax P(x;]21.¢). @)
Ty

This fixation point xg, is a free parameter that adjusts the

set-point of the active perception (see e.g. Fig. 4).
Align ‘where’ posteriors: In applying the control strategy,
the ‘where’ location beliefs should be kept aligned with the
sensor by shifting the ‘where-what’ beliefs upon each move

P(x1, wi|z1:4) < P(x; — A(210c), wi|21:¢), (8
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Fig. 3. Tactile dataset (for test rod of diameter 4 mm). Entire dataset, with 320 taps over horizontal positions spanning 16 mm. Taps are every 0.05 mm

horizontal displacement with 1 second from each tap displayed. The taxel layout with color-code is shown on the right. As the fingertip moved across its
horizontal range, the taxels were activated initially at its base (dark blue), then its middle (light blue) and finally its tip (green/yellow).

recalculating the beliefs outside the original range by assum-
ing they are uniform and the shifted beliefs sum to unity.

Reinforcement learning: The active perception strategy is
defined by two free parameters, the decision threshold 6iq
and fixation point gy, to be learnt by reinforcement. Each
learning trial ¢ is a perceptual decision with decision time
T; (number of taps) and error e; (difference |wiq — Wiest|
between identity percept and test object, measured here in
mm diameter). Then the ensuing scalar reward signal r(7T', e)
is taken here as the negative Bayes risk [3]

9

where «, 3 are positive coefficients that parameterize the
riskiness of increasing decision times and errors. Note that
only the relative value a/3 is important, because we aim to
learn the optimal speed-accuracy tradeoff.

Standard techniques from reinforcement learning can be
used to learn the active perception strategy that maximizes
reward. If each strategy (6iq,zsx) is considered an action,
then the problem is equivalent to a multi-armed bandit.
Discretizing the decision threshold 0iq € {0(1),--- ,0(Np)}
and noting the Nj,. ‘where’ classes are already discrete,
allows the use of standard methods for balancing reward
exploration versus exploitation (see e.g. [21, ch. 2]). Here we
consider NV, = 16 locations (see e.g. Fig. 5) and Ny =13
thresholds, giving 208 distinct actions. We use a standard
algorithm that keeps a running reward average (Q = (r) for
each action a = (6(d), z;) from an incremental update

1
Qa%Qa‘i’m(ri*Qa)v

on trial ¢ with action a chosen and n, the number of trials
that this action has been chosen up to now. Exploration is
achieved with initially optimistic ), values (100 in the units
of Figs 6,7). Exploitation is via a greedy policy that at each
trial chooses the action with maximal Q.

r; = —aT; — Pe;,

(10)

B. Tactile data collection

The tactile sensors were those used in previous studies
of Bayesian perception [4]-[10]: they consist of an inner
support wrapped with a flexible printed circuit board con-
taining Nchannels = 12 conductive patches for the touch
sensor ‘taxels’ [22]. These are coated with non-conductive
foam and conductive silicone layers that together comprise a

capacitive touch sensor that detects pressure by compression.
Data were collected at 8 bit resolution and 50 cycles/sec then
normalized and high-pass filtered before analysis.

For precise and exhaustive data collection, the tactile
sensor was mounted on a Cartesian robot able to move the
sensor in a highly controlled manner in a horizontal/vertical
plane onto various test stimuli (~20 pum accuracy) [23]. The
fingertip was mounted at an angle appropriate for contacting
axially symmetric shapes such as cylinders aligned perpen-
dicular to the plane of movement (Fig. 1). Nijg = 5 smooth
steel rods with diameters 4,6,8,10,12 mm were used as test
objects, mounted with their centers offset to align their
closest point to the fingertip in the direction of tapping.

Touch data were collected while the fingertip tapped
vertically onto and off each test object, followed by a
horizontal move Az = 0.05 mm across the closest face of the
object (Fig. 1A). A horizontal x-range of 16 mm was used,
giving 320 taps for each of the Njg = 5 objects, or 1600 taps
in total. From each tap of the fingertip against the object, a
1 sec time series of pressure readings (Nsamples = 50) was
extracted for all Ncpannels = 12 taxels (Fig. 3). All data were
collected twice to give distinct training and test sets.

For analysis, the data were separated into Ny, = 16
distinct location classes, by collecting groups of 20 taps each
spanning 1 mm of the 16 mm z-range (Fig. 3) In total, there
were thus N = N,.N;q = 80 distinct perceptual classes.
These were used to set up a ‘virtual environment’ in which
our methods could be compared off-line on identical data. A
Monte Carlo validation ensured good statistics, by averaging
perceptual acuities over many test runs with taps drawn
randomly from the perceptual classes (typically 10000 runs
per data point in results). Perceptual acuities ejoc, €iq were
quantified using the mean absolute error (MAE) between the
actual Tyest, Wiest and classified values xyc, wig of object
location and identity over the test runs.

III. RESULTS
A. Active Bayesian perception

Previous work has compared active and passive Bayesian
perception methods for simultaneous object localization and
identification on this and related datasets [7]—[10]. Active
perception can control changes in location of the sensor
during the decision making process, whereas for passive
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Fig. 4. Active perception with fixation point control strategy. (A) Trajec-
tories converge on the fixation point independent of starting position. (B)
Decision times have a positively skewed distribution with mean ~3 taps.

perception the location is fixed at where the sensor initially
contacted the object. We found that active perception gave
far more accurate perception in situations of uncertain object
location and identity than passive perception [8]-[10].

Active Bayesian perception is here applied to a ‘where’
and ‘what’ perceptual task of identifying rod location o
(horizontal position) and identity w;q (diameter). Results are
generated with a Monte Carlo procedure using test data as
a virtual environment (Sec. II-B), with an active control
strategy that tries to re-locate the sensor to a preset fixation
point (example trajectories in Fig. 4A).

For the present set of Njg = 5 rods (4-12mm diameter)
over N, = 16 location classes (each of 1mm range),
the active perception oriented the sensor to the fixation
location within a few taps independent of starting placement
(Fig. 4A; example fixation zgs, = 8mm and threshold
0;a = 0.95). The decision times to reach belief threshold
had a positively skewed distribution (Fig. 4B) reminiscent
of those from behavioral/psychological experiments with
humans and animals [24]. The ‘where’ and ‘what’ decisions
for perceiving object location and identity were measured by
the mean perceptual errors €, €iq over all initial contact
locations. The perceptual acuities ranged over €jo. ~ 0.5-
I mm for location and é;q ~ 0.1-1mm for rod identity,
depending on the belief threshold and fixation point.

An aspect of these results is that the localization acuity
is far finer than the taxel resolution (~4 mm spacing). In
previous work we have emphasized that this tactile hyper-
acuity [7] is a consequence of both the Bayesian perception
method and the tactile sensors being designed with broad
(~8mm) but sensitive, overlapping receptive fields (Fig. 3).

B. Perception depends on belief threshold and active control

The decision accuracy and decision times for active
Bayesian perception depended strongly on both the belief
threshold and fixation point (Fig. 5; threshold 6;4 indicated
by gray shade of plot, fixation point xgs, on abscissa).
Raising the belief threshold (darker gray plots), requires
more evidence to make a decision, which results in improved
‘what’ identity perception of rod diameter and also delayed
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Fig. 5. Dependence of active perception on the belief threshold and fixation
point. The mean identification error of rod diameter is shown in (A) and
the mean decision time in panel (B), plotted against fixation point Zgy.
The gray-scale denotes the belief threshold. Each data point corresponds to
10000 decision trials. Perceptual performance improves in the center of the
sensor location range and at greater belief thresholds.

decision times. The choice of fixation point is also important
for perception, with the central region of the horizontal range
giving the best perceptual acuity and briefest decision times.
This dependence on fixation point is due to the physical
properties (morphology) of the tactile sensor coupled with
shape and dynamics of the perceived object: central contacts
of the fingertip activate more taxels and have improved
reliability, in contrast to glancing contacts at its base or tip
(Fig. 3). In consequence, errors improved from ~2mm for
fixation at the base or tip, down to <1 mm at the center
(Fig. 5; belief thresholds 6;q =0.95).

Fig. 5 reveals that an active perception strategy with
central fixation point gives the finest perceptual acuity and
quickest decision times. However, the plots in Fig. 5 were
obtained by ‘brute force’ over millions of validation trials.
This raises the question of how to optimize active perception
in practice over a manageably small number of decisions.

C. Reinforcement learning can optimize active perception

The main theme of this paper is that the parameters
controlling active perception (the decision threshold ;4 and
fixation point x5, ) should be learnt by reinforcement using a
reward function that evaluates the decision outcome (Fig. 2).

For simplicity, we use an example reward function given
by (minus) the linear Bayes risk of decision time and
absolute error of rod identity (Eq. 9). Although the proposed
approach should be independent of reward function, we
use the Bayes risk to give a simple example that can be
interpreted as minimizing the relative risks of taking too long
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Dependence of optimal active perception strategy on Bayes risk parameter. The final error (A), decision time (B), reward (C), decision threshold

(D) and fixation point (E) are shown after 5000 reinforcement learning trials. The risk parameter (100 values between 0-0.4) described the relative reward
benefits of improving speed versus accuracy. Results are similar to those from brute-force optimization (~ 107 trials) of the reward function (red plots).

to reach a decision versus making errors. Then the resulting
speed-accuracy tradeoff depends only upon the ratio /8 of
the two coefficients in the Bayes risk, with a smaller ratio
placing more risk on the decision error and a larger ratio on
the decision time. Maximizing reward minimizes this risk.

In this work, each combination (6iq,zgy) of decision
threshold and fixation point defines a distinct active percep-
tion strategy, with the threshold taking one of the Ny = 13
discrete values 6(d) shown in Fig. 5 and the fixation point
one of the Ny, = 16 location classes. If the optimal strategy
is to be learnt by reinforcement over many trials, each active
perception strategy may be considered a distinct action.
The overall situation therefore reduces to a standard multi-
armed bandit problem. In consequence, the optimal active
perception strategy can be learnt efficiently using standard
methods for balancing exploration versus exploitation (e.g.
those from [21, ch. 2]). In practice, all such methods that
we tried converged well for appropriate learning parameters,
hence we simplify our explanation by considering only a
greedy method with incrementally updated reward estimates
from optimistic initial values (Eq. 10).

For a typical instance of reinforcement learning and active
perception, the active control strategy converged to nearly
optimal perception within ~10% decision trials (Fig. 6;
a/B = 0.2). The decision threshold ;4 and fixation point
Ty converged close to their optimal values (Figs 6D,E; red
lines), validated with brute force optimization of the reward
function (over ~107 trials). The fixation point converged
to the center of the range, consistent with the brute-force

results in Fig. 5, while the decision threshold converged to
a suitable value to balance mean decision times and errors.
Accordingly, the mean decision error ejq and decision time
T approached their optimal values, with noise due to the
stochastic decision making (Figs 6A,B), while reward also
increased stochastically to around its optimal value (Fig. 6C).

For many instances of reinforcement learning and active
Bayesian perception, the active control strategy converged
to nearly optimal perception over a range of risk parameters
(Fig. 7; 0 < o/ < 0.4). This risk parameter represents the
relative risk of delaying the decision («) versus making an
error (3). All parameters, including the decision threshold,
fixation point, rewards, decision error and decision time
reached values near to optimal after 5000 trials (Fig. 7;
red plots, validation with ~107 trials) over a range of
risk parameters that give a broad span of speed-accuracy
tradeoffs. In accordance, the final mean reward was close to
its optimal value (Fig. 7C).

Therefore, reinforcement learning and active perception
combine naturally to give a robust method for achieving
optimal perception. The converged parameters values con-
trolling active perception depend on the relative risk of speed
versus accuracy. Shifting the balance of risk towards accu-
racy (smaller /), results in larger decision thresholds and
longer decision times, while the converse occurs with placing
the risk in speed (larger «/(3). Concurrently, the fixation
point is tuned to optimize both quantities, and converges to
the central position apart from very brief decisions when the
active perception strategy becomes irrelevant (for large o/ 3).
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IV. DISCUSSION

In this paper, we combined active Bayesian perception
with reinforcement learning and applied this method to an
example task in robot touch: perceiving object identity from
its curvature using tapping motions of a biomimetic fingertip
from an unknown initial contact location. Active perception
with fixation point control strategy can give robust and
effective perception; however, the decision time and acuity
depend strongly on the choice of fixation point and belief
threshold, necessitating some way of tuning these parame-
ters. Introducing a reward function based on the Bayes risk
of the decision outcome and considering each combination
of threshold and fixation point as an action, allowed use
of standard reinforcement learning methods for multi-armed
bandits. The system could then learn the appropriate belief
threshold to balance the risk of making mistakes versus the
risk of reacting too slowly, while tuning the fixation point to
optimize both quantities.

These results demonstrate that optimal robot behavior for
a perceptual task can be tuned by appropriate choice of
reward function. Following work on optimality in sequential
analysis [3], we used a linear Bayes risk parameterized just
by the relative risk of speed versus accuracy. The system then
learned to make quick but inaccurate decisions when decision
time was risky compared with errors, and accurate but slow
decisions when errors were more risky than decision times,
analogously to perceptual decision making in animals [1].
We emphasize that our general approach does not depend on
the specifics of the reward function, with the actual choice
representing the task aims and goals. Imagine, for example, a
production line of objects passing a picker that must remove
one class of object: if the robot takes too long, then objects
pass it by, and if it makes mistakes, then it picks the wrong
objects; both of these outcomes can be evaluated and used
to reward or penalize the robot to optimize its behavior.

A key step in our combination of active perception and re-
inforcement learning was to interpret each active perception
strategy (parameterized by the threshold and fixation point)
as an action. We could thus employ standard techniques for
multi-armed bandits [21], which generally worked well, and
for reasons of simplicity and pedagogy we used a greedy
method with optimistic initial values. Although it is beyond
the scope of this paper, we expect that efficient use of the
reward structure could significantly reduce exploration and
hence regret (reward lost while not exploiting). For example,
the reward is generally convex in the decision threshold,
which could be used to constrain the value estimates.

In future work, we will study scaling our method to the
many degrees of freedom necessary for practical purposes in
robotics. Looking forward, we propose that optimal active
Bayesian perception via reinforcement can give a general
approach to robust and effective robot perception.

Acknowledgements: We thank Kevin Gurney, Ashvin Shah
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NL and GP while some of this work was carried out.
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