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Abstract— Understanding positional semantics of the envi-
ronment plays an important role in manipulating an object
in clutter. The interaction with surrounding objects in the
environment must be considered in order to perform the
task without causing the objects fall or get damaged. In this
paper, we learn the semantics in terms of support relationship
among different objects in a cluttered environment by utilizing
various photometric and geometric properties of the scene. To
manipulate an object of interest, we use the inferred support
relationship to derive a sequence in which its surrounding
objects should be removed while causing minimal damage to
the environment. We believe, this work can push the boundary
of robotic applications in grasping, object manipulation and
picking-from-bin, towards objects of generic shape and size
and scenarios with physical contact and overlap. We have
created an RGBD dataset that consists of various objects used
in day-to-day life present in clutter. We explore many different
settings involving different kind of object-object interaction.
We successfully learn support relationships and predict support
order in these settings.

I. INTRODUCTION

Perception and scene understanding are challenging prob-

lems in computer vision and robotics. We perform countless

daily chores involving object interaction like moving and

placing utensils, grabbing a book from shelf, pick objects

from piles, rearrange objects etc. We handle different objects

differently. For example, we pick a cup directly without

removing the spoon inside it, but carefully move aside other

utensils before picking the one we want. Before picking a

book from a pile of books on table, we move books on top

of it whereas to pick a book from a book-shelf, we push and

slide the books supported by it. However, such tasks are still

a challenge for robots [1]. Most of the robotic manipulation

tasks that involve clutter remain carefully restricted to objects

in physical isolation and mostly lying on a planar surface [2],

[3]. Learning the interaction among different objects in an

environment can be of great benefit for robotic applications

such as navigation [4], [5], grasping [3], [6] and object

manipulation [2], [5]. In this work, we attempt to learn the

“object-object interaction” by answering the questions such

as “Is this object graspable?”, “What are the other entities it

supports?” and “What are the entities it is supported by?”.

In this work, we propose a framework in which the support

relationship among different entities in a scene is inferred

in terms of “support from below”, “support from side”, or

“containment”(Fig. 1). Then a hierarchical tree of support is
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(a) (b) (c)

Fig. 1. Illustration of different types of support relationships. Arrow heads
point from supporting object to supported object. (a) Support from below.
(b) Support from side. (c) Containment.

built and traversed to derive the sequence of objects or “sup-

port order” for our object of interest. Special situations are

identified and addressed during tree traversal so that minimal

damage occurs when objects are removed. We demonstrate

our results in RGBD dataset collected using Kinect in an

indoor environment suitable for object manipulation. The

dataset consists of various household objects in clutter with

different kinds of support relationships.

II. RELATED WORK AND APPLICATIONS

Due to complimentary properties of RGB and depth fea-

tures and due to availability of low cost RGBD sensors like

Kinect, RGBD is being increasingly used in many scene

understanding [7], [8] and object manipulation tasks [3],

[5]. Dogar and Srinivasa [5] and Dogar et al. [3] work on

grasping and grasp-panning in clutter. However, they assume

that objects are spatially isolated. Understanding semantic

interaction among objects in contact will enable such ma-

nipulation tasks in clutters involving overlap. Recently, there

has been work on inferring support relationship between a

pair of objects [8]–[10]. Rosman et al. [9] predict spatial

relationships among different objects using stereo images.

However, their work deals with simple objects without

occlusion and static background. Sjöö and Jensfelt [10]

find four types of relations between each pair of objects,

viz. casual support, support force, protection and constraint,

but only in a simulated environment and are restricted to

limitations imposed by simulated environment. Silberman

et al. [8] consider cluttered indoor environment and predict

support relations for each object, i.e., the region supporting

a region and the type of support. However, their work does

not consider support relationship among different objects

overlapping onto each other.

Inference of support relationship among objects in clut-

tered environment gives information about the objects sup-

ported by an object and the type of support. This information

can be used to manipulate an object of interest while causing

minimal damage to the environment. In order to achieve this,
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Fig. 2. Block diagrammatic representation of our framework: Segmentation module takes RGB and depth images as input. Segmented image is provided
as input to both Support Inference and Object Detection module. Object Detection module also takes the image of object of interest as input and outputs the
detected region. Support Inference module gives the support relationship between each pair of regions. Support order prediction module uses the detected
region and the support relationship to predict the order in which the objects should be picked.

we use the inferred support relationship to derive the order

in which we need to remove the surrounding objects from

the clutter to enable access to our object of interest.

III. OVERVIEW OF FRAMEWORK

The overall framework of our work is explained through

the block diagram shown in Fig. 2. The images are first

over-segmented into superpixels using Arbelaez’s method

[11], then segmented using hierarchical segmentation method

of Hoiem et al. [12]. Both 2D and 3D features of im-

ages are used for segmentation. The segmented regions

are provided as input to the object detection and support

inference modules. In the object detection module, SIFT

feature matching [13]–[15] between the template image of

the object of interest and the input image is performed. The

outliers are discarded by applying RANSAC. The segmented

regions corresponding to the matched points of the input

image are merged into one region and chosen as the region

corresponding to object of interest O, i.e., the object to be

grasped. This approach ensures that the entire object region

is chosen for grasping.

Given the image regions and various geometric features,

the support inference module infers the supporting regions

and type of support for each region in the image. Support

relationship is inferred by applying a MAP inference method

adapted from [8] as well as our rule-based inference method.

MAP inference method optimizes the pairwise support re-

lation between objects, support type and structure classes

using linear programming. However, it does not infer support

by multiple objects. In the proposed rule-based inference

method, we infer support by multiple objects too. The details

of different geometric features used and both the support

inference methods can be found in Section IV.

Given the object of interest and the inferred support

relationship, a tree is built with the object of interest as

the root and it is traversed for support order prediction.

A detailed discussion on the approach for support order

prediction and how different specific scenarios are handled is

given in Section V while the analysis of the results on various

images from our RGBD dataset is given in Section VI.

IV. SUPPORT INFERENCE

Given the segmented regions in the image, the object-

object interaction among different regions in the image can

be inferred. Note that we use the term “object” and “region”

interchangeably, since we assume each segmented region

corresponds to an object. Our goal is to infer the pairwise

relationship between each pair of objects (i, j) where object i

is supported by j “from below”, “from side” or “contained in

it” (Fig. 1). Once this support relationship is inferred, we can

derive how to manipulate an object in a clutter by removing

other surrounding objects, which we discuss in Section V.

A. Feature Extraction

We are interested in finding the support between each

pair of objects. Hence, a set of geometric features which

exploit the support relationship between each pair of object

are introduced for support inference. These features are

described as follows:

(a) close proximity, fp(i, j) < 1 (b) at distance, fp(i, j) > 1

Fig. 3. Demonstration of proximity: lesser fp implies closer proximity
and higher fp implies less proximity.

Proximity: Two objects must be in each others’ proximity

in order to provide support to each other as shown in Fig. 3.

Proximity fp of two objects i and j can be measured by the

ratio of the distance between their centroids Ci and Cj and

the sum of radii ri and rj of the sphere circumscribing the

two regions as described by the following equation:

810



(a) (b) (c) (d) (e) (f)

Fig. 4. (a)(b)Boundary Ratio: The boundary lines are shown in black. (a)There is significant boundary between the two objects showing greater chances of
support. (b)Smaller boundary implies less chance of support. (c)(d) containment: Object in purple implies the supporting object and object in yellow implies
the supported object. Region in magenta shows the portion of the supported object contained inside the convex hull of the supporting object.(e)(f)Stability:
The region in violet shows the baseline of left object and the region in yellow shows the baseline of the right object. The lines in red show the gravity lines.
In (e), the horizontal projection of the centroid of the right object does not belong to the baseline and hence the object is unstable. In (f), the horizontal
projection of the centroids of both the objects lies in their baseline, hence both are stable.

fp(i, j) =
dist(Ci, Cj)

(ri + rj)
. (1)

Value of fp(i, j) is less than 1 for objects close to each other

and greater than 1 for far-away objects.

Boundary Ratio: When two objects are in contact, a sig-

nificant overlap between them exists at their boundaries as

shown in Fig. 4(a) and 4(b). The feature “boundary ratio”

measures the overlap of a pair of objects over each other.

Boundary ratio fbr is computed using the following:

fbr(i, j) =
L(i, j)

perim(i)
. (2)

Here, L(i, j) is the length of visual boundary of the sup-

ported object i with the supporting object j, and perim(i) is

the perimeter of supported object i.

(a) Visual occlusion (b) Side View: ac-
tual contact

(c) Side View: no contact

Fig. 5. Demonstration of depthBoundary: The regions in black and red
imply two planes fitted along the boundaries of the two objects. (a) shows
two objects in visual occlusion with two possibilities. (b) shows the side
view where a contact boundary exists between the two objects. (c) shows
the side view where a depth discontinuity exists.

Depth Boundary: In case of visual occlusion, two objects

may be either actually in contact or may be isolated from

each other (Fig. 5). The feature “depth boundary” dis-

criminates between these two situations [7]. Plane-fitting is

done corresponding to two regions adjacent to the boundary

between the two objects. If the two objects are isolated, then

the 3D planes of the objects do not intersect and a depth

discontinuity or “depth boundary” exists between the two of

them (Fig. 5(c)). Otherwise, they intersect at a certain angle

and a “contact boundary ” exists between the two of them

(Fig. 5(b)). Let d⊥ be defined as the average of the maximum

3D distance of the boundary pixels from the two planes

measured in meters. d⊥ tends to zero for contact boundaries

and has higher values for depth boundaries. Depth boundary

is measured by a logistic function fdepth as follows:

fdepth(i, j) =
1

1 + e−(β1d⊥(i,j)+β2)
. (3)

Here, fdepth tends to 0 for objects not in contact with

each other and tends to 1 for objects in contact. β1 and

β2 are learned using logistic regression with a few training

examples.

Containment: If an object is contained inside another, we

need not remove the supported object for picking up the

supporting object. The feature “containment” measures how

much volume of the supported object is contained inside

the supporting object (Fig. 4(c), 4(d)). It is defined as the

fraction of the number of points that belong to the supported

object Ni contained inside the convex hull Hull(j) of the

supporting object j.

fcnt(i, j) =
Ni ∩ Hull(j)

Ni

. (4)

Relative Stability A stable object has higher probability of

supporting its neighboring objects compared to an unstable

object. An object is stable if its gravity line is in alignment

with the baseline, otherwise it is unstable and needs support

from side as depicted in Fig. 4(e) and 4(f). If the horizontal

projection of the centroid of the object belongs to the convex

hull of horizontal projection of the baseline points of the

object, then the object is considered as stable. Relative

stability is defined as:

fstab(i, j) =







−1, if i stable and j unstable

+1, if i unstable and j stable

0, otherwise

(5)

B. MAP Inference

The structure class of all regions in the images and the

support relation between each pair of region is inferred using

a probabilistic energy framework given in equation (6). A

joint probability distribution is defined in terms of supporting

regions, structure class and support type adapted from [8].

The random variable S ∈ {S1, . . . , SR} represents the

support regions corresponding to each of the R regions of the

image. Si ∈ {−1, 0, 1, . . . , R} represents support region for

each region i ∈ {1, . . . , R} where, a hidden region is denoted

by -1 and ground denoted by 0. The variable T ∈ {1, 2, 3}R

represents support type. Ti = 1 implies support from below,

Ti = 2 implies support from a side and Ti = 3 implies

containment. The variable M ∈ {1, ..., 4}R represents four

structure classes viz, floor, structure, furniture and props.

{S∗,T∗,M∗} = argmaxS, T, MP (S, T, M|I)

= argminS, T, ME(S, T, M|I),
(6)
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where, E(S, T, M|I) = −logP (S, T, M|I) is the energy of

the joint probabilstic distribution. Then MAP inference solved

by using linear programming.

However, this approach of MAP inference imposes a con-

straint that one object can be supported by only one other

object. The support relation among multiple objects are not

taken into account even if they support each other, which

is inappropriate for most of robotics tasks. To overcome this

restriction, we developed a rule based method to infer support

by multiple objects as discussed in the next section.

C. Rule Based Method

In this approach, explicit use of the features discussed

in Section IV-A is done for support inference. A structure

class classifier is trained to classify the structure classes

of different regions using neural networks. If the classifier

predicts any region as “floor”, then vertical structures and

furnitures are decided to be supported directly by the floor.

Otherwise it is assumed that floor is not visible in the scene.

Identifying vertical structures like walls and windows, and

furniture like tables, chairs, cupboards and sofas plays a

significant role to avoid infeasible support inference such

as a small object supporting a wall or a table. For a prop

or a graspable object, different types of support are inferred

by considering its surrounding region. Objects lower to the

current object whose centroids are closer to the current

object are selected (Proximity, fp) as potential candidates for

providing “support from below”. In case of conflict, the ones

with higher boundary ratio (Boundary Ratio, fbr) are chosen

as regions providing “support from below”. If a significant

portion of 3D convex hull of the current object belongs to the

3D convex hull of the supporting region (Containment, fcnt),

the support is termed as “containment”. All regions in contact

with the current object (Depth Boundary, fdepth) other than

the regions below are considered as “support from side”, if

they are labeled as stable regions (Relative Stability, fstab).

After support inference is performed, the support order for

a given object of interest is predicted as discussed in next

section.

V. SUPPORT ORDER PREDICTION

(a) (b)

Fig. 6. (a) Case 1: Support in hierarchy. The objects are supported by
one another in hierarchical manner. Therefore, in order to pick up the
desired object, all the objects in the hierarchy need to be picked up one
by one.(b)Case 2: Simultaneous support in multiple hierarchy. The green
bottle (pointed by an arrow) is supported by objects in multiple hierarchy.
So it should be treated as an object in layer 3 and removed before removing
other objects in layer 2.

(a) (b) (c)

Fig. 7. Case 3: Containment. In case of containment, the contained object
need not be removed while removing the containing object. In (a) the basket
can be directly grasped alongwith object contained in it. In (b), the plastic
bottle can be directly picked up since it does not support any other object.
In (c), the basket can be directly removed for grasping the board without
removing the bottles.

The objects supported by an object O need to be removed

prior to gasping O. So it is necessary to recursively find

the objects which are supported by O, and the objects that

these objects support in turn. In this section, we discuss our

approach for determining the “support order” of the objects

surrounding our object of interest.

A. Different Cases of Support

In this section, we discuss different possible cases while

we do support order prediction. It is not possible to provide

a generalized solution to handle all the cases. Therefore,

we treat each case differently and provide a well-tailored

solution to each case. The first and most generic case is

illustrated in Fig. 6(a) where one object supports the other

in hierarchical fashion. There can be possibility that one

object is supported by multiple objects. Therefore, we should

remove all 4.* (all objects in layer 4) first, then 3.* and so

on by adopting reverse level order traversal.

In the second case, one object may be supported by objects

at two different hierarchies. For example, in Fig. 6(b), the

green bottle is supported by two objects object 1.1 and 2.4.

It gets two labels 2.3 and 3.1. During such conflict, label 3.1

is kept and the label 2.3 is discarded. So the green bottle is

removed prior to removing any other object in layer 2 of the

hierarchy, i.e., the object labeled 2.4.

The third case arises when one object is contained in

another instead of merely supporting, for example the plastic

bottles in the basket as shown in Fig. 7. If the object O is the

basket as shown in Fig. 7(a), the basket is directly grasped

without any need to remove the plastic bottles present in it. If

the object O is one of the plastic bottles, i.e, the object which

lies inside some other object as shown in Fig. 7(b), it can

be picked directly since it does not support any other object.

Now, suppose the object O is the board which supports the

basket. In that case, it is tested if objects 2.* are inside the

object 1.1. If yes (the case of 7(c)), then 1.1 is removed

directly. Otherwise, all the objects 2.* are removed before

removing 1.1. This idea is implemented using reverse level

order traversal as explained in detail in the Section V-B.

B. Hierarchy of Support

In order to determine the “support order”, a tree of support

is built with the object of interest placed at the root of the

tree. The parent node in the tree represents supporting object

and the child node represents supported object.

812



(a) (b)

Fig. 8. Example to demonstrate support order prediction. (a){O,O1, O2, O3} represent support in multiple hierarchy; {O4, O5, O6} represent containment
and {O7, O8, O9} represent simultaneous support by multiple objects. (b)Tree traversal is done from leaf nodes towards the root node. O3 is connected
to O2, O1 as well as O which implies O3 is supported by O2, O1 and O. In this case the edges connecting to parent nodes at all the higher hierarchy
are pruned (edges shown in gray). Nodes O5 and O6 (shown in light blue) are contained in node O4. These nodes are skipped during reverse level order
traversal.

Tree traversal is performed using reverse level order traver-

sal. The objects present at the leaf nodes are the ones not

providing support to any other object. So they are picked up

first and then, the upper layer is traversed and the process

repeats until we reach the root node that is our object of

interest. The special cases discussed in Section V-A are

taken care of during tree traversal to ensure minimal damage

while manipulation. In case of support by multiple hierarchy

(Fig. 6(b)), the child node corresponding to the supported

object is connected to multiple parent nodes from different

layers. It is not feasible to retain all edges connecting to

the child node. Retaining any of the edges in the upper

layer(s) implies that the object corresponding to the child

node will be searched even after its removal. If the edge

to the parent node(s) at lower layer is pruned, then while

picking the object corresponding to this parent node, the

presence of the supported object will be ignored which may

cause damage. Therefore, the edge(s) between the child node

and the parent node(s) at the lowest layer are retained while

pruning off edges connected to parent node(s) in the upper

layer(s). During tree traversal, prior to retrieving any node,

if the support type for a node is found to be “containment”,

then, this node is not retrieved since we do not need to pick

it up for grasping the object containing it, as discussed in

case 3 in Section V-A and shown in Fig. 7.

Fig. 8(b) graphically demonstrates the tree traversal and

support order determination for objects shown in Fig. 8(a).

The dark edges represent valid connections. Lighter edges

denote the connections removed in case of support by objects

of multiple layers. The nodes in light color denote objects

contained in the objects corresponding to their parent nodes.

We traverse from the leaf nodes towards the root node. The

support order is predicted as

O3 → O9 → O2 → O8 → O7 → O4 → O1 → O.

VI. EXPERIMENTS AND RESULTS

A. Experimental Setup and Dataset Collection

For object manipulation, it is desirable that the objects are

in the vicinity of the camera, at a reachable distance from

the robot arm and have overlap between one another. In the

publicly available datasets for cluttered environment such as

NYU depth dataset [16] and Cornell Scene Understanding

dataset [17], the graspable objects are usually present in a

far corner of the room instead of being in the center. This

necessitated creation of our own dataset. We have collected

a dataset consisting of 50 images with different levels of

clutter along with their point clouds and depth images using

Kinect. We manually create dense labeling and a support

matrix for each image. Support matrix encodes the ground

truth support relationship between each pair of region in the

form of a set of 3-tuples: [Ri, Si, Ti]. The raw depth maps

are smoothened using an adaptation of colorization method

by Levin et al. [18]. The dataset is divided into training and

test data in 30 : 20 ratio.

B. Results and Discussion

The results of support inference for a selected set of

images from our dataset using rule based method and MAP

inference method are shown in Fig. 9. The support relation-

ship is shown by pointing arrows from the object of interest

to objects supported by it. The support order prediction for

Fig. 9 is given in Table III. The images in row 1 show

the support from below. Both rule based and MAP inference

method do well in such cases. The images in row 2 show that

both the methods can successfully infer the support relation

between the plate and all the other objects on it. The images

in row 3 show the support by the basket to the objects

contained in it. However, since they are contained inside the

basket (label 7), the basket is supposed to be picked up as

it is. Hence the support order prediction does not generate

the labels of the objects contained in the basket as given in

Table III. The images in row 4 show support from side. MAP

inference fails to infer side support of book 1 by the folder 8,

but rule based inference successfully infers the side support.

An object can be supported by multiple objects as shown

in Fig. 6(b). The green bottle (shown by pointing an arrow)

is supported by two boxes labeled 12 and 11 simultaneously

as shown in Fig. 10. Therefore, if our object of interest is
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(a) Input Images (b) Rule based Infer-
ence

(c) MAP Inference

Fig. 9. Results of inference: The highlighted section in input images in
col.(a) are zoomed in col. (b) and (c) for better view. The arrows point from
object of interest to objects directly and indirectly supported by it.

either of the two, we must pickup the green bottle labeled 3

prior to picking them up. Our method takes such a situation

into account and infers that both box 11 and box 12 support

the green bottle 3. But the MAP inference method fails to do

that since it discards the possibility of support by both boxes

11 and 12.

We observe that the support inference gets affected by

the inaccuracies of structure class prediction. Incorporating

explicit structure class information in rule based inference

helps avoiding infeasible support relations such as an object

supporting the walls or furnitures to a significant extent.

As evident in Fig. 9 and 10, the wall, projector screen and

chair are clearly not inferred as supported objects. However,

sometimes, due to error in structure class prediction, some of

the vertical structures and furnitures are shown as supported

by objects. In addition to that, in some cases, objects are

predicted as furnitures due to which the desirable support

relation can not be achieved. Some of such results are shown

in Fig. 11 and their corresponding support order are given

in Table III. In the image in 1st row, the chair labeled 5 is

treated as an object and is shown as supported by the closest

object that is the book labeled 11. Using MAP inference,

these errors were eliminated. On the other hand, in row 2,

the book on the top is predicted as furniture and the true

support by the books below it are missed both by rule based

and MAP inference methods. The accuracy of structure class

prediction is shown in Table I(a). Since the images are taken

in similar environment, the accuracy is reported to be high.

A 5-stage hierarchical segmentation approach proposed by

Arbelaez et al. [11] was used for segmenting the images.

(a) Input Images (b) Rule based Infer-
ence

(c) MAP Inference

Fig. 10. Demonstration of support by multiple objects. The highlighted
section in input images in column (a) are zoomed in columns(b) and (c) for
better view. The arrows point from object of interest to objects directly and
indirectly supported by it.

RGB and depth features used in [8] are used for segmenta-

tion. Segmentation accuracy is measured as average overlap

of segmented regions over groundtruth regions as defined

in [12]. The unweighted average overlap score and the score

weighted by pixel area are given in Table I(b).

TABLE I

ACCURACY OF STRUCTURE CLASS INFERENCE & SEGMENTATION

(a) Accuracy Structure class Inference

Type Training Accuracy Test Accuracy

Ground Truth Regions 100 97.02

Segmented Regions 97.79 83.88

(b) Accuracy of Hierarchical Segmentation

Type Training Accuracy Test Accuracy

Weighted 87.1 75.4

Unweighted 74.3 60.4

Accuracy of support inference directly impacts the ac-

curacy of support order determination. Hence the support

inference accuracy on two scenarios: using ground truth

regions and segmented regions. For each scenario, both “type

aware ”and “type agnostic” accuracies are evaluated similar

to [8]. In case of type agnostic accuracy, the support type

is not considered while comparing support relation with

ground truth. But in case of type aware accuracy, both

support relation and support type are taken into account. The

accuracy of support inference using groundtruth regions and

segmented regions are given in Table II.

TABLE II

ACCURACY OF SUPPORT INFERENCE

Region Source Ground Truth Segmentation

Inference Type Type Type Type
Type Agnostic Aware Agnostic Aware

Rule Based 66.2 56.1 35.1 32.4

MAP Inference 65.8 48.0 32.1 30.5

Due to noise in depth values, sometimes false contact

boundary is created between two isolated objects and false

support is inferred. Accuracy of support inference using

segmented regions is lower than that using ground truth

regions. In many situations, the segmented regions do not

814



uniquely represent an object. An object region may comprise

of more than one segments. A segment may also represent

parts of more than one object region. This imposes limitation

on the practicality of our approach. With improvement in

segmentation methods, the performance of support inference

and support order prediction can be improved and also

can be practically more feasible. Recently, many interactive

segmentation methods have been developed [19], [20] to

support robotic manipulation tasks where user input is taken

as initial input for segmentation. Incorporating user input

using such methods can also help in achieving more accurate

segmented regions.

We observe that, support inference fails in a few situa-

tions. Support from side is not correctly inferred in cases

when baseline of supporting object is not visible or when

supporting object is also unstable. Often in frontal view, the

entire surface area of the supporting object is not visible.

In these cases, support to objects lying on top of it are not

inferred, especially if they are partially occluded and contact

to the supporting surface is not visible.
TABLE III

ORDER OF PICKING OF SURROUNDING OBJECTS

Img No. Object of Order of picking Order of picking
interest Rule based method MAP inference

9.1 7 5 10 6 5 10 6
9.2 11 6 13 12 5 6 13 12 5
9.3 7 - -
9.4 8 1 -

10.1 12 3 2 1 2 1
10.2 11 15 3 15

11.1 10 5 12 11 12 11
11.2 2 4 -

We have verified different scenarios of support in our

experiment such as support by multiple objects, support in

multiple hierarchy and containment. We plan to learn support

relationship and support order in more complex and varied

settings with objects of more diversity. Exploring combina-

tions of the three types of support such as the situations

when an object contained inside another also supports other

objects from below or side, will help in learning more

complex support relationships. Subcategories of containment

like complete containment and partial containment can also

be considered. We have experimented on images captured

from frontal view. By incorporating images from an elevated

view and top view will increase the diversity in support

inference.
VII. CONCLUSIONS

In this paper, we inferred support relationship among

objects present in cluttered environment in terms of “support

from below”, “support from side” and “containment”. This

support relationship is used to predict the support order,

i.e., the order in which the surrounding objects need to be

removed to be able to manipulate our object of interest. We

represented the support relationship in a tree datastructure

and performed reverse level order traversal to predict support

order of the objects. We created a dataset consisting of

different objects used in household and office environment

(a) Input Images (b) Rule based Infer-
ence

(c) MAP Inference

Fig. 11. Dependency on Structure class prediction. The highlighted section
in input images in column (a) are zoomed in columns(b) and (c) for better
view. The arrows point from object of interest to objects directly and
indirectly supported by it.

and performed our experimentation on the same. Our work

extends the scope for different applications such as grasp-

ing, manipulation and picking from bin towards cluttered

environments consisting of objects of generic shape and size

that overlap on one another.
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