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Abstract— It has become a well-known technology that 3D
measurement of a large environment could be achieved by using
a number of 2D LIDARs on a mobile platform. In such a
system, calibration is essential for making collaborative use of
different LIDAR data, while existing methods usually require
modifications to the environments, such as putting calibration
targets, or rely on special facilities, which is labor intensive and
put many restrictions to potential applications. This research
aims at developing a calibration method for multiple 2D LIDAR
sensing systems, which could be conducted in a general outdoor
environment using the features of a nature scene. Special focus
is cast on solving the noisy sensing in a complex environment
and the occlusions caused by largely different sensor viewpoints.
A multi-type geometric feature based calibration algorithm is
proposed, which extracts the features such as points, lines,
planes and quadrics from the 3D points of each LIDAR sensing.
Transformation parameters from each sensor to the frame on
a moving platform is estimated by matching the multi-type
features. Experiments are conducted using the data sets of an
intelligent vehicle platform (POSS-V) through a driving in the
campus of Peking University. Results of calibrating two LIDAR
sensors with largely different viewpoints are presented, and the
accuracy and robustness concerning noisy feature extractions
are examined intensively.

I. INTRODUCTION

Light Detection and Ranging (LIDAR) sensor has become
more and more popular in robotics applications recently. As
it has high accuracy in measuring both depth and bearing
values, and it is not affected by illumination conditions,
LIDAR sensor has been widely applied in many research
topics, such as 3D modeling [1], [2], object detection [3],
[4], [5], scene understanding [6], [7] and SLAM [8], [9],
[10].

One way using a LIDAR sensor is to mount it on a moving
platform with a localization module, such as a GPS/IMU
navigation unit, to acquire a 3D sensing of the robot’s
working environment. As a 3D LIDAR, such as a Velodyne
sensor, is much expensive, 2D LIDARs are generally used
for such purposes [11]. As a 2D LIDAR scans only on a
plane, multi-LIDAR sensing systems have been developed to
simultaneously sense on different directions, so as to acquire
a more complete knowledge to the whole 3D environment
[12]. In such systems, calibration is essential to find the
geometric transformations among different LIDAR sensor

∗M. He, H. Zhao, J. Cui and H. Zhao are with the State Key Lab of
Machine Perception (MOE), School of EECS, Peking University, Beijing,
P.R. China alexanderhmw at pku.edu.cn

+F. Davoine is with CNRS, LIAMA Sino French Laboratory, Beijing,
China

This work is partially supported by the Hi-Tech Research and De-
velopment Program of China [2012AA011801], the NSFC-ANR Grants
[61161130528] , and the NSFC Grants [91120010].

Fig. 1. The POSS-V platform that are used to study the calibration of a
multiple 2D LIDAR sensing system.

frames as well as the robot’s body frame. A multi-LIDAR
sensing system (called POSS-V system as shown in Fig. 1)
has been developed in the authors’ previous research [13].
Five 2D LIDAR sensors (L1-L5) are mounted on a vehicle
platform for 3D sensing, and a GPS/IMU navigation unit is
used for localization. This research focuses on the issue of
pairwise LIDAR calibration, where the POSS-V system is
used to study the algorithm.

Although many LIDAR sensing systems have been de-
veloped in literature, calibration (mainly refers to extrinsic
calibration) is often poorly documented, which finds the
transformations from each sensor to the system’s body frame.
Among the documented works, a multi-LIDAR sensing
system is calibrated by recovering the rigid transformation
among multiple LIDARs [14], [15] or from LIDARs to a
reference frame, such as a camera [16], [17], [18] or the
ego-vehicles odometry center [12]. This procedure usually
requires some modification of the scene by introducing
landmarks that are visible (or detectable) by both sensors,
such as specifically placed reflective targets [14], poles [19],
checker boards [20], which introduce laborious field work,
or rely on special instruments or facilities [15]. Furthermore,
some methods make use of visible laser [21] or require that
the LIDAR sensor can measure reflectivity [14], which put
strong restriction to the adaptiveness of the methods on a
broad range of systems. Calibration of 3D LIDAR systems
has also been studied [15], [22], and the authors stressed
that their methods have the potentials being extended to 2D
LIDARs calibration in natural scene. As their methods put
some assumptions to the scene objects, such as contiguous
surfaces, more elaborations are required in transforming the
algorithm to a more general natural scene. More importantly,
in a multiple 2D LIDAR sensing system, the scanning
planes of different 2D LIDARs could be greatly different,
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which yields much occlusions between the data of different
sensors, and makes it a big challenge in generating data
correspondences.

The research introduced in this paper aims at developing a
method of calibrating a multiple 2D LIDAR sensing system,
which could be conducted in a general outdoor environment,
without any modification of the environment nor requiring
any special facilities. Below we briefly denote LIDAR for a
2D LIDAR sensor. The scanning planes of LIDAR sensors
could be largely different, with only small area of overlapped
sensing. Consequently the algorithm needs to make use of
the features from a natural scene, and it needs to have both
accuracy and robustness to sensing noise and occlusions. A
multi-type geometric feature based calibration algorithm is
developed in this research, which extracts the features such
as points, lines, planes and quadrics from the 3D points
of each LIDAR sensing in a natural scene. Transformation
parameters from each LIDAR sensor to the robot’s body
frame is estimated by matching the multi-type features.
Experiments are conducted using the data sets of POSS-
V through a driving in the campus of Peking University.
Results of calibrating the LIDAR sensors L3 and L4 with the
vehicle frame are presented, which have a special focus on
examining accuracy and robustness concerning noisy feature
extractions.

This article is structured as follows: the definition of
multi-type geometric features as well as their extraction
method are presented in section 2; a calibration algorithm
using multi-type geometric features is described in section
3; experimental results and discussions are given in section
4, followed by conclusion and future works in section 5.

II. MULTI-TYPE GEOMETRIC FEATURES EXTRACTION IN
3D POINTS

A. Formulation of 3D point generation

A typical LIDARs sensing platform mainly concerns three
frames, i.e. LIDAR sensor frame, vehicle frame, and a
world frame, among which two geometric transformations
are concerned. They are a transformation M i

V that registers
the vehicle frame at time i to a world coordinate system,
which is estimated through a localization procedure using
such as a GPS/IMU navigation unit or SLAM, and varies
with the vehicle’s traveling; and a transformation MLj that
registers the sensor frame of LIDAR Lj to the vehicle, which
is regarded as time invariant in a rigid sensor platform. Here
both M i

V and MLj are in homogeneous notations. Thus,
given a 2D point qi measured by LIDAR Lj at time i, a
3D coordinate pi in the world coordinate system can be
estimated by sequentially aligning MLj and M i

V as below:

p̃i = M i
V ·MLj · q̃i (1)(

p̃i =
[
pT , 1

]T
, q̃i =

[
qT , 0, 1

]T)
In real measurements, both M i

V and MLj could be
erroneous. As this research focus on sensor calibration,
which aims at improving the accuracy of MLj

, we bound

localization errors by restricting on experimental sites to such
as open area for a good GPS localization, or a flat ground
for a LIDAR-based 2D SLAM, etc. and the localization error
we used is derived by the localization method itself. Given
an initial estimation M̂Lj , which contains calibration error
Mej with respect to its true value MLj , a 3D coordinate
p̂i is estimated subsequently on the erroneous calibration
parameters as below:

ˆ̃pi = M i
V · M̂Lj · q̃i (2)

= M i
V · (Mej ·MLj ) · q̃i

With Eq. 1 and Eq. 2, a transformation M i
A from a

calibration error free 3D point pi to an erroneous one p̂i

is obtained as below:

ˆ̃pi = M i
A · p̃i (3)

= (M i
V ·Mej ·M i

V

−1
) · p̃i

In this research, calibration of a multi-LIDAR sensing
system is formulated as a problem of registering the 3D
points of different LIDAR sensors Lj to reduce the cali-
bration errors Mej in M̂Lj . As LIDAR sensing is a sparse
sampling of 3D points on the surfaces of surrounding objects,
it is difficult to generate a direct point-to-point matching,
especially when the viewing directions and scanning planes
are largely different. However the inherent geometric features
implied in the 3D point clouds could be more reliable in
generating correspondences between different data sets, and
more robust to sparse sampling and occlusions.

B. Multi-Type Geometric Feature Definition

Given a set of 3D points P = {pi} of a simple geometric
shape, which could be a point, a line, a plane or a quadric,
a geometric formula fϕ(p) = 0 could be found by fitting
on the 3D points, where ϕ denotes the type of a geometric
shape. Formulations to the most commonly used geometric
shapes are listed in Table.I.

In addition, confidence measures
(
µ, σ2

)
are defined as

below, which are important indexes evaluating fitting relia-
bility as well as reflecting inherent properties of the object
surface, such as smoothness, material etc. Higher µ means
lower fitting reliability, and higher σ2 means higher noise.
In order to make sure the mean is nonnegative, especially
for quadric features, we use a second-order error covariance
model. {

µ = E
(
fϕ(pi)2

)
σ2 = D

(
fϕ(pi)2

) (4)

(E : expectation, D : deviation)

A geometric feature is thus defined as below:

G =
{
P, ϕ, fϕ, (µ, σ2)

}
(5)

As defined in Eq. 3, if a calibration error exists, i.e. Mej ̸=
I , a deviation of p̂i from its true 3D coordinates pi exists
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TABLE I
DESCRIPTION OF GEOMETRIC SHAPE

Geometric shape Surface equation Notation on coefficients
ϕ0: point fϕ0 (p) = (p− o)T · (p− o) = 0 o: the point position

o: a point on line
ϕ1: line fϕ1 (p) = (p− o)T · (D1 ·DT

1 +D2 ·DT
2 ) · (p− o) = 0 Di: unit vectors perpendicular to the line

o: a point on plane
ϕ2: plane fϕ2 (p) = (p− o)T · (D1 ·DT

1 ) · (p− o) = 0 D1: normal vector of the plane
o: the apex of the cone
D3: principle direction vector of the cone
D1,D2: unit vectors perpendicular to D3

ϕ3: cone fϕ3 (p) = (p− o)T · (D1·DT
1

V1
+

D2·DT
2

V2
−D3 ·DT

3 ) · (p− o) = 0 Vi: scale factors

too, i.e. M i
A ̸= I , yielding changes in the geometric shape

of the 3D point set. Thus estimation of the above defined
geometric features could be affected by the calibration error.
However, if we restrict the vehicle’s motion on a straight
path, which means that the rotation term in M i

V is a constant,
deviation of the 3D points made by a calibration error Mej

can be proved as an invertible affine transformation (Eq. 13).
A derivation can be found in Appendix A. Therefore, the
type of a geometric feature keeps consistency in case of
calibration errors.

Thus the proposed approach has a constraint on the
vehicle’s motion during calibration, i.e. on a straight path.
Although the completely straight path is impossible, we can
assume that the path is straight in a short range and then
the corresponding 3D points of geometric feature will fullfill
the invertible affine transformation. Although there exists a
minor deviation, its influence can be reduced by confidence
measures.

C. Multi-type Geometric Features Extraction

As defined previously, a geometric feature has four com-
ponents, i.e. a 3D point set P = {pi}, the type of the geo-
metric shape ϕ, a geometric formula fϕ and its confidential
measures (µ, σ2).

In order to extract sets of 3D points, which represent the
geometric shapes that are modeled in this research, 3D data
segmentation is conducted firstly. The Point Cloud Library
(PCL) [23] provides several methods such as on region
growing, min-cut, difference of normals (DoN) etc, which
are used in our research. We first segment a 3D data using
both region growing and DoN, then manually select some
of the data pieces that have simple geometric shapes for
geometric feature estimation. For example, the 3D points on
poles and road curbs have linear shapes, those on wall and
ground surface are planar, the upper apexes of traffic cones
can be used in generating point features.

Given a set of 3D points P = {pi}, the rest in a geometric
feature can be estimated automatically. For a specific type of
geometric shape ϕ, a geometric feature Gϕ is estimated by
fitting a geometric formula fϕ on the 3D points using a
Least Square Method, and the confidential measures (µ, σ2)
are estimated as well. By enumerating all potential types
of geometric shapes, a set of geometric features {Gϕ} is

obtained. The Gϕ that minimize E(fϕ(pi)2) is selected as
the result.

In this research, for implementation reasons, only three
types ϕ ∈ {point, line, plane} are concerned in experi-
ments. Currently, geometric feature extraction needs some
manual work, e.g. identifying a data piece of simple geo-
metric shape for feature estimation. These will be improved
through future work by developing an automated data selec-
tion method.

III. PAIRWISE LIDAR CALIBRATION USING
MULTI-TYPE GEOMETRIC FEATURES

A. Pairwise LIDAR Calibration

With a LIDAR L1 as the reference, here we present a
method of calibrating another LIDAR L2 with L1 using
multi-type geometric features, i.e. pairwise calibration. If
there exists an overlapped scan area of these two LIDARs,
then the alignment of paired geometric features in this area
will determine the transformation between L1 and L2.

1) A distance measure on multi-type geometric features:
In many ICP (Iterative Closest Point) methods, the distance
measure between two 3D point sets is the average distance of
closest 3D point pair or the average distance between point
and the closest local plane [24]. However, in order to increase
the robustness of the distance measure, the confidence degree
(µ, σ2) in Eq. 4 should be considered. Inspired by Gaussian
Models [25], we defined a weighted distance measure of
geometric features.

D (G1, G2) =
1

n2

n2∑
i=1

(
fϕ
1 (p

i
2)

2 − µ1

)2

σ2
1

(6)

fϕ
1 (p

i
2) means spatial distance between a 3D point pi

2 in
geometric feature G2 and the geometric shape ϕ in geometric
feature G1.

This distance measure takes both spatial distance measure
and surface equation reliability into consideration, which
increases its robustness.

2) Optimization for geometric features alignment: As-
sume there is a set of paired geometric features with different
types of shapes in overlapped scan area of L1 and L2.{

< Gj
1, G

j
2 >

}
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Then the optimization formula H(M̂L2) is defined as the
sum of all weighted distances (Eq. 6) of paired geometric
features, where the superscript ∗ means this is a new value
after alignment and it is a homogeneous notation.

M̂∗
L2

= argmin
M̂L2

H
(
M̂L2

)
(7)

= argmin
M̂L2

∑
j

D
(
Gj

1, G
j
2

(
M̂L2

))

Here, we defined a function G
(
M̂L

)
for convenient expres-

sion on the transformation of a geometric feature’s 3D point
set caused by M̂L. (M̂L is the estimated orientation and
position of a LIDAR in the vehicle frame)

G
(
M̂L

)
=

{{
M i

V · M̂L · q̃i
}
, ϕ, fϕ,

{
µ, σ2

}}
As addressed previously that the deviation of the true 3D

points is an invertible affine transformation, alignment of
paired geometric features is feasible, which means the opti-
mization formula theoretically has exactly one solution (the
relationship between the calibration error and the invertible
affine transformation is monomorphism). This optimization
formula can be solved by numerical method with an initial
estimated orientation and position of L2. Previously, in our
experiment, we used fmincon function in Matlab (a NLM
optimizer with constraints) to solve this problem, with 12
variables. Currently, we use fminsearch function in Matlab
(a NLM optimizer without constraints) to solve this problem,
with 6 variables. And in addition, we use data-sample and
warm-start strategies to accelerate the optimization process:
the sample rate in each iteration will increase and every
iteration will use its last result as initial value.

B. Calibration of a Reference LIDAR with the Vehicle Frame

If the reference LIDAR L1 has calibration error Me1 , then
after pairwise calibration, another LIDAR L2 will have a
new calibration error M∗

e2 . One important thing is that after
pairwise calibration, Me1 ̸= M∗

e2 in general (see Appendix
B). This means we cannot directly eliminate calibration error
M∗

e2 by eliminating calibration error Me1 , which is done by
reference LIDAR calibration, because M−1

e1 ·M∗
e2 ̸= I .

So in order to get well-calibrated L2, the reference LIDAR
L1 must be calibrated to the vehicle before applying the
pairwise calibration between L1 and L2.

In our experiment, the reference LIDAR calibration
method is similar to [15], but instead we use a vertical
wall in natural scene.

The reference LIDAR is regarded as a target for another
LIDAR, so the calibration error of reference LIDAR will pass
to the calibrated LIDAR. But we have shown the relationship
between these errors in theory and in our experiment, we
proved that the error of calibrated LIDAR and the error of
reference LIDAR are in the same level. The next step of our
work is to develop a reference LIDAR calibration method
which also only uses geometric features and has low error.

Fig. 2. A view of the experimental data for both calibration and testing.

Fig. 3. The 3D points measured by the LIDAR sensors L3 and L4.

IV. EXPERIMENTAL RESULTS

The vehicle platform POSS-V is used in this research
to evaluate the algorithm of multiple LIDAR calibration.
As shown in Fig. 1, the LIDAR sensor L3, which scans
downward to the ahead road surface, and L4, which scans
vertically to the right of the vehicle, are calibrated with
the vehicle body frame that is defined by the GPS/IMU
navigation system. The calibration is achieved by matching
the multi-type geometric features that are extracted from
the 3D data of each LIDAR sensor. Data collection was
conducted during a vehicle run about 400 meters in the
campus of Peking University. As shown in Fig. 2, the 3D
points in red are used for calibration, while others are used
to examine the accuracy. Below we present experimental
results in calibration, while focus will be cast on examining
its accuracy and robustness concerning noisy and occluded
data, which are the major challenges in using the data of a
nature scene.
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Fig. 4. Three kinds of geometric features are extracted for calibration.
They are points, lines and planes.

A. Calibration on Multi-Type Geometric Features

A pair of 3D data that are measured by L3 and L4 are
shown in Fig. 3, while for a better visualization of the
geometric details, edge points were extracted by filtering
out the points that have low variance in local surface fitting
[26]. It is obvious that correspondence between two LIDAR
data sets could be generated using the geometric features
of their measurements to common objects. The multi-type
geometric features are extracted as defined in section 2. As
shown in Fig. 4, the apexes of traffic cones are extracted as
point features, road curbs or light poles are extracted as line
features, road or wall surfaces are extracted as plane features.
In the experiment, the cone geometric features are extracted,
but the estimation error of surface equation is large. Because
of the robustness of this calibration algorithm, this error or
this geometric feature will not play a big role in the final
results and we did not add the quadric features. In the future,
we will improve the estimation method of quadric surface
equation estimation.

A list of the multi-type geometric features that are ex-
tracted for calibration is given in Table. II, where reliability
of the features are evaluated on µ as defined in section 2.
In this experiment, the geometric features are extracted with
some manual work. However we consider that these features
could be extracted automated through future developments.

A calibration result by matching the multi-type geometric
features using the proposed algorithm is shown in Fig. 5.
The data of L3 is shown in blue, while L4 in red. Before
calibration, there were obvious displacements between the
data sets of L3 and L4, which is demonstrated using the edge
points extracted from the 3D point clouds of each sensor.
After calibration, a better consistency is achieve between the
two data sets.

As mentioned previously, the data used for calibration
and testing are different, which are shown in Fig. 2. The
calibration result is examined using the data beyond those for
calibration. Three sets of results on testing data are shown in
Fig. 6, each consists of a view before and after calibration.

Fig. 5. Calibration results: visualization of the result on calibration data.

Points are colored in the same way with those in Fig. 5,
representing the data of L3 and L4 respectively. It could be
found that after calibration, data consistency between sensors
has been greatly improved. For example in the data view
3, L4 measured the whole body of a pedestrian, while L3

captured only his legs. After calibration, the matching of the
two data sets are improved, and the legs of the pedestrian are
much clearer than before. In fact, L3, which scans downward
to the ahead road surface, measured the legs data earlier than
L4. A good data consistency will not only help for fusion
of the two data sets, but also make collaborative usage of
different sensors possible, e.g. after detecting a candidate
in ahead through coarse sensing, the system could inform
another sensor to find a better measurement to validate the
candidate.

TABLE II
THE GEOMETRIC FEATURES USED IN CALIBRATION

Geo-feature Object Number Reliability
Point Traffic Cone apex 13 High
Line Light pole 5 High

Road curb 4 Low
Plane Flower bed wall 6 Very High

Road surface 1 Middle
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Fig. 6. Examination of the calibration results: visualization of the result
on testing data.

In addition, we manually extracted 50 pairs of planes
from the testing data of both sensors, and compared their
difference before and after calibration to evaluate the cali-
bration accuracy. Three parameters are estimated. They are
the averages of the angular difference, the expectation and
deviation of the spatial distance DS between corresponding
planes. The result is given in Table. III, that shows how
the values of all three parameters are reduced greatly after
calibration.

TABLE III
EVALUATION OF CALIBRATION ACCURACY

E(Angle) E(DS) D(DS)
Before Calibration 2.600109 0.043408 0.002392
After Calibration 0.891429 0.009808 0.000105

B. Robustness and Accuracy Examination

In this section, we present the experimental results in
more intensive study of the calibration performance. The
examinations focus on two aspects, i.e. the efficiency in
combining multi-type geometric features and the robustness
concerning noisy feature extractions. Accuracies in the cal-
ibrations using mono-type, or combinations of two or three
types are compared to examine the efficiency in making use
of multi-type features. On the other hand, noisy features are

introduced, which are extracted from such as bended walls or
curved curbs, with high µ values in Eq. 4. Accuracies in the
calibrations with and without noisy features are compared
too. The results are listed in Table. IV. Calibration accuracy
is evaluated in the same way with those in Table. III by
estimating the averages of the expectation and deviation
of the spatial distance DS between corresponding planes.
Lower values stand for higher accuracy. On the other hand,
significance of noisy features’ effect on the calibration is
evaluated using the Error Ratio E2/E1, where E1 and
E2 are the estimated calibration errors without and with
noisy features, respectively. Subjective evaluations to the
algorithms are also scored by the operator for reference.

From Table. IV, we could find the following summaries:

1) In the calibration on mono-type features, plane tends
to give higher accuracy than point and line, but is more
vulnerable to noisy extractions;

2) Combined use of multi-type features can generally
improve calibration accuracy and robustness;

3) More types of features tends to increase robustness.
Point-Line-Plane combination raises the best calibra-
tion results.

In the calibrations on mono-type features, the calibration
error without noisy features is 0.01939 on planes, while
0.03232 on points or 0.07797 on lines. However the accuracy
of plane-based calibration is greatly degraded, which has an
error ratio of 3.031 comparing with 1.427 on points or 1.994
on lines. As for the calibrations on multi-type feature com-
bination, there is one exception, i.e. Line-Plane combination.
Without noisy features, lines degraded the accuracy of plane-
based calibration, i.e. from 0.01939 to 0.0247. However, in
case that noisy features exist, lines help to improve plane-
based calibration accuracy (i.e. from 0.05878 to 0.05510)
and robustness (i.e. from 3.031 to 2.229). Among all the
calibrations, the combinative use of all types of features raise
the best results concerning both accuracy and robustness.

V. CONCLUSION

Aiming at developing a calibration method for multiple
LIDAR sensing systems, which could be conducted in a
general outdoor environment using the features of a na-
ture scene, a multi-type geometric feature based calibration
algorithm is proposed, which extracts the features such
as point, line, plane and quadric from the 3D points of
each LIDAR sensing, transformation parameters from each
sensor to the frame of moving platform is estimated by
matching the multi-type features. Special focus has been
cast on solving the noisy sensing in a complex environ-
ment and the occlusions caused by largely different sensor
viewpoints. Experiments are conducted using the data sets of
an intelligent vehicle platform (POSS-V) through a driving
in the campus of Peking University. Results of calibrating
two LIDAR sensors with largely different viewpoints are
presented, demonstrating their accuracy and robustness con-
cerning noisy feature extractions. Future work will address
on an automated feature extraction and selection algorithm,
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TABLE IV
ACCURACY AND ROBUSTNESS EVALUATION CONCERNING MULTI-TYPE FEATURE COMBINATION AND EXTRACTION ERROR

Multi- Geometric Error without noisy features Error with noisy features Error Ratio= Accuracy
Types Features E1 = E(DS)±D(DS) E2 = E(DS)±D(DS) E2/E1 Evaluation

Point 0.03232± 0.00316 0.04615± 0.00620 1.427 Bad
Mono Line 0.07797± 0.00896 0.15548± 0.02944 1.994 Bad

Plane 0.01939± 0.00042 0.05878± 0.00521 3.031 Good
Point + Line 0.01363± 0.00053 0.01429± 0.00071 1.048 Good

Two Point + Plane 0.00980± 0.00011 0.00993± 0.00010 1.013 Excellent
Line + Plane 0.02471± 0.00076 0.05510± 0.00475 2.229 Good

Three Point + Line + Plane 0.00981± 0.00011 0.00989± 0.00010 1.008 Excellent

which is a basis in extending the method to an online based
calibration.

VI. APPENDIX

A. Invertible affine transformation of the true 3D points

1) If vehicle drives straightly, the M i
V ’s rotation term Ri

V

is constant (Eq. 8) and its translation term Ti
V can be derived

from corresponding 3D point data pi (Eq. 9).

Ri
V = RV (8)

Ti
V = J · (pi −O0

L) +T0
V (9)(

J = RV · t · n
T

nT · t
·RT

V

)
• t :the vehicle forward direction in the vehicle frame;
• n :the LIDAR scan plane’s normal in the vehicle frame;
• T0

V :the straight path’s start position in the world frame;
• O0

L :the LIDAR’s origin position corresponds to T0
V in

the world frame.

Proof: If vehicle drives straightly, then Ti
V = di(RV · t) +

T0
V . Define Oi

L as the LIDAR’s origin position in world
frame corresponds to Ti

V , and Oi
L = RV ·TL+Ti

V (TL is
the true LIDAR’s position in vehicle frame).

Because Oi
L and 3D point data pi are always on the same

LIDAR scan plane.
Therefore

(RV · n)T · (Oi
L − pi) = 0

(RV · n)T · (RV ·TL +Ti
V − pi) = 0

(RV · n)T · (RV ·TL + di(RV · t) +T0
V − pi) = 0

(RV · n)T · (di(RV · t) + (O0
L − pi)) = 0

di(nT · t) + nT ·RT
V · (O0

L − pi) = 0

If nT · t ̸= 0, then

di =
nT ·RT

V · (pi −O0
L)

nT · t
Because Ti

V = di(RV · t) +T0
V .

Therefore

Ti
V = (RV · t) · n

T ·RT
V · (pi −O0

L)

nT · t
+T0

V

Ti
V = (RV · t · n

T

nT · t
·RT

V ) · (pi −O0
L) +T0

V

Define J = RV · t·nT

nT ·t ·R
T
V , then

Ti
V = J · (pi −O0

L) +T0
V

2) From the Eq. 3

ˆ̃pi = M i
A · p̃i = (M i

V ·Me ·M i
V

−1
) · p̃i

If vehicle drives straightly, then

∀pi ∈ P, ∃ an invertible MA : ˆ̃pi = M i
A · p̃i = MA · p̃i

Proof: From Eq. 8 and Eq. 9, we have known the M i
V ’s

rotation term Ri
V and translation term T i

V . Then

(M i
V ·Me ·M i

V

−1
) · p̃i

=

[
RV Ti

V

0 1

]
·
[

Re Te

0 1

]
·
[

R−1
V −R−1

V ·Ti
V

0 1

]
· p̃i

Define

E = RV ·Re ·R−1
V (10)

RA = E + (I − E) · J (J : see Eq. 9) (11)
TA = RV · T̂L −RA ·O0

L + T 0
V (12)

(T̂L : LIDAR’s estimated position in vehicle frame)

Then

(M i
V ·Me ·M i

V

−1
) · p̃i

=

[
E (I − E) ·Ti

V +RV ·Te

0 1

]
· p̃i

=

[
RA TA

0 1

]
· p̃i

ˆ̃pi = M i
A · p̃i =

[
RA TA

0 1

]
· p̃i = MA · p̃i (13)

It is easy to demonstrate that if (Re ·n)T · t ̸= 0, then RA

is invertible. So MA is an invertible affine transformation.
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B. Relationship between calibration errors after geometric
features alignment

Take LIDAR L1 as reference LIDAR and assume L1’s
calibration error is Me1 , then we align geometric features of
LIDARs L1 and L2 to get the LIDAR L2’s new estimated
orientation and position M̂∗

L2
(Eq. 7), whose calibration error

is M∗
e2 . From Eq. 13, the geometric features alignment result

can be expressed as Eq. 14 in theory.

∀pi ∈ P1 ∩ P2,MA1 · p̃i = M∗
A2

· p̃i (14)

where, MA1 is the deviation transformation of the true 3D
points caused by Me1 and M∗

A2
is the deviation transforma-

tion caused by M∗
e2 .

Because MA1 and M∗
A2

are invertible, we can derive
RA1 = R∗

A2
and TA1 = T ∗

A2
. Here, we just study the rotation

term.

RA1 = R∗
A2

E1 + (I − E1) · J1 = E∗
2 + (I − E∗

2 ) · J2

Re1 + (I −Re1) ·
t · nT

1

nT
1 · t

= R∗
e2 + (I −R∗

e2) ·
t · nT

2

nT
2 · t

Therefore, if n1 ̸= n2, then Re1 ̸= R∗
e2 unless Re1 · t = t.

Furthermore, Me1 ̸= M∗
e2 in general.

In addition, from the last equation, we can derive that
iff Me1 = I , then M∗

e2 = I . This is the principle of our
calibration method, which is based on geometric features
alignment.
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