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Abstract— Textured polygon meshes are becoming more and
more important for robotic applications. In this paper we
present an approach to automatically extract textures from
colored 3D point cloud data and apply them to a polygonal
reconstruction of the scene. The extracted textures are analyzed
for existing patters and reused if several instances appear.
Emphasis of this work is on minimizing the number of used
pixels while maintaining a realistic impression of the scanned
environment.

I. INTRODUCTION

Three dimensional environment representations play an
important role in modern robotic applications. They can
be used as maps for localization and obstacle avoidance
as well as environment models in robotic simulators or
for visualization in HRI contexts, e.g., tele operation. Most
sensors like 3D laser scanners and RGB-D cameras deliver
point clouds as raw data. For mapping purposes, when
building high resolution maps of large environments, the
huge amount of data points poses a problem.

A common approach to overcome the drawbacks of raw
point cloud data is to compute polygonal surface repre-
sentations of the scanned environments. Polygonal maps
are compact, thus memory efficient, and, being continuous
surface descriptions, offer a way to handle the discretization
problem of point cloud data. Automatic reconstruction of
polygonal surface representations from point cloud data is
an active field of research in computer graphics. Modern 3D
sensors are equipped with cameras to produce colored point
clouds, so integration of the gathered color information into
computed polygon maps is of high interest. The standard
procedure for this integration is to generate bitmap textures
from the input data and project them onto the polygonal
surfaces. Such bitmap textures are the standard representation
in computer graphics. For robotic applications they offer
opportunities to enhance the stored environment information:
Besides photo-realistic rendering, visual features from the
generated textures can be used to solve standard problems
like visual SLAM or localization. Since features in the
textures are inherently associated with coordinates on the
polygonal surfaces, they can be located easily in 3D space.

The main problem when using textures in surface recon-
struction from scanned robotic environments is that the maps
can become quite large, and therefore large texture maps
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have to be generated. This is problematic since even on state
of the art graphics hardware, the maximum allowed size of
textures is quite limited. This problem can be solved by
reusing small textures with repeating patterns to approximate
the real environment. A typical example is a wall, textured
by a repeated image of a few bricks. Another way of
reducing the amount of texture data is to find instances
of objects with the same, not necessarily patterned, texture,
and to reuse previously generated textures. In this paper we
present an approach to extract repeating texture patterns from
color or intensity values in 3D point cloud data and project
them onto the corresponding polygonal reconstruction. The
used software is integrated into the Open Source Las Vegas
Surface Reconstruction Toolkit (LVR) [6], [18] and supports
several commonly used exchange formats.

The remainder of this paper is organized as follows:
Section II presents the state of the art in textured surface
reconstruction from point cloud data. Section III presents
the technical details of the developed texture assignment
techniques which are evaluated in Section IV.

II. RELATED WORK

Automatic construction of meshes from point cloud data
has received much interest in computer graphics. The de
facto standard method to generate triangle meshes of ar-
bitrary environment is the Marching Cubes algorithm [9],
which comes in a number of variants. [12] provides a
comprehensive review. For reconstruction of closed objects
methods based on Delaunay triangulations exists [1], [2].
Another successful approach for closed geometries is the
Poisson Reconstruction [4].

Kinect Fusion [3] implements a GPU based Marching
Cubes variant that uses the inherent structure of the RGB-D
camera to create meshes of Kinect data in real time. It has
been extended recently to handle larger environments [16].
The PCL implementation of Kinect Fusion [15] can extract
textures for the reconstructed surfaces, but is not capable
of reusing patterns. A method to extract textured polygon
meshes from point cloud data, including high resolution
laser scans with RGB information, is presented in [17]. The
generated meshes were successfully used as environment
representation in Gazebo. This paper extends that work to
reduce the amount of generated pixel data by pattern analysis
and image matching.

Texture analysis has been an extensive field of research
since the late 1950’s. A commonly used method to determine
the similarity of the images is cross correlation [5]. Recently
pattern analysis has become of interest for large image data
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Fig. 1. Texture generation and storage management.

bases. [10] presents an approach to match existing patterns to
large image sets using Gabor Wavelets. A survey of different
image matching approaches is given in [8]. An approach to
extract pattern from images was presented in [14]. Our work
extends this approach to make it more robust via testing the
extracted pattern textures against the initial bitmaps.

III. TEXTURE GENERATION AND ASSIGNMENT

This section describes the model texturization process.
Starting with a method to manage textures during the recon-
struction process in LVR [6], followed by how the bitmaps
are computed, it concludes with a discussion of the problems
of pattern recognition and identification of reuseable textures.
The textured areas in the reconstructed meshes are planar
polygons in the environment as described in [18].

A. Texture Management

The structure of our texturing software is shown in Fig. 1.
In the first step an initial bitmap for a polygon is computed.
This image is compared with the images stored in a texture
database for the current model. The comparison is partially
done using feature descriptors as described in Section III-
C. To speed up the matching process, we store the image
features together with the raw bitmap data in the database.
If a matching texture is found, it is applied to the current
polygon. Otherwise the bitmap is analyzed to detect patterns
(see Section III-C). If a periodic pattern is detected, the
corresponding pattern bitmap is extracted and added to the
database, otherwise the initial pattern is stored. If different
data sets from the same environment are reconstructed, the
produced databases can be reused. In the same way, precom-
puted standard textures can be applied to the reconstruction.

B. Initial Texture Generation

Texture generation is done by putting a rectangular grid
of fixed cell size t over each polygon. The voxel size of
the grid determines the resolution of the texture image. For
each cell in the grid, a color value is calculated by averaging
the colors of the k nearest points in the given point cloud.
To keep the textures small, it is necessary to find a grid
alignment that maximizes the used area (cf. Fig. 2). In the
presented example, an axis aligned pixel grid would contain
a large amount of unused pixels (gray) while an image in
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Fig. 2. Finding the right coordinate system for texture generation. In the
presented case, an axis aligned pixel grid (a) would result in a lot of unused
space (gray). An aligned bounding box would reduce this space (b). The
actual pixel map as calculated as shown in (c).

Fig. 3. Examples for generated bitmaps from different data sets: High
density laser scanner data (left and middle) and Kinect (right).

the green coordinate system would be significantly smaller
(only 70% of the axis aligned version). To determine the best
alignment we compute the Principle Component Analysis
(PCA) of the polygon vertices. The first two eigenvectors of
the result deliver a good estimation for the alignment of the
polygon in the global coordinate system, thus we define the
pixel matrix by determining the bounding box of the polygon
in this local system defined by X ′ and Y ′. The achievable
texture quality strongly depends on the quality of the input
data: Low point densities will cause blurry textures, while
dense point cloud data will allow to choose a high resolution
for texture generation.

Some examples for automatically produced textures from
different kinds of point cloud data are shown in Fig. 3. The
left and middle image show textures generated from high
resolution laser scanner data (Leica and Faro respectively).
The left image (972 × 1065 pixels) shows the complete
texture for the ground floor of an office with a regular tiling.
The picture in the middle (303 × 473 pixels) shows regular
bricks on a wall. The aim of the pattern extraction step is to
identify this kind of regularities, generate appropriate pattern
textures and thus reduce the size of the used textures. The
right image displays a texture from a Kinect reconstruction
showing posters on a wall without regularities. These exam-
ples exemplify a unsurprising fact: The quality of the initial
textures strongly depends on the quality of the input data,
i.e., scans with high point density allow to generate textures
with higher resolution.

C. Texture Matching

The aim of the texture matching step is to identify al-
ready stored textures that approximate the surface of the
currently considered polygon well enough so that they can be
reused. We tested several approaches from image processing
to solve this problem: Color histogram based correlation,
cross correlation and feature based matching. Histogram
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Fig. 4. Pixel distributions and color histograms. The two images on the left
will produce the same simple color histogram but different Color Coherent
Vector histograms.

based matching is fast, but has a high rate of false positive
detections. Cross correlation delivers good results and can
be computed fast in frequency space, but it is very sensible
to the right separation threshold. Feature based matching
delivers the best results, but is comparatively slow. To find
a suitable compromise between accuracy and computation
speed we choose the following approach: (1) filter out can-
didates that definitely do not match using Color Coherence
Vectors (CCV) [13], exploiting the fact that this method
detects not-matching images safely. (2) Instances of already
detected patterns within the textures are detected using cross
correlation. (3) The remaining images are matched using
SURF features and SIFT descriptors. Details of the three
steps are presented in the following paragraphs.

1) Color Coherence Matching (CCM): Histogram based
matching counts for each color channel the number of
occurrences of a given value h( f ), f ∈ [0,255]. The matching
score d between two images is defined naively as

d = ∑
f
|hr

1( f )−hr
2( f )|+∑

f
|hg

1( f )−hg
2( f )|+∑

f
|hb

1( f )−hb
2( f )|.

One problem when using histogram based approaches to
match images is that quite different distributions of pixel
values can result in identical histograms (cf. Fig. 4). An
approach for solving this problem is to consider the con-
nectivity in images as well, storing for each color histogram
entry (r,g,b) in the variable α f how often a color is present
in large blobs with size ≥ s, and likewise in β f the number of
occurences in blobs of size < s, cf. [13]. Blobs are detected
via connected component labeling after Gaussian blurring to
reduce the number of clusters. The matching score is then
refined as:

d = ∑
f

(
|αr

f ,1/N1−α
r
f .2/N2|+ |β r

f ,1/N1−β
r
f ,2/N2|

)
+∑
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g
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f ,1/N1−β
g
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)
+∑

f

(
|αb

f ,1/N1−α
b
f ,2/N2|+ |β b

f ,1/N1−β
b
f ,2/N2|

)
,

for two images of size N1 and N2, and their respective values
of α and β for each r,g,b value. This normalized formulation
further enables us to compare two images of different size.
For the given example a threshold of s = 1, for example,
leads to α = 150 and β = 0 for the black and white pixels
in the left image, and α = 0,β = 150 for both colors in the
right one, thus providing a means for separation. To speed
up the matching, we store the histogram vectors for each
picture in the database after a new texture was inserted.

Fig. 5. Polygon texture (left) with corresponding pattern texture (middle)
and cross correlation (right)

Fig. 6. Summed horizontal correlation values for a periodic (top) and non
periodic image (bottom). The vertical curves are not shown, since they are
similar in the presented examples.

2) Pattern Texture Assignment via Cross Correlation:
After images that are obviously non-matching are rejected
based on CCM, we test if an already detected and archived
pattern is present in the current texture bitmap. Patterns are
detected using cross correlation, defined as

c(d) = ∑i(I1(i)− Ī1) · (I2(i−d)− Ī2)√
∑i(I1(i)− Ī1)2 ·

√
∑i(I2(i−d)− Ī2)2

for two gray scale images I1 and I2 with mean gray values
of Ī1 and Ī2. The idea is to move the pattern candidate with
different offsets d over the current data image. If two images
match well at a certain position, the products create high
values, which sum up to a high correlation value. The denom-
inator ensures normalization. Thus, if a pattern matches well
in the data image, it will create a high correlation value, as
shown in Fig. 5. The computation of the cross correlation has
to be evaluated for every picture in the database and cannot
be precomputed. The naive implementation is expensive.
Fortunately, performing the operation in frequency space
via Fast Fourier Transform is quick, so there is no critical
performance issue with this approach.

3) Feature Based Matching: In addition to the cross
correlation test, we integrated feature based matching using
the SURF implementation of OpenCV. Descriptor matching
is done by an approximate nearest neighbor search using
FLANN [11]. Feature based matching works well under
constant light conditions and in rich-textured environments
with many detectable features. Consequently it will fail in
featureless areas. Thus, the feature matching step mainly
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TABLE I
EVALUATION OF SUMMED AUTO CORRELATIONS FOR A SET OF IMAGES.

Periodic Non-Periodic
Img. σNρx(x) σNρy(y) πx πy σNρx(x) σNρy(y) πx πy

1 0.68 0.90 62 21 0.13 0.94 4 4
2 1.51 0.79 12 10 0.20 0.96 5 4
3 0.55 0.78 18 13 0.75 1.23 55 22
4 0.75 1.23 55 22 1.74 1.33 8 9
5 1.74 1.33 8 9 0.13 0.76 5 14
6 1.28 1.59 26 15 1.17 1.26 47 12

enhances the matching score for reuse of distinctive textures.
A high matching score of cross correlation and feature
analysis indicates a high probability of a positive match.

D. Pattern Extraction

To extract patterns from a given bitmap we have to answer
two questions: Is there a pattern in this image, and if so,
what is the optimal cut to create a texture that reproduces
a the pattern correctly? For pattern detection we use auto
correlation. The auto correlation ρ(d) of an gray scale image
I with Nx×Ny = N pixels is basically a convolution of the
image with itself:

ρ(d) =
∑

N−1
i=0 (I(i)− Ī) · (I(i−d)− Ī)

∑
N−1
i=0 (I(i)− Ī)2

with d = y ·Nx +x for a pixel (x,y) in I. In the remainder of
this paper we will refer to the auto correlation at a given pixel
position as ρ(x,y). To detect patterns in x and y direction we
examine the summed correlation values in ρx and ρy:

ρx(x) =
Ny−1

∑
y=0

ρ(x,y) and ρy(y) =
Nx−1

∑
x=0

ρ(x,y).

Two examples of summed correlation values for a periodic
and non-periodic image are shown in Fig. 6. As one can see,
the functions are symmetric and show peaks at high corre-
lation points. As expected, the periodic image shows more
and higher peaks than the non-periodic image. To decide
whether an image is periodic, [14] proposes to evaluate the
standard deviations σNρx(x) and σNρy(y) of the peak distances
weighted by size of the image and number of peaks πx, πy
in the corresponding direction

σNρx(x) =
σρx(x)

Nx/πx
and σNρy(y) =

σρy(y)

Ny/πy

and to use a fixed threshold ε to decide if the bitmap is
periodic (σNρx(x) and σNρy(y) > ε), semi-periodic (σNρx(x) or
σNρy(y) > ε) or non-periodic (both values below ε). The main
problem is to find a suitable decision threshold. We have
evaluated this approach for a set of images as shown in
Table I. The used images can be found on the website [7].

As one can see, there is no obvious decision value based
on the analysis of the sample data. There are examples for
high and low correlations in both sets. Choosing a fixed
value, e.g., 0.8 (the detected values lie in [0,1.6]) we would
only classify 4 periodic textures correctly while producing
5 false positives for non-periodic cases in the 6 samples.

Fig. 7. Pattern extraction using different peak positions to determine the
pattern image.

Another possible decision value could be the number of
peaks. Although generally the number of peaks is most times
significantly higher in periodic images, there are two non-
periodic images that show a high number of peaks as well.

To ensure stable detection of patterns, we therefore use
another approach; If an image contains more that πmin
peaks, assume that there is a pattern in the image. For each
significant peak, i.e., relative distance and amplitude to the
next peak are high, we extract the pattern that is defined by
the image coordinates of the detected peaks. An example for
possible sub image cuts based on peak positions is given in
Fig. 7. The image shows the extracted pattern for different
peak offsets (part until the yellow line) and the repeated
rendering of the pattern. The example in Fig. 6 (top) has
two overlapping series of peaks at πx = 75,150,225,300 and
πx = 42,116,191,266, corresponding to the two brick layers.
Choosing the first one from the first series and the first one
from the second series at 116 would result in the first image
of Fig. 7. This pattern is obviously too narrow. If combine it
with 225, the chosen segment is again too small. Combining
75 and 225, ignoring the lower peaks, delivers a suitable
result. This example shows that in general, it is hard to find
the correct image patch even in simple cases. To identify
the best matching pattern, we cross correlate each candidate
with the original image and choose the one with the best
matching score. The main advantage is that cross correlation
favors small patterns, which is desired here.

After finding the patterns we have to determine the trans-
formation of the pattern into the model coordinate system
to determine correct texture coordinates for rendering. The
needed transformation consists of rotation, translation and
scale. Scaling is interesting for reusing textures in cases like
stone patterns with different brick size, etc. For the moment
we concentrate on finding the correct translation and rotation.
The translation is determined by matching the features of the
model to their corresponding features from the generated
textures, defined by a nearest neighbor search. Next, all
statistically ”‘good”’ features (i.e., with a vector distance
smaller than two times the minimal distance of all features)
are selected. In a RANSAC-like fashion, sets of 3 features are
chosen randomly and used to calculate a transformation; the
output is the best supported and most stable transformation.
The correct scale of a texture is defined by the relative texture
coordinates within the bounding box of an planar polygon,
i.e., each vertex is mapped to a relative position (u,v) in the
image plane with u,v ∈ [0,1].
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(a) Experimental results for the church data set.

(b) Experimental results for the Kinect data set.

Fig. 8. Comparison of the initial and optimized reconstruction (first rows) for the evaluated real life data sets. Detailed views of extracted patterns are
given in the second rows. High resolution images can be found at the website [7].

IV. EVALUATION

To evaluate the quality of the generated texture patterns
quantitatively, an appropriate metric is needed; however, we
know of no such established method. Thus, for a qualitative
analysis, we evaluated our approach in three representative
data sets with different characteristics. The first set is an
artificially created example to demonstrate the functionality
of our framework. The second is a high resolution colored
laser scan of a church in a city scene (17.5 million points),
and the last presented example is a reconstruction from a
scene scanned with a Kinect mounted on a mobile robot and
registered with 6D SLAM (10 million points).

Our artificial data set and the created reconstruction is
shown in Fig 9. On the left is the colored point cloud,
with the generated reconstruction on the right. The scene

consists of 6 planes with different textures. As one can
see, the blackboard texture is matched correctly but the
transformation was determined wrongly, due to a lack of
feature machtes that are statistically good enough. Further-
more, our software extracted a pattern for the rips of the
heater. The detail of the mounted thermostat is lost when
the pattern texture is applied to the reconstruction, but the
effect on the general visual impression is negligible. The last
used texture was a regular pavement. Again, our software
was able the extract a minimal pattern consisting of two
cobblestones in width and one in height. In this example,
the software extracted all present patterns and detected the
blackboard texture correctly, demonstrating the capability of
texture optimization for distinct textures.

The quantitatively evaluated data sets were real life appli-
cations with point clouds of different quality (Riegl laser
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Fig. 9. Texture matching and pattern extraction in a synthetic data set.

scanner vs. Kinect). Screenshots from renderings of the
reconstructions are given in Fig 8 for the Riegl data set (a)
and the Kinect point cloud (b). The first rows of the two
subfigures compare the visual quality of the reconstructions
with and without pattern extraction and matching. Areas with
substantial visual differences are marked by yellow circles.
The second rows show detail shots from the reconstructions
where extracted patterns were used. The borders of the
patterns are indicated with solid lines, the area where the
repeated texture is used is marked dashed. The overall visual
appearance is very similar, although unpropitious pattern
extractions and wrong matches appear (marked with yellow
circles). Generally the pattern extraction works well. Espe-
cially the extraction of the pattern for the houses in the city
data set and the blackboards in the Kinect data sets reduce the
amount of needed pixel data significantly (cf. Table II). The
most problematic parameter is the peak threshold for pattern
extraction. Our process is sensible to oversegmentation, so
the minimum peak value has to be set high enough.

In the large data sets the CCV initially filters out an
average of 78% of the textures in the church data set and
69% in the Kinect data set for each new frame, thus re-
ducing the number of considered picture-to-picture matches
significantly. The total running time, including surface re-
construction and texture optimization, was 2:28 min. for the
church scene and 1:32 min. for the Kinect data set.

Table II presents some more detailed figures about the
performed experiments. Given are the number of detected
planes, the number of generated and matched patterns and
single textures together with the number of positive matches
and the number of obviously wrongly correlated textures.
The church data set shows a lot of extracted patterns. Due to
the high quality threshold for matching that was needed to
suppress false positive detections on the roofs, the matching
score for reusing patterns is small. From non-pattern textures
11 textures were reused, mainly on the sides of the tower. The
Kinect data sets on the other hand features a high number
of reused textures, both pattern and non-pattern. This is due
to multiple instance of chairs and desks that can easily be
reused in the class room example. The number of false
positive detection is relatively small in both data sets (about
3% in the Kinect data set and 2.5% in the laser data). The
main problem is that false positives significantly reduce the
visual quality of the reconstruction, therefore the relevant
parameters for matching have to be chosen with care.

TABLE II
RESULTS FOR PATTERN EXTRACTION AND TEXTURE REUSE.

Non-Patterns Patterns Compression
Data set # Planes Gen. Matched Gen. Matched False (before/after)

Artificial 6 1 1 2 2 0 0.8 / 0.3 MB
Kinect 90 12 55 10 13 3 12.1 / 2.3 MB
Church 349 171 11 167 0 9 28.0 / 2.9 MB

V. CONCLUSION AND FUTURE WORK
This paper presented an approach to automatically detect

and extract patterns in reconstructions from 3D point cloud
data. The extracted textures can be reused to reduce the
amount of pixel data needed for textured rendering. The
generated maps are small and compact, and can be used
in robotic applications like scene visualization. Future work
will concentrate on detecting regularities on surfaces with
overlaying objects, like posters on stone walls. The present
results show that methods from pattern analysis can be
successfully used. False positive matches may be reduced
by including more sophisticated approaches from theoretical
pattern analysis than the ones presented here.
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