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Abstract— It is well recognized that many scientifically inter-
esting sites on Mars are located in rough terrains. Therefore,
to enable safe autonomous operation of a planetary rover
during exploration, the ability to accurately estimate terrain
traversability is critical. In particular, this estimate needs to
account for terrain deformation, which significantly affects
the vehicle attitude and configuration. This paper presents an
approach to estimate vehicle configuration, as a measure of
traversability, in deformable terrain by learning the correlation
between exteroceptive and proprioceptive information in exper-
iments. We first perform traversability estimation with rigid
terrain assumptions, then correlate the output with experienced
vehicle configuration and terrain deformation using a multi-task
Gaussian Process (GP) framework. Experimental validation of
the proposed approach was performed on a prototype planetary
rover and the vehicle attitude and configuration estimate was
compared with state-of-the-art techniques. We demonstrate the
ability of the approach to accurately estimate traversability with
uncertainty in deformable terrain.

I. INTRODUCTION

To enable safe autonomous navigation of a planetary rover,

the ability to assess the terrain traversability is essential [1].

Traversability can be represented by aspects describing the

terrain, including texture and geometry, and/or aspects re-

lated to the vehicle, such as the energy required to traverse

the terrain or risk of instability for the platform [2]. This

information is critical to the rover’s path planning, whose

objective is usually to minimize the situations that may

compromise: a) the health and stability of the vehicle, or b)

its ability to pursue its mission of exploration. However, it is

well recognized that many scientifically interesting sites on

Mars are located in very rough and heterogeneous terrains,

for example with combinations of soils and rocks, and

significant risks of terrain deformation. This presents numer-

ous challenges in terms of terrain traversability estimation

(TTE). To facilitate scientific exploration while maintaining

rover safety, we are interested in developing TTE techniques

that are appropriate for challenging terrains. In particular,

our focus lies in the prediction of the vehicle attitude and

configuration, which provides information on the difficulty of

terrain traversal, and is crucial to anticipate risks to platform

stability.
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Fig. 1. Rover traveling over deformable terrain: (a) before traversal (front
wheel); (b) during traversal (back wheel). Note the differences of rock
configurations between (a) and (b).

In challenging unstructured environments, such as on

Mars, force from the rover can cause terrain deformation [3].

This affects the vehicle response and, therefore, its actual at-

titude and configuration. For example, such situations may be

very common in sandy terrain, especially when strong wheel

slip provokes wheel sinkage into the ground [4]. Another

example is in the presence of unstable rocks that move as

the rover travels over them (see Fig. 1). Accurate predictions

of vehicle attitude and configuration in deformable terrain

will enable safe and efficient operation during exploration,

by anticipating situations where:

1) the stability of the rover may be compromised,

2) terrain traversal appears more challenging and danger-

ous than it will be in practice.

Previous work tackled the problem of TTE using ter-

ramechanics approaches, modeling the physical interaction

between the wheel and the vehicle [3]. Wheel slip as well as

other metrics for traversability were developed to quantify

the difficulty of the rover traversing across the terrain [5],

[6]. In order to better estimate terrain traversability, extensive

work has been done to improve the estimation of the ter-

rain/soil parameters necessary for terramechanics equations

by empirical approaches [7]. However, a natural environment

involves a large diversity of terrain, soil types, geometry,

and appearances, and it is not practical to model each

type of soil/rock as these elements exist in a heterogeneous

nature. In addition, terrain deformation, and in particular

its impact on vehicle configuration, is largely neglected in

these state-of-the-art TTE techniques. Therefore, an accurate

prediction of vehicle attitude and configuration is crucial for

terramechanics approaches as well [5].

In this paper we propose a near-to-far learning approach

to predict vehicle configuration on deformable terrain using

a multi-task GP framework. The method first uses a state-of-

the-art TTE method to compute an initial prediction of vehi-
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cle configuration under the assumption of rigid terrain from

exteroceptive information. This estimation is then refined by

accounting for the effects of possible terrain deformation on

configuration. These effects are captured in the correlations

between such rigid-terrain predictions and actual vehicle

response learnt from experiments in a Mars analogue ter-

rain. We use stochastic representations to implicitly consider

uncertainties in sensing and localisation during learning and

in operation, and provide an experimental validation of the

prediction against ground truth.

The paper is organized as follows. Sec. II discusses recent

related work on terrain traversability estimation. Sec. III

details the proposed approach to predict terrain traversability

in deformable terrain using the correlation between ex-

teroceptive information with actual vehicle configuration.

Sec. IV describes the implementation of our approach on

our prototype rover. In Sec. V we propose an experimental

validation of the approach and analyse the results obtained.

Finally, Sec. VI proposes a conclusion and directions for

future work.

II. RELATED WORK

Previous approaches to terrain traversability estimation

(TTE) from exteroceptive information include kinematic

modeling methods to estimate the vehicle attitude and con-

figuration based on a Digital Elevation Map (DEM) and

the vehicle structure [8], [9]. However, without an exten-

sive terramechanics model and complete knowledge of the

terrain, these approaches cannot accurately estimate terrain

traversability as the interaction between the wheel and terrain

is very complex in deformable terrain. [1] proposed Terrain

Adaptive Navigation (TANav) to classify the terrain into cat-

egories. This involved metric calculations such as inclination

of the plane, roughness, and elevation of the visible terrain

area. A full kinematic and dynamic forward simulation of

the rover was then run using known terrain parameters from

a database of Martian soil [10].

Recent literature showed that by learning the associa-

tion between exteroceptive and proprioceptive sensor in-

formation, the response of the vehicle on the upcoming

terrain could be anticipated [11]. This concept is known

as near-to-far learning. [7] first learnt terrain parameters

from proprioception training data and then associated these

parameters with exteroceptive information. This allowed

them to anticipate vehicle slip in operation. However, this

approach assumes the terrain is rigid. [12] proposed a

feature-based learning approach, in which the vehicle can

learn terrain traversability from its interaction with different

terrain types encountered during training. Data acquired from

exteroceptive sensing were associated to the corresponding

Rover-Terrain Interaction (RTI) features to build an inference

model. These approaches are efficient at predicting aspects

of RTI such as slip and vibration. However, they rely on

accurate predictions of the attitude and configuration of

the platform and do not consider the effects of terrain

deformation on this prediction. Aspects such as low cohesion

soil or unstable rocks need to be accounted for, since they

can have a significant impact on the actual configuration of

the rover. In this paper, we propose to use the concept of

near-to-far learning to compute an estimate of the vehicle

attitude and configuration that accounts for the effects of

terrain deformation.

In previous work, the authors developed a GP-based

framework that was able to estimate vehicle configuration

more accurately than state-of-the-art results [13]. The ap-

proach, named Kin-GP-VE, exploited explicit correlation in

vehicle configuration by learning a new kernel function to

perform GP regression over vehicle experience. However,

the work did not account for deformable terrain explicitly in

the prediction process as it relied on training points obtained

from a kinematic model with rigid terrain assumptions.

This paper addresses such shortcomings by predicting

actual vehicle experience with terrain deformation from exte-

roceptive information. We refine the estimation results from

Kin-GP-VE with correlations to local variations in vehicle

configuration and actual vehicle experience during training.

We show significant improvements in estimating vehicle

configuration, in particular areas with terrain deformation,

using geometry information only.

III. APPROACH

We introduce an approach to predict vehicle attitude

and chassis configuration in deformable terrain using GP

regression. For convenience, in the remainder of the paper we

define vehicle configuration (Φ) to include vehicle attitude

and chassis configuration, and Rigid Terrain Traversability
Estimation (R-TTE) as the terrain traversability estimation

over rigid terrain.

State-of-the-art techniques to predict rover configuration

(R-TTE) operate in two steps. First, they build a geomet-

ric representation of the terrain. Second, they predict the

configuration of the platform at a query state s, which

includes location and heading, s = {x, y, ψ}, by placing

the rover chassis on the terrain model. This prediction of

the configuration on rigid terrain (Φrigid(s)) is consistent

with the geometry as it was observed a priori. However,

when the rover traverses over unstable terrain, the rover-

terrain interaction may cause a deformation of the terrain,

which changes its geometry at the location considered. Con-

sequently, the actual configuration of the rover, Φdeform(s),
will be different from Φrigid(s). This can only be measured

on location, by proprioceptive sensors. To illustrate the im-

pact of terrain deformation in terms of changes in elevation,

we performed a simple numerical comparison of vehicle

attitude with simulated terrain deformation (see Fig. 2).

Arguably, to some extent terrain deformation can be

anticipated by observing terrain geometry. Relying on expe-

rience, humans are capable of evaluating the potential for

deformation by observing the terrain geometry only. For

example, a random pile of rock may appear stable and solid,

or on the contrary unstable and loose (see Fig. 3). There-

fore, we propose to predict the actual vehicle configuration

Φdeform(s) in the case of terrain deformation, based on

an initial rigid-terrain prediction Φrigid(s) from R-TTE and
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Fig. 2. Vehicle attitude in a simulation environment: (a) without terrain
deformation, (b) with 10cm of terrain deformation. With terrain deforma-
tion, the vehicle experienced a change of 18◦in roll and 10◦in left bogie
angle.

Fig. 3. Stable rocks (left) and unstable rocks (right)

terrain geometry. We call this approach Rigid-to-Deformable
TTE (R2D-TTE).

In the example above, it is not possible to evaluate the

stability of the structure with only on the elevation obser-

vation at one particular query state s. The estimation relies

on an observation of the variations of local geometry in the

surrounding area. Similarly, when predicting the configura-

tion at s, the local variations in vehicle configuration will

provide information about the changes of configuration due

to terrain deformation, i.e. Φdeform(s)− Φrigid(s).
The proposed approach will demonstrate that inference on

terrain deformation and the resulting vehicle configuration

can be made by the rover from experience and without

knowledge of terrain properties such as soil cohesion. This

inference is made in a stochastic manner to account for un-

certainties in the observations during training and operation.

The system architecture of R2D-TTE is illustrated in

Fig. 4. The inputs of the system are exteroceptive data

obtained in the form of a 3D point-cloud. Offline, we

learn the correlations between the predictions made on rigid

terrain (Φrigid(s)) and vehicle experience, which includes

Φdeform(s) (from proprioception) and terrain deformation.

We can then predict vehicle configurations and terrain defor-

mation online from Φrigid(s).

Fig. 4. System architecture for Rigid to Deformable Terrain Traversability
Estimation (R2D-TTE)

The following section outlines the process used to compute

Φrigid. We then describe how we capture the local variations

in vehicle configuration. Finally, we present the process of

establishing the correlations between Φrigid and Φdeform

using multi-task GP regression.

A. Kin-GP-VE

To provide the initial prediction of vehicle configuration

under the assumption of rigid terrain, i.e. Φrigid, we use

an implementation of R-TTE named Kin-GP-VE [13]. In

this method, a training phase to learn the kernel function

first gathers vehicle configuration data with corresponding

localization during terrain traversals on rigid terrain. The

kernel matrix of the vehicle configuration is learnt from pro-

prioceptive data and then generalized into a function form for

GP regression. Using training data, terrain traversability can

be estimated in a GP framework over an entire DEM using

an incomplete map of vehicle configurations estimated from

a kinematic model as inputs. Therefore, once this process

is completed, we can query the corresponding configuration

Φrigid(s) for any query state s on the map.

B. Local Variations of Vehicle Configuration

As mentioned above, we argue that the observation of local

variations of vehicle configuration around the query state s
contributes to the prediction of the difference between the

actual configuration after terrain deformation, Φdeform, and

the initial prediction Φrigid. To capture these local variations,

we use the profile and planform curvatures (illustrated in

Fig. 5a and 5b respectively) of each component of the vehicle

configuration, computed over a 3 × 3 neighbourhood in the

DEM grid [14]. Consider the DEM neighbourhood shown

in Fig. 5c, where (i, j) represent the corresponding indices

of the discretised position (x, y) on the DEM, from which

we want to predict the vehicle configuration. For each angle

in Φ we compute the corresponding curvature. For example,

for the roll, φ, this can be expressed as:

φcurvprofile
=

2(DG2 + EH2 + FGH)

G2 +H2
,

φcurvplanform
=

−2(DH2 + EG2 − FGH)

G2 +H2
,

(1)

where:

D =
φi,j−1 + φi,j+1

2
− φi,j , E =

φi−1,j + φi+1,j

2
− φi,j ,

F =
−φi−1,j−1 + φi−1,j+1 + φi+1,j−1 − φi+1,j+1

4
,

G =
−φi,j−1 + φi,j+1

2
, H =

φi−1,j − φi+1,j

2
,

(2)

and φi,j denotes the configuration angle predicted at position

index (i, j) and heading ψ, i.e. taken from Φrigid(s). We then

combine these two components with:

φcurv = φcurvprofile
− φcurvplanform

. (3)
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(a)

(b) (c)

Fig. 5. (a) Profile Curvature. (b) Planform Curvature. (c) Cell reference
of the vehicle position index (i, j) for determining φ(i, j) on the DEM.

Each vehicle configuration angle and corresponding com-

bined curvature, such as the combined curvature for vehicle

roll (φcurv), are included in the training input X , which is

used for learning.

C. Learning Configuration in Deformable Terrain with GPs

1) Multiple Input GP Regression by Automatic Relevance
Determination (ARD): To estimate vehicle response from

deterministic inputs we use GPs to learn the underlying

model of spatially correlated data with uncertainty [15].

Gaussian approaches are multivariate Gaussian distributions

that are defined by a mean function m(X) and a covariance

function k(X,X ′)

m(X) = E[f(X)],

k (X,X ′) = E[(f(X)−m(X))(f(X ′)−m(X ′))],
(4)

where X is our training input that includes Φrigid(s) esti-

mated using Kin-GP-VE, and the corresponding curvatures.

The details of our implementation are given in Sec. IV-B.

To enrich the learning process, we introduce a multi-

dimension representation of vehicle states in our training

input vector to incorporate the different training inputs.

We use inputs from Φrigid(s), which is deterministic, and

thus we expect consistent “perceived” vehicle configuration

extrapolated purely from terrain geometry information.

We use GP regression with the Squared-Exponential (Sq-

Exp) covariance function with added noise [16]. This was

selected based on its ability to model all orders of additive

interactions, and automatically determine which orders of

interaction are important based on ARD, which results in

high modeling efficacy and model interpretability. Using

a separate length scale for each training input dimension,

we can determine the correlation between each training

input [15]. Consider the Sq-Exp kernel function in its para-

metric form:

k (X,X ′) =

σ2
f exp

(
−1

2
(X −X ′)T M (X −X ′)

)
+ σ2

nδpq,
(5)

where θ =
(
{M}, σ2

f , σ
2
n

)T

is a vector containing the

hyperparameters for the kernel function, and δpq is noise.

Matrix M is:

M = diag(l)−2, (6)

where l is a vector of positive values for each length scale,

which we can optimize via marginal likelihood marginaliza-

tion. The log marginal likelihood can be expressed as:

log p (z|X, θ) = −1

2
zTK−1z − 1

2
logK − n

2
log2π, (7)

where n is the number of data points, and K is the kernel

matrix for the training targets z, which include Φdeform(s).
The details of our implementation are given in Sec. IV-B.

2) Multi-task GP Regression: Most GP implementations

model only a single output variable. As the outputs (vehicle

states) in this prediction process are highly correlated, we

cannot use an independent model for each output, such as

multi-kriging. Joint-predictions are possible, although it is

non-trivial to define the covariance functions for predicting

outputs. In addition, it is difficult to define cross-covariance

functions that result in positive definite covariance matrices

required for GP regression.

One approach to account for correlations between outputs

employs Convolution Processes (CP) [17]. In this approach,

each output can be expressed as the convolution between a

smoothing kernel and a latent function. Consider a set of Q

functions, where each function is a convolution between a

smoothing kernel kq and a latent function u(z):

fq(X) =

∞∫
−∞

kq (X − z)u(z)dz, (8)

We use the Sq-Exp kernel function with isotropic distance

measure for the smoothing kernel, and assume heteroscedas-

tic noise:

kq (X − z) =
Sq|Mq|1/2
(2π)p/2

exp

[
−1

2
(X − z)

T
Mq (X − z)

]
.

(9)

More generally, we can consider the influence of multiple

latent functions on the function yq , and also an independent

process such as noise wq(x):

yq(X) = fq(X) + wq(X)

=
R∑

r=1

∞∫
−∞

kqr (X − z)ur(z)dz + wq(X).
(10)

If we assume the latent functions to be independent

GP functions, we can express the covariance between two

different functions yq(X) and ys(X
′) using a multiplication

of Gaussian distributions to obtain Gaussian kernels:

cov [fq(X), fs(X
′)] =

R∑
r=1

∞∫
−∞

kqr (X − z)

∞∫
−∞

ksr (X
′ − z′) kurur

(z, z′) dz′dz.

(11)

Similarly, the correlation between the latent function and any
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given input can be computed as:

cov [fq(X), ur(z)] =

∞∫
−∞

kqr (X − z′) kurur (z
′, z) dz′.

(12)

Using the covariance matrices in Eqs. (11) and (12),

we can perform joint-prediction of Φdeform(s) and terrain

deformation by iteratively calculating the matrices for each

latent function and input.

IV. IMPLEMENTATION

We demonstrated the implementation of the framework

in an experimental setting with a rover platform on a Mars-

analogue terrain. During learning, we performed experiments

to engage the rover in the range of motions that it was

likely to encounter during operation. We first predicted the

Φrigid(s) on the visible terrain using Kin-GP-VE. We then

learnt the hyperparameters that described the correlations be-

tween the predictions from Kin-GP-VE, vehicle experience,

and terrain deformation in a multi-task approach. During

operation, we estimated Φrigid(s) using Kin-GP-VE, then

performed a GP regression using the learnt hyperparameters

to determine a continuous representation of Φdeform(s) and

deformations.

A. Platform - Mawson Rover

Mawson, our rover platform, is a 6-wheeled rover with a

rocker-bogie chassis and individual steering motors on each

wheel (Fig. 6). Onboard sensors include:

• two color cameras and an RGB-D camera (Microsoft

KinectTM ) mounted on a pan-tilt unit, tilted down

≈ 25◦, which is used primarily for terrain modeling.

• two Hall-effect encoders (α1, α2) on the rear bogie

mechanisms, and a potentiometer on the rocker differ-

ential, to measure the configuration of the chassis.

(a)

+X

+Y
+Z

�

�

�

�

�1

2
REAR

FRONT

(b)

Fig. 6. (a) Mawson Rover. (b) Chassis Configuration.

During our experiments, localization data was obtained

using the Intersense IS-1200 motion capture system, which

combines camera and IMU sensor data to determine the

6-DOF sensor pose (x, y, z, φ, θ, ψ) (where φ is the roll, θ
the pitch and ψ the yaw) with an accuracy of 2 cm and

1◦ respectively. Pose is given with respect to a constellation

of fiducials in the environment, which were geo-referenced

using surveying equipment. This pose was used for ground

truth in our validation process.

3D point-clouds provided by the RGB-D camera are used

to obtain exteroceptive data. For outdoor operations, where

the RGB-D camera may be unable to provide a point-cloud,

3D point-clouds obtained from dense stereovision can be

used instead without affecting the conclusion of this study.

In order to associate the point-clouds acquired by the

RGB-D camera with the localization, we performed exte-

roceptive calibration between the two sensors off-line to

estimate the transformation between them [18].

B. GP Learning Inputs and Outputs for Vehicle Response
Prediction

In our experiments, we collected data that included terrain

geometry, vehicle attitude, and configuration. The training

input X included Φrigid(s) estimated from Kin-GP-VE, as

defined in Fig. 6(b):

X = [φ, φcurv, θ, θcurv, α1, α1curv , α2, α2curv ] . (13)

This was discretized over 32 equally spaced yaw angles to

facilitate learning with fewer data points.

The training target z included the Φdeform(s) experienced

when the vehicle traversed the terrain, and the actual terrain

deformation (Tdeform):

z =
[
φexp, θexp, α1exp

α2exp
, Tdeform

]
. (14)

Terrain deformation is included in the training target as it

is strongly correlated with Φrigid(s) and Φdeform(s). Since

these correlations are accounted for in the GP regression,

the estimation accuracy of Φdeform(s) is improved with the

inclusion of terrain deformation in the training target.

We use a binary variable to indicate terrain deformation

that provokes a change in vehicle configuration, i.e. 1 if

deformation has occurred, 0 if it has not. We define defor-

mation to have occurred if the difference between Φrigid(s)
and Φdeform(s) gathered from localization is higher than

0.1 radians. This was determined by combining the uncer-

tainty in proprioceptive data and Φrigid(s) estimated from

Kin-GP-VE. This discrete approach was favored over a

continuous representation of the change in terrain geometry

because of the adverse effects of sensor and localization error

on accurately determining terrain deformation. Instead, we

predicted the occurrence of any terrain deformation that may

affect vehicle configuration and quantified it with respect to

the regression noise in the training input.

V. EXPERIMENTS AND RESULTS

To facilitate learning in an environment similar to Martian

terrain, we conducted experiments at the Marsyard, an indoor

Mars analogue terrain hosted at the Powerhouse Museum

in Sydney, Australia. Three areas, with different terrain

characteristics, were selected for experiments. To validate the

proposed approach, we performed experiments to evaluate

the accuracy of the predictions achieved by the proposed

approach and compared the results with other state-of-the-art
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methods described in Sec. II. We compare our results against

Kin-GP-VE, which demonstrated marked improvement over

state-of-the-art R-TTE methods [13]. As a baseline, we

also provide comparisons against DEM-Kin, which predicts

vehicle configuration based on vehicle kinematics directly

on a DEM [9]. Predictions of Φrigid(s) were made with a

Root Mean Squared Error (RMSE) of 3◦ to 8◦. Learning was

performed with approximately 30000 points of exteroceptive

data with corresponding measurements of Φdeform(s) col-

lected from the localization system during traversals, which

we consider to be ground truth. A further 5000 points of data

were collected for cross-validation. We used a grid resolution

of 5cm, which is approximately equivalent to the radius of

the wheel of the rover.

A. Predicting Φdeform from Φrigid

We evaluated the ability of our approach to predict vehicle

configuration in deformable terrain using exteroceptive sens-

ing. We first predicted Φrigid(s) using Kin-GP-VE. These

data were then used to calculate the local variations of

vehicle configuration and to train the hyperparameters of the

GP, which were used to predict the vehicle configuration over

each of the training areas. The result from the GP regression

was cross-validated with proprioceptive data obtained during

traversals. In each of the results, N denotes the number of

latent functions used in the GP regression.

The GP regression results for pitch and deformation prob-

ability over 500 validation points can be seen in Fig. 7 and

Fig. 8 respectively. The estimate made using R2D-TTE is

more resistent to deviations in the input data and yields

a more accurate estimate based on correlations between

exteroceptive and actual vehicle experience compared with

the estimate made using R-TTE methods.
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Fig. 7. GP regression results for predicting θ over 500 validation
points, zoomed over sample number 110 to 220. Grey area indicates a 1σ
confidence interval.

Fig. 9 shows the RMSE in vehicle roll, over areas defined

as rigid or deformable terrain. It shows improvements in

estimates using R2D-TTE over Kin-GP-VE and DEM-Kin,

with reduced estimation error of up to 55% and 73% of

the vehicle roll estimate over rigid and deformable terrain,

respectively, compared with Kin-GP-VE, and up to 61% and

78% compared to DEM-Kin. Although the RMSE using

R2D-TTE over rigid terrain is still lower than the RMSE

of the estimate over deformable terrain, it is a significant
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improvement over the state-of-the-art R-TTE techniques,

which are not designed to consider deformation.

We also evaluated the ability of the approach to estimate

vehicle configuration in an area with more deformation

than that experienced during training, using hyperparameters

learnt from other training areas. This was done by introduc-

ing a terrain feature that changed its geometry significantly

when the rover traversed over it. The GP regression results

can be seen in Fig. 10, which shows the prediction for

pitch and left bogie angles over 65 validation points. We

see that the mean estimate from R2D-TTE occasionally

underestimated the vehicle configuration in areas with high

terrain deformation (i.e. sample number 20 to 42 in Fig. 10).

This may be a result of inaccurate inputs from R-TTE, which

hinders the ability of R2D-TTE to anticipate the impact

of terrain geometry on vehicle configuration in deformable

terrain. However, the associated uncertainties account for

such cases and the resulting error (w.r.t ground truth) still

lies within the 1σ confidence interval.

Fig. 11 shows the estimate of terrain deformation, which

is predicted as a probability. A higher error can be seen

in estimating this quantity. This may be attributed to a

compounding of errors from the sensor and localization

during experiments, which can lead to additional errors in

the estimate from Kin-GP-VE and the association between

exteroceptive and proprioceptive data. As the ground truth

in deformation is a qualitative measure, actual deformation
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may have been mis-represented in the training data due to

different error sources.
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Fig. 10. GP regression results for predicting θ and α1, respectively, over
an area with higher deformation than that experienced during training. Grey
area indicates a 1σ confidence interval.
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Fig. 11. Deformation probability predictions over an area with higher
deformation than that experienced during training

VI. CONCLUSION

This paper introduced a novel method for predicting vehi-

cle configuration angles of a planetary rover over deformable

terrain. The proposed method first uses a state-of-the-art

R-TTE method to predict vehicle attitude and configuration,

and then refines this prediction by accounting for effects of

terrain deformation using learnt correlations between Φrigid

and Φdeform. Experimental validation of the method showed

significant improvement in estimating vehicle configuration

over state-of-the-art techniques, particularly in deformable

terrain. In addition, the validation process demonstrated the

ability to provide predictions of vehicle configuration in an

area with more terrain deformation than that experienced

during training. In future work, we will consider terrain de-

scriptors other than geometry that would contribute towards

discerning deformable terrain, such as color and texture, to

improve estimation accuracy.

Although the proposed approach was able to estimate

the probability of terrain deformation, the training data

contained errors from the experiments such as sensor and

localization errors, which may lead to misrepresentation of

the actual deformation. Therefore, further improvement in

the estimation accuracy of vehicle configuration and terrain

deformation would require more accurate measurements of

the changes in terrain geometry as the rover traverses over it.

In future work, we plan to obtain this information from an

external observation setup, such as a geo-referenced LIDAR

or a multi-camera system.
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