
Implicit robot coordination using Case-Based Reasoning behaviors

J.M. Peula, C. Urdiales, I. Herrero and F. Sandoval

Abstract— Multi-robot systems (MRS) are a very active and
important research topic nowadays. One of the main problems
of these systems is the large number of variables to take into
account. Due to this, robot behaviors are sometimes learnt in-
stead of calculated via analytical expressions. A typical learning
mechanism, specially for biomimetic robots, is Learning from
demonstration (LfD). This paper proposes a LfD approach
for implicit coordinated navigation using combination of Case-
Based Reasoning (CBR) behaviors. During a training stage,
CBR is used to learn simple behaviors that associate positions
of other robots and/or objects to motion commands for each
robot. Thus, human operators only need to concentrate on
achieving their robot’s goal as efficiently as possible in the
operating conditions. Then, in running stage, each robot will
achieve a different coordinate navigation strategy depending on
the triggered behaviors. This system has been successfully tested
with three Aibo-ERS7 robots in a RobCup-like environment.

I. INTRODUCTION

Multi-robot systems (MRS) have been applied in a wide

range of different scenarios. The reason is that MRS can

perform a given task faster and more effectively [1] than a

single robot. However, coordination between robots can be

difficult to accomplish.

Although there is a wide variety of coordination strategies

[2], they can usually be divided into two groups [3]: explicit

coordination [4] and implicit coordination [5]. In explicit

coordination, robots communicate with each other in order to

explicitly coordinate their actions –normally via deliberative

planning–. On the other hand, in implicit coordination each

robot acts on its own taking into account the existence of

the others and even sharing information between them –

where they are or what they see–, but without explicitly

making decisions together. In this case, coordination is

normally achieved in the form of an emergent behavior,

arisen from the combination of simpler ones [6]–[8]. This

kind of coordination is easier to achieve through training,

as it only requires to train a robot simultaneously, while the

others act on their own.

Independently of the strategy, coordinated systems are

based normally on hierarchical hybrid planning in order to

deal with the complexity of the environment in real time.

Specifically, most works on legged robots rely on behavior

based architectures [9], which are typically built in a bottom-

up way. The key to these approaches is how to develop these

low level behaviors and how to arbitrate them.

Low level behaviors can be achieved using analytical

equations or via behavior learning. Analytical equation is a

J.M. Peula, C. Urdiales, I. Herrero and F. Sandoval are with Depart-
ment of Tecnologı́a Electrónica, E.T.S.I, Telecomunicación, Universidad
de Málaga, Campus de Teatinos S/N, 29071 - Málaga (Spain). peula,
acurdiales, nhr, fsandoval@uma.es

typical solution that provides the same behavior for similar

input instances. However, in order to get different or specific

responses it is necessary to rewrite the equations, what can

be difficult if they depend on a large number of variables.

Another option is to learn the desire behavior [10]. The main

advantage of this approach is that in order to get different

responses, it is only necessary to train again the system or

to mix different trainings.

Thus, learning approach can be a more flexible and easier

way to perform different, specific responses – comparing to

the use of analytic equations–. Although there are different

machine learning techniques, one of the most typical ones

is Learning from demonstration (LfD) [10]. This technique

associates state/action pairs and makes possible to train a

robot behavior from examples provided by a supervisor.

LfD includes a variety of machine learning strategies [32]

such as case-based learning, decision-tree learning, bayesian

learning, etc. Each strategy has advantages and drawbacks,

however we have chosen Case-Based Reasoning (CBR)

because it is very intuitive for humans since it is tightly

related to the way humans reason.

This paper presents a LfD-based approach to develop com-

plex coordinated navigation using simple learnt behaviors.

Thus, a complex behavior such as get a ball and score avoid-

ing the opponents, is divided in simple behaviors and trained

independently. These simple behaviors associate positions

of other robots and/or objects to motion commands while

training. Robot training is made via teleoperation, which

has the main advantages [7], [11]: i) no explicit kinematics

model of the robots is required, ii) systematic sensor and

mechanical errors are implicitly absorbed by the model, and

iii) the state/action pairs are directly recorded without need of

any conversion function. Hence, during training CBR couples

human’s commands at a given circumstance with the robot

perception. Thus, if robot perception includes positions of

other robots and/or objects, it will learn what the person

does in that situation and, implicitly, coordinate navigation.

Thus, this approach is suitable for complex coordinated

behaviors that are difficult to train or to implement ana-

lytically but easy to divide into the combination of simple

behaviors that are easier to train than to implement analyti-

cally. Moreover, it is specially interesting in case of legged

or heterogeneous robot teams, as kinematics and errors are

implicitly absorbed thanks to the teleoperation training.

The paper is structured as follows. First, robot localization

algorithm is explained in section II. Then, sections III-A and

III-D presents behavior definition and learning for each basic

behavior. Once simple behaviors have been trained, they are

combined to perform an emergent coordinated behavior –

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 5929

section III-E–. Finally, section IV shows the experiments

using three Aibo-ERS7 robots and section V presents our

conclusions and future work proposal.

II. VISUAL LOCALIZATION

In robot coordination and navigation problems the robot

usually requires to know its relative position with respect to

the target, obstacles and other teammates in the environment.

There are many different localization algorithms depending

on the problem to be solved and, more specifically, on

the existence of artificial landmarks. In our case, our test

environment is a RoboCup-like soccer field. In RoboCup

competition, specially when using legged robots, localization

is usually visual as the field includes color landmarks at

known positions that the robot may use for global localiza-

tion. Thus, our localization algorithm is based on artificial

visual landmark detection [7] [12].

The most frequent localization techniques lately are based

either on using probabilistic techniques such as Kalman

filters [13] or particle filters [14] to better estimate the

robot position. We have chosen a particle filter, that is a

probabilistic method to estimate the state of a system at a

certain time t based on current and past measurements. The

probability (p(Xt|Zt)) of a system being in the state Xt,

given prior measurements (Zt = z0, ..., zt), is approximated

by a set of N weighted particles (St = {x
(i)
t , π

(i)
t }, i =

1...N). Each particle xt describes a possible state with

an associated weight (π
(i)
t), which is proportional to the

likelihood that the system is in this state. Thus, the current

location (state) of the robot is modeled as the density of

a set of particles whose weights depend on the landmarks

observed by the robot.

III. COORDINATION BY LEARNING

The main objective of this paper is to achieve implicit co-

ordinated navigation between different robots using LfD. As

commented by different authors [6]–[8] a complex behavior

can be modeled via the combination of simple ones. The

main advantage of the use of basic behaviors is that they are

less sensitive to sensor errors, more generic, easier to develop

and test and adapt better to most situations and environments

[15]. If more efficient and complex behaviors are required,

the system can be hybridized via a higher level control layer

(e.g. [16]) to modulate a proper triggering sequence.

The main issue to achieve a complex coordinated behavior

is how to divide it into simple behaviors. In our soccer

problem, we will use an example with two attackers from one

team that need to coordinate to score in the opponent’s goal

while avoiding the opponent’s team defender. Analytically,

the task could seem easy to accomplish. However, We have

choose this example because in a two-on-two situation, if

both teams have a good coordination algorithm/training, each

team advantage will depend more on the robots itself –

i.e: one robot is faster– and in hazard factors than in the

coordination itself – i.e: a two-on-two situation can become

a one-to-one situation if each defender covers one attacker–.

Hence, despite the numeric advantage this example shows the

importance of coordination. Thus, for solving this example,

the attackers have to decide who is going to get the ball, to

avoid interfering each other. Once one has the ball, it has to

move to the enemy’s goal and avoid the defender to score.

If the defender is effectively blocking it, it has to pass the

ball to its teammate, that should be far from them and in an

strategically good position. Once we have decided what the

robots have to do, we have to divide it in simple tasks. For

example get ball, avoid obstacle, go to the sideline, move in

parallel... However, there are a lot of potential problems that

robots have to solve, depending on the relative positions of

all three robots at a time, as well as their own kinematics

and dynamics, mechanical and sensor errors, etc. Hence, low

level behaviors are trained using CBR by a person using a

joystick to control each robot separately. The main advantage

of this approach is that people is naturally good at adapting

and improvising. For example, if a robot is limping due to

a mechanical problem, the human controller will adapt and

correct the trajectory to achieve the required goal in a natural

way. Besides, people are also good at dealing with many

issues at the time, including the rest of robots and objects

in the environment. After supervised training, all robots may

run in standalone mode, where the case-base returns the most

appropriate learnt case depending on the situation.

Next sections present simple behavior division, codifica-

tion into CBR cases, training necessary for each behavior

and how behaviors are combined and triggered to achieve

the expected complex behavior.

A. Simple behavior definition

In this section we show how to divide our example

behavior (coordinating two attackers against one defender

to score a goal) into simpler ones and train them. First, an

important stage in our approach is to determine correctly

the necessary basic behaviors. These behaviors should be as

generic as possible, so they can be reused in many situations.

Hence, instead of mentioning a ball, goal or teammate, our

simple behaviors consider an object, that can be a goal, an

obstacle or both depending on the behavior itself.

After analyzing the global behavior to be acquired, we

noted that we needed the following basic ones:

• Get object: the target of this behavior is just to get to an

object (ball, enemy goal, etc.) from the current position.

• Avoid object: the target of this behavior is to avoid a

close object (objects, teammates or opponents) in the

moving direction.

• Avoid collision: the target of this behavior is to avoid

imminent collisions with obstacles (objects, teammates

or opponents). This is an emergency behavior that

overcomes all the rest.

• Go to sideline: the target of this behavior is to guide

the robot through the field sideline to approximate to

an objective (enemy’s goal for example).

• Move in parallel: the target of this behavior is to guide

the robot so that it moves in parallel (keeping its

distance) with an object (for example, a teammate).

5930

• Defend object: the target of this behavior is to protect

an object from another object (for example, defend goal

from an opponent).

A correct combination of these behaviors should return

the appropriate complex behavior for each circumstance.

From the explained behaviors, the simplest ones –i.e. avoid

collision– are analytically implemented, whereas the more

complex ones are trained, as explained below.

B. Case-Based Reasoning

LfD includes a variety of machine learning strategies [17]

such as: case-based learning, decision-tree learning, bayesian

learning or evolutionary learning. Each of these learning

strategies has advantages and drawbacks. However, we have

chosen CBR because it is very intuitive for humans since it is

related to the way we reason. In addition to it, CBR has been

chosen over other well known techniques such as Artificial

Neural Networks [18] because in CBR knowledge is stored

in a plain case-base, what makes possible to understand why

the robot is acting in a specific way.

CBR is a reasoning, learning and adaptation technique,

derived from the theory of the Dynamic Memory [19], that

solves problems by retrieving and adapting past experiences,

called cases, and proposing solutions for present problems

[20]. The essence of CBR is based on the assumption that

similar problems have similar solutions.

CBR has been applied to different tasks [21] such as

classification, diagnosis or planning. In the area of robotics,

CBR has been used typically for high level planning [22]

such as behavior and action selection [23], [24]. In this paper,

however, CBR is used for learning low level behaviors.

The typical CBR cycle, or 4R format, consists of four steps

–retrieve, reuse, revise and retain–. In our case, however,

only two of them – retrieve and reuse – are used in the CBR

cycle. Revise and retain steps have been skipped because

it can be a bit difficult to check if the output response

corresponds to the expected one if it depends on the average

output of several behaviors, running in parallel, that can also

adapt their outputs respect to trained one. In any case, and

independently of the CBR cycle used, before running CBR in

standalone mode it is necessary to define inputs and outputs

for the CBR cases and train it.

C. CBR case definition

CBR associates in a case a specific object(s) configuration

to the user’s command for a particular situation. Hence, CBR

fits perfectly the idea of a low level behavior coupling each

stimuli —robots’ or objects’ positions— and action —motion

commands— as input/output respectively. At reactive level, it

is extremely important to correctly define inputs and outputs

for each behavior. In our case, the output for all behaviors is

the same –the motion command that the robot has to execute–

but the input instance is different for almost all behaviors.

Table I summarizes inputs for each proposed behavior and

Fig.1 shows a graphical representation of the variables used

in the case input instance.

CBR case inputs

In1 In2 In3 In4

Get object Oρ Oθ

Avoid object Oρ Oθ

Go sideline θref − Rθ RY

Move in parallel θref − Rθ O2

X − RX O2

Y − RY

Defend object O1

X − RX O1

Y − RY O2

X − RX O2

Y − RY

TABLE I

CBR CASE INPUTS FOR EACH CBR BEHAVIOR

(RX , RY , Rθ) being the absolute cartesian coordinates of

the robot and its orientation, (Oρ, Oθ) the relative polar

coordinates of the object respect to the robot position,

(ON
X , ON

Y) the absolute cartesian coordinates of the object

N and θref the reference angle for the robot to move in

that direction –0◦ for moving to the right and 180◦ to the

left–. All distances are measured in centimeters and angles

in degrees. It can be observed that get object behavior only

depends on the relative polar position –respect to the robot–

of the object to get (ball, goal, etc.) whereas defend object

behavior depends on the relative cartesian position –respect

to the robot– of the object to defend –object 1– and the object

that attacks –object 2–. Note that robots share their positions

calculated via a particle filter as commented in section II.

Fig. 1. Representation of the variables used as inputs in CBR cases.

D. Simple behavior learning

As commented, CBR acquires stimuli/perception pairs that

gather the experience of a human. In order to acquire this

information, we propose a supervised CBR training. We have

divided our training stage in two steps: information gathering

and CBR case-base extraction.

During the information gathering stage, a human teleop-

erates the robot to achieve the desired basic behavior –i.e.

get object– while information –the current joystick command

and the input instance– is stored each 100ms. This learning

stage needs to be performed for each behavior to acquire.

Time required for each training depends on the training itself,

but in general it takes 5-10 minutes. During each training

the robot learns how the human behaves in each situation

taking into account, implicitly, the robot specifics (dimen-

sions, kinematics, dynamics, sensor errors...). Obviously, the

human should try to cope with all expected situations in

each behavior training. It should be noted that the training

depends on the trainer. Thus, the better the supervisor skill

the better the training will be. However, as most of behaviors

are very simple, non-optimal trainings will only result in

more erratic emergent behavior. Thus, the most important

issue, at this point, is to define each behavior as simple and

clear as possible to avoid redundancy, ambiguity and noise in

5931

acquired information. Fig.2 shows the different trajectories

perform during each of the proposed behaviors’ trainings in

our example. Although the more the robot is trained, the

better the acquired behavior, these trajectories have proven

to be enough to achieve the desired ones.

Fig. 2. Trajectories perform during training sessions for each of the
behaviors: a) get object, b) avoid object, c) go sideline, d) move in parallel
and e) defend object.

It can be observed in Fig.2.a that the robot is trained to

reach the object –in this case a ball– from different positions.

Fig.2.b shows how the robot is trained to avoid an object –in

this case a robot– in the moving direction. Fig.2.c shows a

positioning training, in which the robot is trained to go to

the opponent field area following the field sideline. In Fig.2.d

we can observe how robot is trained to move in parallel and

at a certain distance from a reference object –a robot–. And

finally, Fig.2.e shows how the robot is trained to defend an

object –goal– by blocking another object –an enemy robot–

to prevent it from reaching the first object –goal–.

After training, gathered information is processed to extract

CBR cases and generate the different CBR case-bases –one

for each behavior–. Then, each extracted case-base is filtered

and clustered. During filtering, cases whose output –motion

command– is null are removed to prevent local minima (the

robot stops and never moves again). During clustering, cases

with similar input and output instances are removed and

cases with similar input and different outputs are marked

for supervised verification. This step is specially important

because clustering: i) avoids cases in which the same input

has different outputs –avoiding oscillations between cases

related to similar input instances coming from different

training– and ii) optimizes CBR so that number of cases is

bounded. It has to be noted that CBR cases are extracted from

our system log, that saves each 100 milliseconds. Thus, after

filtering, many cases are repeated or too similar. For example,

in the get object behavior, our CBR case-base has over 600

cases after training, but only 50 cases after clustering.

The clustering algorithm we use is very simple: it just

browses the case-base in order, chooses the first case (C0)

and removes from the database all cases whose Chebyshev

distance to the chosen one (Eq. 1) is lower than a threshold.

After that, it chooses the next case in the database and

searches again for similar cases, repeating this operation till

the end of the case-base. The distance threshold for inputs

is set heuristically to 5, what means –approximately– that

cases in which objects’ positions are within a range of 10

centimeters are considered to be trained in the same position

and so removed from the case-base. The distance threshold

for outputs is set heuristically to 25% of the maximum value.

D =
NL
max
i=1

(| ~C0(i)− ~Cn(i)|) (1)

NL being the length (number of components) of vectors

to check ~C0 and ~Cn.

E. Simple behavior combination

At this point, we have trained via supervised learning all

required low level behaviors that, combined, will provide

a coordinated navigation behavior. Thus, it is necessary to

determine how these behaviors are combined and which are

the inputs for each behavior –as input can be any robot, goal

or ball–.

As commented at the beginning of section III, we use

an upper layer, statically configured at robot startup, that

triggers behaviors according to the configured conditions.

This upper layer is an analytical algorithm that only checks

a set of conditions and, depending on the result, launches the

corresponding low level behaviors. This layer also calculates

the final motion command sent to the robot –obtained as

the weighted average of all low level behaviors’ outputs–

and establishes the corresponding weight for each behavior.

Weights for all behaviors are set to the same value, except

for avoid object and collision behaviors that, when launched,

gain control of the robot for security reasons. We have chosen

to work like this because this upper level behavior is actually

easier to define in an analytical way and less dependent on

the specifics of each robot as long as low level behaviors are

working properly.

Our upper layer allows different triggering combinations:

behaviors in sequence, in parallel or a combination of both.

For example, if we want the robot to search for the ball

and then to score a goal, it is just necessary to configure

this layer to run in sequence the get object behavior twice

having as input the ball in the first behavior and the goal in

second one. Hence, this upper layer also determines which

input is sent to each low level behavior. For example, if we

want the previously commented behavior to be combined

with obstacle avoidance, we need to run in parallel the avoid

object behavior with the other ones, setting the obstacle

to avoid –for example the closest robot– as input and the

obstacle to be in the moving direction as triggering condition.

For parallel behaviors, the combined motion command sent

to the robot is the weight average of all outputs from all

5932

enabled behaviors, where their weight will depend on the

situation to solve. In the previous example, if there is an

obstacle in the moving direction at 50 cm or less –triggering

condition–, the weight of the avoid object behavior grows

and it gains control until the obstacle is farther than 50 cm

or no longer in the moving direction. In any other case, the

weight of this behavior is set to 0.

Next section shows different combinations of the low level

behaviors tested with the robots and the results obtained in

each case for the proposed example.

IV. EXPERIMENTS AND RESULTS

This section briefs results from several runs of the pro-

posed example to check the performance of the system.

The goal of presented tests is to prove that combination

of learnt behaviors provides different efficient coordinated

behaviors as expected. Our test environment is a RoboCup

soccer field –scaled to 2 x 1.5 meters– and all involved

robots localize themselves using particle filters and visual

landmarks localization. All robots in a team share their

positions between them via WiFi. Tests have been performed

with ERS-7 Aibo robots (no simulations).

In order to test coordinated navigation, we have tried two

different behavior combinations involving three robots: two

from the same team (R1 and R2) and another from the rival

team (R3). All of them include an avoid collision analytical

behavior that is launched in case of imminent collision to

stop the robot and, if the robot has the ball, to steer it in order

to pass the ball to the nearest teammate. As commented,

since this behavior is quite straightforward, it is programmed

instead of learnt.

In the test in Fig.3, robot R1 is configured to run the

avoid object behavior (input: nearest robot) and the move

in parallel behavior (input: nearest teammate). Robot R2 is

configured to run in sequence the get object behavior (input:

ball), and, after reaching the ball, get object behavior (input:

opponent’s goal). Finally, R3 is stopped and works as an

obstacle this time.

Fig. 3. Snapshots of test 1.

In Fig.3.b we can see how R2 (behavior: get object, input:

ball) goes straightly to the ball, while R1 (behavior: move in

parallel, input: R2) tries to be in parallel with R2. Fig.3.c

shows how R2 (behavior: get object, input: opponent’s goal)

now goes to the opponent’s goal while R1 (behavior: avoid

object, input: R3) avoids R3, which is in its moving direction.

Finally, Fig.3.d shows how R2 gets the opponent’s goal and

R1 returns to its position in parallel respect to R2. The

results from this test were similar for any departure position

of the attacking robots and defender, proving that behaviors

acquired from the training paths in Fig.2 are generic enough

for our tests.

In the second test (Fig.4), robots R1 and R2 are configured

to run several behaviors at a time: i) avoid object (input:

nearest robot); ii) move in parallel (input: nearest teammate)

if the robot does not have the ball nor is the robot closest to

the ball; iii) get object (input: ball) if the robot does not have

the ball nor is the closest robot to the ball; iv) go sideline

(input: enemy’s goal reference angle) if robot has the ball;

and v) get object (input: enemy’s goal) if robot has the ball

and the goal distance is lower than 1 meter. Finally, R3 only

runs the defend object behavior (inputs: its own goal and the

nearest enemy with the ball) if an enemy robot has the ball.

Fig. 4. Snapshots of test 2.

In Fig.4.b we can see how R2 goes straightly to the

ball while R1 begins to move in parallel with R2 while

R3 does nothing. Fig.4.c shows how R2 now goes to the

field sideline (after getting the ball), R1 moves in parallel

with R2 and R3 moves to block R2 (nearest enemy with the

ball). Finally, Fig.4.d shows how R2 stops due to imminent

collision with R3 –blocking R2–. Then R2 passes the ball

to R1, and R1 moves to the goal. R3 tries to stop R1 in its

way to the goal, but it manages to avoid R3. If we change

the relative position of the robots, but keep the high level

strategy, we achieve different coordinated behaviors, but the

same global outcome. In this test, attacker team got its goal

in approximately 90 % of runnings. In the cases in which

the team did not get the enemy goal it was due to wrong

robot localization or non-refined behaviors.

These two tests shows how robots can perform a coordi-

nated behavior by combining a set of simple learnt ones and

how this global behavior can be modulated depending on

what low level behaviors are simultaneously triggered and

5933

how they are sequenced.

V. CONCLUSIONS AND FUTURE WORK

This work has presented a LfD approach to achieve emer-

gent coordinated navigation via combination of low level

learnt behaviors. During supervised training, these behaviors

are learnt via CBR from a trainer to benefit from human

adaptation skills. Advantages of this approach are that: i)

dynamics, kinematics and sensory errors can be implicitly

absorbed; and ii) some behavior specifics can be acquired

even though they are not easy to codify into an analytical

expression. The system has been tested with three Aibo-

ERS7, using particle filter and visual landmark localization,

in a RoboCup-like field.

Navigation is implemented at low level, by associating

provided motion commands with the position of other robots

and/or objects. The input instance is loosely defined on

purpose to allow generalization for different tactics and

problems. CBR is used to store these stimuli/perception

pairs through supervised learning while training each of the

low level CBR behaviors. After training of the desired low

level behaviors, they are combined (in parallel, in sequence

or both) by a high level layer to perform more complex

behaviors that result in an emergent coordinated navigation.

Tests show that it is possible to obtain different trajectories

depending on enabled behaviors and how they are combined.

One of the main advantages of the proposal is that it is

fairly easy to add new robots and/or sensors to the system by

just adding new basic behaviors. Besides, the system can be

exported to different robots without major changes as long as

we train them for a while. Another advantage is that global

behavior is easy to modify by changing the combination of

low level behaviors used. Whereas low level behaviors are

not that easy to predict, experiments have proven that the

global emergent behavior typically follows the guidelines

imposed by the high level layer.

Future work will focus not only on testing this approach

with more robots and more complex behaviors, but also on

replacing the analytical upper layer by a CBR-based one,

so that a given robot could actually learn how a human

combines low level behaviors at each situation and time

instant to achieve a more complex one. Thus, we could

achieve dynamic and more adaptable behavior triggering to

fit different situations without explicit planning.

VI. ACKNOWLEDGEMENTS

This work has been partially supported by the Span-

ish Ministerio de Educacion y Ciencia (MEC), Project

TEC2011-29106-C02-01.

REFERENCES

[1] A. Zhu and S. X. Yang, “A survey on intelligent interaction and co-
operative control of multi-robot systems,” in Control and Automation

(ICCA), IEEE International Conference on, 2010, pp. 1812–1817.
[2] F. Almeida, N. Lau, and L. P. Reis, “A survey on coordination method-

ologies for simulated robotic soccer teams,” in RoboCup Symposium,
2010.

[3] J. López, D. Pérez, and E. Zalama, “A framework for building
mobile single and multi-robot applications,” Robotics and Autonomous

Systems, vol. 59, no. 3, pp. 151–162, 2011.

[4] Y. Kim and M. A. Minor, “Distributed kinematic motion control of
multi-robot coordination subject to physical constraints,” The Inter-

national Journal of Robotics Research, vol. 29, no. 1, pp. 92–109,
2010.

[5] M. Dekker, P. Hameete, M. Hegemans, S. Leysen, J. Oever, J. Smits,
and K. Hindriks, “Hactarv2: An agent team strategy based on implicit
coordination,” in Programming Multi-Agent Systems, ser. Lecture
Notes in Computer Science, L. Dennis, O. Boissier, and R. Bordini,
Eds. Springer Berlin Heidelberg, 2012, vol. 7217, pp. 173–184.

[6] J. M. Peula, C. Urdiales, I. Herrero, M. Fernandez-Carmona,
and F. Sandoval, “Case-based reasoning emulation of persons for
wheelchair navigation,” Artificial Intelligence in Medicine, vol. 56,
no. 2, pp. 109 – 121, 2012.

[7] I. Herrero, C. Urdiales, J. M. Peula, I. Sanchez-Tato, and F. Sandoval,
“A guided learning strategy for vision based navigation of 4-legged
robots,” AI Commun., vol. 19, no. 2, pp. 127 – 136, 2006.

[8] J. C. Mogul, “Emergent (mis)behavior vs. complex software systems,”
Proceedings of the ACM SIGOPS/EuroSys European Conference on

Computer Systems, vol. 40, no. 4, pp. 293 – 304, 2006.
[9] F. Mantz, P. Jonker, and W. Caarls, “Behavior-based vision on a 4

legged soccer robot,” in RoboCup 2005: Robot Soccer World Cup IX,
2006, vol. 4020, pp. 480–487.

[10] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous

Systems, vol. 57, no. 5, pp. 469–483, 2009.
[11] J. M. Peula, C. Urdiales, I. Herrero, I. Sánchez-Tato, and F. Sandoval,

“Pure reactive behavior learning using case based reasoning for a
vision based 4-legged robot,” Robotics and Autonomous Systems,
vol. 57, no. 6-7, pp. 688–699, 2009.

[12] Z. Liu, N. Jiang, , and L. Zhang, “Self-localization of indoor mobile
robots based on artificial landmarks and binocular stereo vision,”
in Proceedings of the 2009 International Workshop on Information

Security and Application (IWISA09), Nov. 2009, pp. 226–231.
[13] S. Chen, “Kalman filter for robot vision: A survey,” Industrial Elec-

tronics, IEEE Transactions on, vol. 59, no. 11, pp. 4409–4420, 2012.
[14] R. Luo and W. L. Hsu, “Autonomous mobile robot localization based

on multisensor fusion approach,” in Industrial Electronics (ISIE), IEEE

International Symposium on, 2012, pp. 1262–1267.
[15] C. Urdiales, E. Perez, J.Vazquez-Salceda, M.Sanchez-Marre, and

F. Sandoval, “A purely reactive navigation scheme for dynamic en-
vironments using case-based reasoning,” Autonomous Robots, vol. 39,
no. 5, pp. 67–78, 2006.

[16] C. Urdiales, A. A. Bandera, A. E. J. Perez, A. A. Poncela, and A. F.
Sandoval, “Hierarchical planning in a mobile robot for map learning
and navigation,” Autonomous Robotic Systems - Soft Computing and

Hard Computing Methodologies and Applications, vol. 3, pp. 165 –
188, 2003.

[17] M. Abramson and R. Mittu, “Learning and coordination: An
overview,” in Collaboration Technologies and Systems (CTS), 2011

International Conference on, 2011, pp. 343–350.
[18] S. Saeedi, L. Paull, M. Trentini, and H. Li, “Neural network-based

multiple robot simultaneous localization and mapping,” Neural Net-

works, IEEE Transactions on, vol. 22, no. 12, pp. 2376–2387, 2011.
[19] R. Schank, Dynamic memory, N. Y. C. U. Press, Ed. New York:

Cambridge University Press, 1982.
[20] R. Lopez De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth,

S. Craw, B. Faltings, M. L. Maher, M. T. Cox, K. Forbus, et al.,
“Retrieval, reuse, revision and retention in case-based reasoning,” The

Knowledge Engineering Review, vol. 20, no. 3, pp. 215–240, 2005.
[21] S. Begum, M. Ahmed, P. Funk, N. Xiong, and M. Folke, “Case-based

reasoning systems in the health sciences: A survey of recent trends and
developments,” Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, vol. 41, no. 4, pp. 421–434, 2011.
[22] S. Ontañon, K. Mishra, N. Sugandh, and A. Ram, “Learning from

demonstration and case-based planning for real-time strategy games,”
in Soft Computing Applications in Industry, ser. Studies in Fuzziness
and Soft Computing, B. Prasad, Ed. Springer Berlin Heidelberg,
2008, vol. 226, pp. 293–310.

[23] R. A. Bianchi and R. L. de Mántaras, “Case-based multiagent rein-
forcement learning: Cases as heuristics for selection of actions,” in
Proceedings of 19th European Conference on Artificial Intelligence,
2010, pp. 355–360.

[24] R. Ros and A. J. L. Arcos, “Acquiring a Robust Case Base for the
Robot Soccer Domain,” Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1029 – 1034, 2007.

5934

