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(a) top-view (b) side-view

Fig. 2. Posture recognition from the top-view (a) is a more challenging
task than from the side-view (b) due to the severe self-occlusion.

under the severe self-occlusion seen in top-view images. The

conventional approach is to firstly estimate the human pose

configuration, and then classifies postures based on the body

part positions [8]. In top-view images, people are largely

self-occluded. With little information about the body part

locations, recovering an articulated pose from these images

is already a quite difficult task even for human annotators,

let alone to further derive the posture category based on the

ambiguous body part locations.

Recent work shows that, when the joint positions are ac-

curately known, the best performance in posture recognition

is obtained from the 3D joint positions [8]. In our approach,

we recognize the human posture without explicitly knowing

the exact location of body parts, and we will show that, in the

case of heavy self-occlusion, this approach outperforms joint

position based posture recognition. Unlike the conventional

approach which classifies postures based on the body part

locations, our idea is to use posture descriptors instead for

classification. A posture descriptor provides a mapping from

image features to the matching score of a posture category.

Given a new test image, each posture descriptor gives a

matching score that measures how well the person can be

explained by that posture descriptor. For example, the stand-

ing posture descriptor returns a higher value when applied to

standing people, and lower values on the others. Note that the

posture categories overlap. For instance, a standing person

may be also pointing. Our posture descriptors encode such

attributes in a natural way by enabling multiple data labels to

be applied to a single image. Fig. 1 compares our proposed

system with the conventional approach.

In this work, we address the following research questions:

1) Is 2D pose competitive with 3D pose for posture

recognition? Posture recognition from (perfect) 3D

pose has been shown to outperform appearance-based

approaches. We show that the performance of posture

recognition with 2D pose is virtually identical to 3D

pose, including for top-view projections.

2) How accurately can we obtain 2D pose from top-view

images? To investigate this, we apply a state-of-the-art

2D pose estimation algorithm to the top-view images.

We show that the performance is generally very low,

but the specific models that are trained on a particular

posture category perform comparably better.

3) How accurately can we recognize posture from imper-

fect 2D pose, and how does this performance compare

to our proposed model? We show that our proposed

model based on posture descriptors significantly out-

performs the baseline, which consists of two state-of-

the-art approaches.

II. RELATED WORK

Previous work on human posture recognition is mostly

based on the images taken from the side-view. The top-view,

which has been extensively used in domestic monitoring,

receives surprisingly little attention.

Only recently did researchers start to work on the top-view

to classify human postures [9], [10]. These approaches use

the silhouettes of humans, which are extracted by background

subtraction and represented as a vector of features. The

features include the height-width ratio, the position, and the

polar histograms of the silhouettes. These approaches rely on

accurate foreground-background segmentation, which is dif-

ficult to obtain in practice due to noise, the change of lighting

conditions or incorrect segmentation of the foreground blobs.

The more conventional method of posture recognition

relies on side-view images to perform pose estimation and

then predicts posture categories based on the estimated

articulated pose. The state-of-the-art approach estimates body

part locations using the Histogram of Oriented Gradient

(HOG) features [11], and fits a human skeleton model to

still images. In the human skeleton model, the joints of

articulations are represented as body part detectors, and two

joints are positioned in a way that the deformation costs are

minimized.

To perform posture recognition, [8] assumes that the body

part locations are known and transforms the 3D body part

locations into a feature vector of geometric distances. The

postures are then recognized using a random forest. The

results are compared with the approach in [3], where a Hough

Forest [12] was trained to learn the mapping from appearance

patches to action labels. The results show that the pose-based

distance features outperform the appearance-based features.

From the top-view, the body parts become largely self-

occluded, which makes conventional approaches less suit-

able. It is very difficult to estimate the body part locations

accurately from top-view images, and the resulting pos-

ture recognition performance is substandard. To solve this

problem, we perform posture recognition with the matching

scores from [11] instead of using the estimated poses. In this

way, the exact body part locations need not to be extracted

accurately for recognizing the postures.

III. APPROACH

Our system consists of two parts. First the image is

transformed into a vector of posture scores by using the

posture descriptors. These posture scores are then used as

features by a posture classifier, which returns the final posture

label.
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A. Posture Descriptor

The posture descriptor is a component that transforms

the input image into a vector of features that can be used

for posture recognition. Normally, the posture descriptor

consists of body part locations [8] or transformed low-

level features [13]. In this paper, we capture the posture

descriptor at a higher level. Each posture descriptor is a

measurement of how likely the input image belongs to a

certain posture category. Specifically, we adopt the posture

descriptor from the state-of-the-art approach in human pose

estimation [11], where the poses are estimated by finding

the optimal skeleton configuration with respect to the local

body part detection. Similar to the structure of a Support

Vector Machine (SVM), each posture descriptor returns a

matching score along with the estimated body part positions.

Since the body part positions are often unknown due to the

occlusion, we disregard them and use only the matching

score to perform posture recognition in our approach.

We now formulate the problem and give a brief introduc-

tion to the posture descriptor. For more details, please refer

to [11].

Let I be an input image, and k is a posture category that

follows k ∈ {1, ...,K}. Given the input image, each posture

descriptor gives a matching score Sk(I) by maximizing

the energy function Qk(I, l, t) over all possible body part

locations L and all types of the body parts T

Sk(I) = max
l∈L,t∈T

Qk(I, l, t) (1)

where l is a vector of body part locations in the discretized

image space and t is a vector of type assignments over all

the body parts.

Solving a general problem of (1) takes exponential time.

But when Qk are computed within a tree structure, the

non-maximum suppression of the function can be computed

efficiently using dynamic programming [14]. We define a tree

structure following the human skeleton, where the vertices

V of the tree are the body parts and the edges E are the

pair-wise connections between the vertices.

We write the energy function of the tree structure as

Qk(I, l, t) =
∑

i∈V

ωti
i · φ(I, li) +

∑

ij∈E

ω
titj
ij · ψ(li, lj) + S(t)

(2)

where ωti
i · φ(I, li) is a linear filter of the body parts. It

gives high scores if the image at location li looks like the

type ti of the ith body part. The second term ω
titj
ij ·ψ(li, lj)

is a quadratic spring model that makes connections between

two body parts with a spatial deformation cost. S(t) is the

bias that models the prior of seeing a particular type as well

as the prior of seeing the pair-wise type combination. The

term of the bias is formulated as

S(t) =
∑

i∈V

btii +
∑

ij∈E

b
ti,tj
ij (3)

Note that (2) is a linear equation that is parameterized by

ω and b, therefore it can be rewritten as

Qk(I, l, t) = βk · Φ(I, l, t) (4)

where β is the concatenation of ω and b. Knowing β, we

are able to solve Sk(I) in polynomial time [11].

The parameter β can be learned from the training data

within a structured-SVM framework [15]. Note that Sk(I)
is bounded by Qk(I, l, t) with respect to all combinations of

l and t, therefore the constraint equation of the SVM can

be drawn as: a) Qk(I, l, t) needs to be larger than or equal

to 1 on all positive examples. b) For all negative samples,

Qk(I, l, t) should be smaller than or equal to −1 with respect

to all possible l and t. Under such constraint, we would like

to maximize the margin between two classes, which is a

typical optimization problem that can be solved by using

quadratic programming (QP) [16].

B. Posture Recognition

We learn a separate posture descriptor with respect to

each of the posture categories by selecting and training

the descriptors on specific subsets of the training data. The

posture descriptors estimate the body part locations in the

image and simultaneously generate a score associated to the

best approximation of the pose articulation. We note that the

quality of generated part positions is extremely low due to

the severe self-occlusion. Rather than using the positions,

we use the corresponding scores for posture recognition.

After applying the set of posture descriptors to the input

image, we get a vector of scores {S1(I), ..., SK(I)} from the

descriptors. The score reflects the confidence of that image

belonging to a certain posture category. One straight-forward

way of recognizing posture from these scores would be to

apply non-maximum suppression over the scores. However,

the scores cannot be guaranteed to have the same scale

and are, therefore, not comparable to each other. Moreover,

the output of multiple descriptors may be informative of a

posture, so that it makes sense to combine them.

Our solution is to treat the descriptor scores as a vector

of features in a classification problem. We compute a classi-

fication result Pk(I) = Ψk(S1(I), ..., SK(I)), which could,

in general, be a binary label or a probabilistic measure of

the predicted label. For the purposes of this work, we used

a standard SVM [17] with Gaussian kernel.

IV. EXPERIMENT AND RESULTS

In this section, we evaluate both the conventional approach

and the proposed approach in the context of the top-view.

We firstly describe the two datasets that are used for evalu-

ation. We conducted three experiments, each of which gives

answers to the one of the research questions introduced in

Section I.

A. Data

1) TUM Kitchen Dataset: The first dataset that we use

is the publicly available TUM Kitchen Dataset [18]. The

dataset is recorded in a home-monitoring scenario where

the actor performs daily activities in a kitchen. The dataset

consists of 10 typical posture classes, including standing,
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walking, reaching, taking objects, etc. The postures have

been annotated for each of the frames. The dataset also

provides the ground-truth body part locations in 3D, so that

we can freely project these points to any camera view that

we want.

The TUM Kitchen Dataset also contains image sequences

that are captured with four cameras. However, like most

benchmark datasets [19], [20], the TUM Kitchen Dataset

contains only the side-view images. We therefore collect our

own dataset to be able to evaluate in the top view scenarios.

2) Our Dataset: The dataset is recorded with an omni-

directional camera that is mounted on the ceiling. The

persons in the frames are seen from the top-view and the

body parts strongly occlude each other (see Fig. 5). To get

the ground-truth body part locations, we mounted a Kinect

sensor to capture the side view of the person, and we apply

OpenNI skeleton tracking on the Kinect data. From the depth

image, we use the skeleton tracker to generate a human

skeleton that consists of 15 joint points, i.e. head, neck,

torso, shoulders, ankles, hips, knees and feet. Since both the

Kinect sensor and the omni-directional camera are calibrated

within the same world coordinate system, we are able to

project these joint points from the coordinate system of the

Kinect sensor onto the omni-directional image plane. These

projected points in 2D are manually corrected for errors,

and they are used as the ground-truth body part locations for

training.

The dataset contains 8 videos, and each of them has

about 3000 frames. We annotated the posture labels every

10 frames (about 1 second),and the labels are as follows:

standing, bending, sitting, pointing, stretching, and walking.

Note that in our dataset one frame can be associated with

multiple posture labels, e.g. a person may be standing and

pointing at the same time.

Next, we introduce the three experiments that we con-

ducted. In the first experiment, we evaluate on the TUM

Kitchen Dataset as their ground-truth pose are well annotated

in 3D. In contrast, 3D poses in our dataset are less accurate

as they are annotated in an automatic way using the Kinect.

For the second and third experiments, we use our own dataset

because the TUM Kitchen Dataset contains only persons with

the side view.

B. Is 2D pose competitive with 3D pose for posture recog-

nition?

Our first experiment is to evaluate the performance of

posture recognition with respect to different camera angles.

In this experiment, we use the TUM Kitchen dataset because

it allows for easy comparison with the state-of-the-art 3D-

based posture recognition approach, and also because the

ground-truth locations in 3D are more accurate, compared

with the points detected by Kinect in our own dataset.

Following the work of [8], firstly we compute the geometric

distance between the 3D body part locations. The geometric

distances are computed within a certain temporal window,

in such a way that the temporal changes of the body part
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Fig. 3. Performance of posture recognition with 3D locations and with
different 2D projections based on the TUM Kitchen dataset. (a) shows the
mean of the performance, and (b) shows the standard deviation. In the case
of 2D, the performance drops gradually as the camera angles changes from
the side-view (0◦) to the top view (90◦).

locations are also encoded. We apply these distance mea-

surements as the features, and the postures are recognized

by using the Random Forest [12] classifier. Furthermore,

we manually define a set of mock cameras that captures

different views of the humans. Following the positioning

these cameras, we project the 3D body part locations onto

the image plane, and then we evaluate the system in a 2D

space.

We set the camera angles from 0◦ (side-view) to 90◦ (top-

view) with the step-size of 30◦. For this experiment, we

use the posture recognition approach as described in [8].

Fig. 3 demonstrates the classification rate of postures over

different camera angles. The results show that recognizing a

posture becomes more difficult with the increasing camera

angles. Notably, the mean drops by over 2% when the

camera shifts from the side-view to the top-view. Also, we

note that the side-view (2D) outperforms the 3D, which is

rather surprising as projecting from 3D to 2D results in data

loss. We infer that the data loss here contains mostly the

noise in 3D. After projection, the 2D points in the side-

view still hold the most discriminative information which

can facilitate posture recognition. It is analogical to applying

noise reduction using Principle Component Analysis (PCA),

which reduces the dimension of the data from 3D to 2D.

This experiment shows that top-view is a more difficult

task compared with the side-view. Again, the approaches are

evaluated based on the ground-truth locations. In practice,

however, getting the correct body part locations is already a

very challenging task by itself. Next, we evaluate the state-

of-the-art pose estimation approach on our top-view data to

see how well the 2D pose can be estimated from the top-

view.
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C. How accurately can we obtain 2D pose from top-view

images?

In this experiment, we evaluate on our own dataset to see

how well the state-of-the-art approach can estimate body part

locations from the top-view images. We randomly select 10%

samples per posture category as the test set, and the rest are

kept as the data for training. The positive training examples

are the top-view images together with the associated body

part locations. The negative training examples are taken from

the INTRA dataset [21], which contains random background

images with no person. To generate more positive training

images, we mirrored and added slight rotation to the training

examples.

We adopt the state-of-the-art approach [11] for estimating

body articulations. We use the Histogram of Oriented Gra-

dient (HOG) as our image features. We evaluate the system

with the standard evaluation criteria of pose estimation, i.e.

the probability of a correct pose (PCP). The PCP computes

the percentage of correctly localized body parts. The results

on the test set are shown in Fig. 4. The performance in

general is rather bad, which is mainly caused by the self-

occlusion. The single descriptor in the graph refers to the

posture descriptor that is trained on all the data instead

of a specific posture category. We compare the results of

the posture descriptors with the single descriptor. We show

that the posture descriptor always outperforms the single

descriptor when evaluated on its specific posture class. This

is because the single descriptor tries to model all the data

which bare large variation over different posture classes.

Note that the posture descriptor performs much better on its

own posture category than on the others. It exhibits notable

potential of distinguishing among posture categories using

the posture descriptors, which can be very helpful for posture

recognition.

D. How accurately can we recognize posture from imperfect

2D pose, and how does this performance compare to our

proposed model?

This section compares the performance of posture recogni-

tion between our proposed system and the baseline approach

on our top-view dataset.

In our approach, we adopt the method from [11] as our

posture descriptor. The posture descriptor is learned from

each of the posture categories. For classification, we train

a Support Vector Machine (SVM) [17] with the RBF kernel

per posture class. Using the matching scores from all posture

descriptors, the SVM gives a binary decision on the posture

label.

To compare with our proposed system, we form the base-

line approach by combining two state-of-the-art approaches

in pose estimation and posture recognition. Specifically, we

follow the approach of [11] for pose estimation. We learn a

single descriptor over all the data. Then we use the single

descriptor to estimate body part locations. After that, we

follow [8] to extract the geometric features from the 2D body

part locations, and we infer the posture labels using random

forest.
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Fig. 4. The PCP performance of body part estimation over posture
descriptors (columns) and posture classes of the test data (rows) on the top-
view dataset. The first six posture descriptors are trained with the specific
posture data. In contrast, the last “single” posture descriptor is trained on
the mixing of all the training data, and therefore it is a general model that
learned from all the data regardless of the posture categories. We show that
when the posture descriptors are evaluated on its own posture category, the
results (diagonal) always outperform the “single” model (last column).

Note that the geometric features in [8] are extracted

within a short sequence of frames, therefore the temporal

information are encoded in the baseline approach. In contrast,

our proposed system is evaluated on still images, and we

believe the performance can be further improved by adding

temporal filtering to our current system. This is left as future

work.

The performance of posture recognition is shown in Ta-

ble I. The results show that our approach outperforms the

conventional approach on all posture categories, and the

average performance is better than the conventional approach

by over 23%. In particular, the performance is improved

by 69% on the bending data. This is because when people

are bending, occlusion is more severe compared with the

other postures, e.g. the limbs are most likely to be fully oc-

cluded by the torso when bending. Estimating the body part

locations from these missing limbs becomes an extremely

difficult task. Benefiting from the posture descriptors, our

approach does not require the body part locations to be

correctly localized and therefore our system still shows very

high performance on the bending data. From our results, we

believe our system is more robust to the self-occlusion as

we do not rely on the body part locations which are rather

unstable when estimated under the top-view. Moreover, we

believe our system can be further improved after adding

the temporal information. Finally, we show some sample

postures recognized by our system in Fig. 5 which gives

an illustration of our results.
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TABLE I

RESULTS OF POSTURE RECOGNITION: F-SCORE

standing bending sitting pointing stretching walking avg.

Baseline [8]+[11] 93.65 20.69 93.51 43.87 25.53 60.43 56.28
Our approach 95.53 89.00 96.83 62.69 58.90 75.53 79.75

standing

bending

sitting

pointing

stretching

walking

Fig. 5. Results of the posture recognition based on our top-view dataset.
The example images are randomly sampled from the testing results. The
text on the left indicates the ground-truth posture label of the images in
the row. Postures that are correctly recognized are in green rectangles, and
postures are in red rectangles if wrong labels are predicted.

V. CONCLUSION

In this paper, we proposed a novel method to classify

human postures from the top-view cameras. Using the pos-

ture descriptors, we get a vector of matching scores, and

we use the scores for posture recognition instead of the

conventional way which use the body part locations. The

results show that leveraging the posture descriptors provides

superior classification results in images with self-occlusion.

We believe the posture descriptors can be further leveraged

by enabling temporal filtering for activity recognition.
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