
Towards a Reliable SLAM Back-End

Gibson Hu, Kasra Khosoussi and Shoudong Huang

Abstract— In the state-of-the-art approaches to SLAM, the
problem is often formulated as a non-linear least squares.
SLAM back-ends often employ iterative methods such as Gauss-
Newton or Levenberg-Marquardt to solve that problem. In
general, there is no guarantee on the global convergence of these
methods. The back-end might get trapped into a local minimum
or even diverge depending on how good the initial estimate is.
Due to the large noise in odometry data, it is not wise to rely on
dead reckoning for obtaining an initial guess, especially in long
trajectories. In this paper we demonstrate how M-estimation
can be used as a bootstrapping technique to obtain a reliable
initial guess. We show that this initial guess is more likely
to be in the basin of attraction of the global minimum than
existing bootstrapping methods. As the main contribution of this
paper, we present new insights about the similarities between
robustness against outliers and robustness against a bad initial
guess. Through simulations and experiments on real data, we
substantiate the reliability of our proposed method.

I. INTRODUCTION

Most recent works in SLAM have based their notion

around a graphical representation of the problem. The nodes

in the graph most commonly represent poses or features,

and the edges describe a relative measurement between two

nodes. The structure of the graph is often obtained by a

SLAM front-end, where the nodes and edges are extracted

from raw sensor data, and a back-end, where the graph

configuration is estimated using the relative measurements.

Measurement noise is usually assumed to be Gaussian and

independent of each other. Under this assumption, the max-

imum likelihood estimate of the nodes is obtained through

solving a non-linear least squares problem.

Since the seminal work of Lu and Milios [1] and especially

in the past 8 years, various techniques have been employed

to solve this non-linear least squares problem. Due to the

existence of local minima, an initial estimate sufficiently

close to the global minimum is crucial to almost all of

these methods. The initial guess is usually obtained using

the odometry data. However, due to the accumulative nature

of error in dead reckoning, this initial estimate can easily

lead to a local minimum or even divergence (especially true

when the trajectory is long). This makes finding a good initial

guess very attractive to SLAM researchers.

The term bootstrapping refers to finding a good initial

estimate from which iterative methods such as Gauss-Newton

are likely to converge to the global minimum. This problem

has been acknowledged before [2]–[4]. The application of
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these bootstrappers is limited to pose-graphs, while feature-

based SLAM (and bundle adjustment) is being used in

many real-world applications. In this paper we demonstrate

the advantage of using robust M-estimation techniques, in

particular the Cauchy function [5], to bootstrap the Gauss-

Newton algorithm under large noise. These techniques are

originally designed to make the estimation process robust

to outliers by damping or bounding their influence. We

show how this situation is similar to the case where, in

the absence of outliers (i.e., wrong data association), the

optimization process is started from a bad initial estimate

(e.g., noisy odometry) in SLAM. This novel insight is the

main contribution of this paper.

We compare the robustness of the proposed technique to

the other popular bootstrapper, Linear Approximation for

Graph Optimization (LAGO) [2]. We also provide a compar-

ison between our results and the solution obtained using the

Tree-based Network Optimizer (TORO) [3] because TORO

is known to be robust against bad initial estimate. Both

of these methods are limited to pose-graphs, while LAGO

[2] can only be applied to 2D problems. As an advantage,

our method can be applied to different variants of SLAM

problem (pose-graphs, feature-based and bundle adjustment)

in both 2D and 3D problems.

This paper is divided into the following. Section II is

related work, Section III describes the methodology. Experi-

ments and results are provided in Section IV. More insights

surrounding our approach are given in Section V. Finally

Section VI is the conclusion.

II. RELATED WORK

In this section we briefly review some of the related

works. First we introduce the most relevant bootstrappers

in SLAM, and then discuss the application of robust M-

estimation techniques in robust SLAM back-ends against

wrong data association.

A. Bootstrapping Methods in SLAM

Carlone et al. [2] proposed an approximate solution for

2D pose-graphs called LAGO which can be used as a

bootstrapping technique. Each pose-to-pose constraint in

pose-graphs consists of a relative position part (x and y
components in 2D) and a relative orientation part. The latter

part is a linear function of robot orientations. Therefore by

ignoring the effect of the first part of each constraint on

robot orientations, a suboptimal estimate for robot orienta-

tions can be obtained through solving a linear least squares

problem. After obtaining an estimate of robot orientations,

observations become linear in x and y components of robot
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poses and they can be approximated by solving another linear

least squares problem. Finally they perform a Gauss-Newton

iteration using the computed suboptimal estimates as the

initial guess. It is reasonable to consider the approximate

solution of LAGO before the single Gauss-Newton iteration

at the end as its proposed initial guess for Gauss-Newton

iterations (see Phase 2 and Phase 3 of the algorithm in [2]).

By exploiting the structure of 2D pose-graphs, LAGO is

able to produce a good initial guess. However, for the same

reason, it is closely dependent on the problem formulation,

and any extension to other formulations such as feature-based

or 3D problems seems to be difficult. The covariance matrix

of measurement (both loop closing and odometry) noise must

be block diagonal. The quality of LAGO’s solution depends

on the ratio between the variances of the x and y parts, and

the variance of the orientation part in the measurement noise:

If this ratio is small then it is impossible to ignore the effect

of the x and y parts of the measurements in estimating the

robot orientation.

Olson et al. [6] introduced an iterative method for op-

timizing pose-graphs based on Stochastic Gradient Decent

(SGD) which was further improved by Grisetti et al. in

TORO [3]. The tree parametrization in TORO makes it more

efficient computationally than Olson’s SGD approach. Both

of these methods are known to be robust against bad initial

guess. According to [6], due to the approximations involved,

their method is unable to converge to the exact maximum

likelihood estimate. They suggest that their final solution

can be used to bootstrap other methods. For this reason we

provide a comparison between our approach and TORO.

Finally it is important to note that incremental methods

such as Incremental Smoothing and Mapping (iSAM) [7],

have a natural advantage over batch approaches in that

the initial estimate at time t consists of the maximum

likelihood estimate of the graph at time t − 1. This makes

the incremental approaches naturally more “robust” to local

minima. In Section V we present an interesting interpretation

of our approach from this perspective.

B. Robust Back-Ends and M-Estimation

As it was mentioned earlier, the maximum likelihood

estimate under the assumption of Gaussian noise is obtained

by minimizing the (weighted) sum of squared residuals. Due

to the quadratic growth of least squares objective function,

any outlier with a large residual has a strong impact on the

final estimate. Robust M-estimators (maximum likelihood

type estimators) are originally designed to make the process

of finding the maximum likelihood estimate robust against

the influence of those outliers by minimizing a different cost

function with a slower growth [8]. The alternative cost func-

tions are either constructed heuristically (e.g., using heavy-

tailed probability distributions) or obtained by analysing the

true distribution of the noise [9]. Robust estimators have been

used in many SLAM and bundle adjustment applications

[10], [11], with many approaches taking advantage of their

ability to control the impact of wrong data association.

III. ROBUST BOOTSTRAPPING

In this section we first give a mathematical formulation of

the SLAM problem. Then we discuss the motivation and the

idea behind this work. Finally we show how M-estimators

can be used as bootstrappers.

A. Problem Formulation

Let the directed graph G = (V,E) denote the graphical

representation of SLAM. Each vertex xi ∈ V corresponds

to a robot pose or a feature position. An edge from xi to xj
in the graph represents a relative observation zij from xi to

xj . For the measurement between xi and xj we have:

zij = hij(xi, xj) + wij (1)

where the measurement function hij(·, ·) is a non-linear

function, wij ∼ N (0,Ω−1
ij ) denotes the noise variable

and ∀(i1, j1) 6= (i2, j2) we have: E [wi1j1w
⊤
i2j2

] = 0.

Then the maximum likelihood estimate for the parameters

x , (x⊤1 , . . . , x
⊤
n )

⊤ is denoted by x⋆ and can be obtained

by minimizing the negative log-likelihood function:

x⋆ = argmin
x

∑

(i,j)∈E

fij(x) (2)

= argmin
x∑

(i,j)∈E

(zij − hij(xi, xj))
⊤Ωij (zij − hij(xi, xj))

Given a good initial estimate x(0), the non-linear least

squares problem (2) can be solved using iterative methods

such as Gauss-Newton.

B. Motivation

As mentioned earlier, to solve any non-linear least squares

problem with Gauss-Newton it is crucial to have an initial

estimate that is sufficiently close to the global minimum. The

basin of attraction of the global minimum in SLAM depends

on various factors such as the noise level, the structure of the

graph, etc (see [12]–[14] for an analysis on the effect of these

factors on the convergence of Gauss-Newton in SLAM).

Generally speaking, it is not wise to trust the odometry as an

initial estimate. Even for a fixed low noise level, as the length

of the traversed trajectory increases, due to the accumulation

of error, the difference between the maximum likelihood

estimate and the initial estimate obtained from odometry gets

larger and larger.

The main idea behind our approach to bootstrapping, is

to design and solve a sequence of intermediate optimization

problems P1, . . . ,PN such that:

(C1) The initial guess obtained from odometry is within the

basin of attraction of the global minimum of P1.

(C2) The solution of each problem Pk is within the basin of

attraction of the global minimum of the next problem

Pk+1.

(C3) The solution of the final problem PN is within the basin

of attraction of the global minimum of the original non-

linear least squares problem (2).
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Then by our definition, starting from odometry as the initial

guess for P1 and using the solution of Pk as the initial

estimate in Pk+1 we can obtain the maximum likelihood

estimate. This idea is related to the idea of Graduated

Non-Convexity [10]. In general, due to the various factors

involved, it is difficult to design a finite sequence {Pk}
N
k=1

that is guaranteed to satisfy these 3 conditions. Instead we

can design {Pk}
N
k=1 using approximation and based on

heuristics. In this case, it is of utmost importance to support

that heuristic principle with an extensive Monte Carlo study

in order to verify that the proposed sequence can handle a

broad range of realistic scenarios (e.g., different noise levels,

graph structure, graph type, etc).

Now we analyse a few basic choices. Let us start by

considering the following subclass for designing {Pk}
N
k=1:

Pk is defined as the non-linear least squares corresponding

to the maximum likelihood estimation of x on a (connected)

spanning subgraph of G like Gk = (V,Ek) (i.e., Ek ⊆ E):

x⋆(k) = argmin
x

∑

(i,j)∈Ek

fij(x) (3)

In this case, the difference between Pk−1 and Pk is de-

termined by the selection of Ek. Let us further limit this

subclass such that for any k we have Ek ⊂ Ek+1. To satisfy

(C2), the initial estimate at each iteration like k, i.e., x⋆(k−1),

must be sufficiently close to the global minimum of Pk,

i.e., x⋆(k). Roughly speaking, this means that the new edges

introduced in Ek (i.e., Ek \ Ek−1) should be sufficiently

consistent with the edges in Ek−1. In other words, closing a

(new) big loop in Ek might violate (C2) and consequently

increase the risk of converging to a local minimum. On the

other hand, it is obvious that ignoring measurements is not

an option: in order to satisfy (C3) and make x⋆(N) close

enough to x⋆, we need to use as many measurements as we

can in the process of bootstrapping (i.e., solving {Pk}
N
k=1).

Thus intuitively, what we need is a gradual process of

incorporating these new measurements into the optimization

process so we can control their sudden influence.

A simple way to achieve this is to assign (additional)

weights w
(k)
ij to the measurements such that edges with large

residuals will get smaller weights. So we can extend the

subclass in (3) to:

x⋆(k) = argmin
x

∑

(i,j)∈E

w
(k)
ij fij(x) (4)

It is important to note that in this case, unlike (3), in the

kth intermediate optimization problem Pk we are using all

of the edges. Nevertheless, weights w
(k)
ij are chosen such

that (relatively) large residuals do not have a considerable

influence on the solution of Pk.

Equation (4) is similar to applying iterative re-weighted

least squares in M-estimation for controlling the influence

of outliers on the solution. Large residuals in that problem

correspond to (potential) outliers, while in our case, they

correspond to measurements that are not consistent with the

initial guess used in that intermediate optimization problem

(e.g., closing a big loop). This new insight is our motive

to use robust M-estimators in order to bootstrap the Gauss-

Newton algorithm in SLAM. In the remaining parts of this

section we show how M-estimators are related to the idea of

(4) and its weight function.

C. M-estimation

In this paper we propose to use the final solution of an M-

estimator with a re-descending influence function [8] (e.g.,

Cauchy function) as the initial estimate for Gauss-Newton.

Using the square root of Ωij = Ω
1

2

ijΩ
1

2

ij we can define the

normalized error vector as:

eij , Ω
1

2

ij(zij − hij(xi, xj)) (5)

Then we propose to use the following x(0) as the initial

estimate:

x(0) = argmin
x

∑

(i,j)∈E

ρ(rij) (6)

where rij , ‖eij‖2 denotes the ℓ2-norm of eij and ρ(·) is

the cost function of the chosen M-estimator. For the Cauchy

cost function we have [5]:

ρ(r) ,
c2

2
log(1 + (

r

c
)2) (7)

where c is a constant parameter. See [5] and [9] for other

robust cost functions.

Depending on the choice of ρ(·), the optimization problem

in (6) may seem difficult to solve. However it can be re-

formulated and solved iteratively as an iterative re-weighted

least squares (IRLS). Following the notation of [5] we start

by computing the gradient of the objective function in (6)

w.r.t. x and setting it to zero:

∑

(i,j)∈E

ψ(rij)
∂rij
∂xt

= 0, for t = 1, . . . , n (8)

where ψ(r) , dρ(r)/dr is known as the influence function

of the M-estimator. Now by defining the weight function

w(r) , ψ(r)/r we can rewrite (8) as:

∑

(i,j)∈E

w(rij) rij
∂rij
∂xt

= 0, for t = 1, . . . , n (9)

The LHS of (9) can be inferred as the gradient of the cost

function in the kth iteration of the following IRLS problem:

minimize
1

2

∑

(i,j)∈E

w(r
(k−1)
ij )r2ij (10)

where r
(k−1)
ij is the residual computed using the latest

estimate. For each iteration like k we need to compute the

new weights according to the residuals and solve (10) using

Gauss-Newton (iteratively) with the same set of weights. The

weights will be updated after the convergence of these Gauss-

Newton iterations. In practice we observed that comparable

results can be obtained by performing even only a single

Gauss-Newton iteration for a fixed set of weights. Finally

note that (10) is consistent with the underlying idea of (4).
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D. Selecting the M-estimator

It is clear that the performance of our approach depends

on the choice of the influence function ψ(·). The influence

function has to exhibit the properties derived in Section III-B.

Figure 1 shows the influence functions of some of the well-

studied and popular M-estimators (see [5] for more details).

M-estimators can be categorized based on their influence

function. As you can see in Figure 1, the influence function

in normal least squares is not bounded and that is why

normal least squares is not robust to outliers (or in our

case, bad initial value). The influence function for Huber

M-estimator becomes constant beyond a threshold. Finally

Cauchy and Geman-McClure have re-descending influence

functions: the influence re-descend to zero for large residuals

lim|r|→∞ ψ(r) = 0.

Re-descending influence functions fit better with our

expectations in Section III-B since they incorporate the

measurements with larger residuals gradually and smoothly

over intermediate iterations. Intuitively speaking, with a re-

descending influence function, a measurement will have a

considerable effect on the solution only when it becomes

sufficiently consistent with the initial estimate. Our initial

experiments also confirmed this fact. A potential problem

with re-descending influence functions is that IRLS might

converge to local minima. According to our Monte Carlo

study in Section IV, most of the time this problem is not

critical: i.e. IRLS converges either to the global minimum or

to a nearby local minimum such that Gauss-Newton is able

to converge to x⋆ using that as its initial estimate.

The descent rate is another important factor in selecting the

right M-estimator. As can be seen in Figure 1, the Geman-

McClure influence function descends much faster than the

Cauchy influence function. If the descent phase is too quick,

then loop-closing edges might not have a chance to affect the

bootstrap solution and we might violate (C3). On the other

hand, descending too slowly will reduce the robustness and

might violate (C2).

To find the most suitable influence function we define the

following family of re-descending influence functions with

different rate of descent determined by α:

ψα(r) ,
r

(1 + r2)α
, wα(r) ,

1

(1 + r2)α
(11)

For α = 1 we get Cauchy, while α = 2 is equivalent to

Geman-McClure [5]. It is interesting to see that for α = 0.5
we get a similar influence function to Huber, and by reducing

α further to zero, it becomes the normal least squares. In

general, the “optimal” value for α can depend on the nature

of the measurements and the noise level.

We conducted a series of Monte Carlo simulations to test

the behavior of M-estimators for different values of α. In

these experiments the final solution of the M-estimator is

used as the initial value for the Gauss-Newton algorithm.

The success rate in Table I shows how often the final value

of the (least squares) objective function is less or equal to

the best achievable value if we start from the ground truth.

Table I shows the result of 100 Monte Carlo simulations of
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Fig. 1. Influence functions of different M-estimators

Algorithm 1: Cauchy Bootstrapper

Input: initial estimate from odometry: x
(0)
odo

Output: bootstrapper’s initial estimate: x(0)

α←− 1 // Cauchy M-estimator

k ←− 1
x⋆
(0)
←− x

(0)
odo

repeat

foreach edge (i, j) ∈ E do

Compute r
(k−1)
ij using x⋆

(k−1)

w
(k)
ij = wα(r

(k−1)
ij )

end

x⋆
(k)

= GN (
∑

(i,j)∈E w
(k)
ij fij(x) , x⋆

(k−1)
)1

k ←− k + 1
until ‖w(k) − w(k−1)‖2 ≤ ǫ

x̂(0) ←− x⋆
(k)

return x(0)

Manhattan dataset at three noise levels. According to our

results in Table I, the best performance happens close to

α = 1 (i.e., Cauchy M-estimator (7) with constant c = 1).

Smaller α values tend to only perform poorly under larger

noises and larger values of α do not have robust convergence

at all. Note that for α = 0 we get the original non-linear

least squares problem. In the following sections, by robust

estimation we refer to α = 1, i.e., the Cauchy M-estimator.

Our approach is summarized in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Benchmarking

Gauss-Newton can be considered as the standard approach

in SLAM back-ends, although other techniques such as

gradient descent, Levenberg-Marquardt might perform better

under some conditions. To find the global minimum we use

Gauss-Newton algorithm initiated from the ground truth.

GT+GN in Table II refers to this process. This is arguably

the most reliable way to obtain the global minimum if the

ground truth is available. Therefore if a bootstrapper were

to achieve the same value or lower, its solution can be

considered as the maximum likelihood estimate x⋆. The +GN

postfix implies that the result of the bootstrapper has been

used as the initial value of Gauss-Newton. That being said,

1GN(·, ·) refers to the Gauss-Newton function which accepts two argu-
ments: the first argument is a (nonlinear least squares) objective function
and the second one is the initial estimate.
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TABLE I

SUCCESS RATE (%) OF ψα(·) IN 100 MONTE CARLO SIMULATIONS FOR DIFFERENT α VALUES IN MANHATTEN DATASET

Noise (σx, σy , σθ) α = 0.5 α = 0.75 α = 1 α = 1.25 α = 1.5 α = 1.75 α = 2
(0.1,0.1,0.1) 54% 94% 100% 98% 78% 14% 4%

(0.2,0.2,0.2) 16% 94% 98% 88% 22% 0% 0%

(0.3,0.3,0.3) 0% 58% 74% 60% 2% 0% 0%

TABLE II

CONVERGENCE RATE (%) FOR 50 MONTE CARLO SIMULATIONS (AVERAGE OF THE OBTAINED REDUCED χ2)

Dataset Noise (σx, σy , σθ) CAUCHY+GN LAGO+GN TORO+GN SpanningTree+GN Odometry+GN GT+GN

Manhattan3500

0.05,0.05,0.05 100 (1.002 ) 50 (6.64) 100 (1.002) 100 (1.002) 50 (5.63) (1.002)

0.1,0.1,0.1 100 (1.001) 2 (1.29e+4) 100 (1.001) 90 (1.073) 2 (5.04e+5) (1.001)

0.2,0.2,0.2 98 (0.99) 0 (1.28e+4) 70 (1.14) 10 (2.11e+5) 0 (2.05e+3) (0.99)

0.3,0.3,0.3 80 (90.03) 0 (4.60e+3) 40 (2.0e+2) 0 (1.05e+4) 0 (1.07e+3) (0.99)

0.05,0.05,0.2 96 (1.046) 0 (1.16e+4) 74 (1.33e+2) 28 (3.21e+5) 0 (6.32e+5) (1.00)

0.2,0.2,0.05 100 (1.002) 46 (1.62e+3) 100 (1.002) 100 (1.002) 0 (3.81e+2) (1.002)

0.1,0.1,0.1 (correlated) 86 (1.15e+3) 4 (1.63e+6) 0 (3.80e+3) 90 (1.03) 0 (8.28e+6) (1.002)

0.2,0.2,0.2 (correlated) 78 (1.008) 0 (1.81e+4) 0 (2.15e+3) 12 (6.51e+5) 0 (1.26e+6) (0.99)

City10000

0.05,0.05,0.05 96 (1.04) 2 (54.74) 94 (1.11) 100 (1.00) 0 (2.78e+2) (1.00)

0.1,0.1,0.1 100 (1.00) 0 (22.16) 82 (1.069) 94 (1.01) 0 (68.52) (1.00)

0.2,0.2,0.2 98 (1.00) 0 (7.50) 8 (1.23) 0 (1.29) 0 (19.3) (1.00)

0.3,0.3,0.3 92 (1.00) 0 (4.49) 0 (1.30) 0 (1.57) 0 (8.82) (1.00)

0.05,0.05,0.2 70 (1.31) 0 (16.44) 20 (8.1737) 4 (2.59) 0 (50.86) (1.00)

0.2,0.2,0.05 100 (1.00) 0 (96.90) 94 (1.026) 100 (1.00) 0 (361.32) (1.00)

0.1,0.1,0.1 (correlated) 92 (1.03) 0 (32.05) 0 (43.99) 96 (1.01) 0 (112.65) (1.00)

0.2,0.2,0.2 (correlated) 90 (1.00) 0 (8.32) 0 (40.95) 0 (1.43) 0 (24.60) (1.00)
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Fig. 2. A single run at noise level (0.2,0.2,0.2) with correlated noise components for City10000

it is important to note that for large noise levels, x⋆ can be

very different from the ground truth, and even GT+GN might

fail to converge to x⋆. We use the so-called reduced (also

known as normalized) χ2 to verify the obtained solutions.

It is well-known that for the measurement model defined in

(1), if the measurement function hij(·, ·) is linear in xi and

xj , then f⋆ ∼ χ2
ν , in which f⋆ denotes the value of objective

function (2) at x⋆ and ν , 3(m − n) denotes the number

of degrees of freedom2. Therefore the expected value and

variance of f⋆ (over all possible measurements) are equal to

ν and 2ν, respectively.

It is common to extend this result to non-linear mea-

surement functions and use ν as the approximate expected

value of f⋆ by linearizing the non-linear models around

x⋆ [15]. This approximate expected value can be used to

test and validate the assumptions (e.g., distribution of the

noise) and/or the model. One can compare this theoretical

approximate expected value to the obtained minimum in

order to verify that the obtained solution is in fact x⋆,

if the assumptions in Section III-A can be trusted. The

2This value is only for 2D pose-graphs. In general ν = dim(z)−dim(x).
Here z denotes the vector of all measurements and dim(·) returns the size
of the given vector.

value of ν depends on the number of edges and vertices of

the network. Therefore, to evaluate the performance across

different datasets, it is more convenient to normalize f⋆ and

report the value of f⋆/ν instead. Note that the expected

value and variance of the reduced χ2 are equal to 1 and 2/ν,

respectively. Therefore for sufficiently large ν, we can just

compute f⋆/ν for the obtained solution and see if it is close

enough to 1 or not. In Table II, the average of reduced χ2

over 50 Monte Carlo simulations is reported in parenthesis

for different noise levels, datasets and algorithms. This value

for GT+GN was very close to 1 in all of our simulations.

Therefore we can trust the solution of GT+GN as the true

maximum likelihood estimate.

B. Comparison Between Alternative Bootstrapping Methods

We compare our bootstrapping algorithm (Cauchy+GN)

to other popular bootstrapping techniques: TORO+GN,

LAGO+GN and SpanningTree+GN (a simple heuristic

bootstrapper for pose-graphs [16]). For TORO and LAGO

we use the code published by their original authors. All of

the other experiments and simulations (including the Gauss-

Newton implementation) have been done in g2o [11]. The

simulation datasets we have chosen are Manhattan3500 by
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Olson [17] and City10000. For each dataset and noise level

we have generated 50 Monte Carlo simulations. Noise levels

were chosen carefully to cover all of the possible cases. In

Table II there are three types of noise covariance matrices

Ω−1
ij :

1) A scalar multiple of the identity matrix.

2) Diagonal and σx = σy 6= σθ.

3) Full with correlation coefficients:

ρx,y = ρx,θ = ρy,θ = 0.5.

The units used in Table II for the standard deviation of

noise are in metre (σx, σy) and radian (σθ). In TORO+GN

the odometry is used as the initial value for TORO (only in

pose-graphs can one use a spanning tree as a better initial

value for both Cauchy and TORO). For each case we report

the success rate (as defined in Section III-D) of different

methods. Additionally we report (in parenthesis) the average

of the obtained normalized χ2 over Monte Carlo simulations

to verify if the obtained solution is in fact x⋆. The results

are summarised in Table II.

It is clear that Cauchy+GN has a very good success rate;

in fact according to Table II, it is the only algorithm capable

of handling all noise levels. Except for two cases, the average

of the normalized χ2 for Cauchy+GN is always close to

1, although its success rate might be lower than 100%.

For the other methods, SpanningTree+GN has a high

success rate only when the noise is small, while TORO+GN

completely fails when the noise components are correlated.

LAGO+GN in general, performs poorly especially if the noise

components are correlated and/or σθ is larger than σx and

σy (this behaviour was predicted in Section II-A). Finally the

total failure of Odometry+GN underlines the importance of

using a robust bootstrapper in SLAM.

It is crucial to note that in many practical scenarios, the

noise components may be correlated. For instance if feature

matching is used to obtain a relative pose measurement or if

the motion model belongs to a non-holonomic vehicle, then

the correlation will naturally exist between the x, y and θ
components of the noise. Inconsistency would arise if these

covariance matrices were to be approximated with a diagonal

matrix. From Figure 2, it is visually clear that our results are

the most consistent of all the maps. The obtained solutions

by Cauchy+GN are the maximum likelihood estimates.

The computation time of each technique for a single run is

reported in Table III. For a fair comparison of computation

time between different techniques we have to make sure that

all of the algorithms are converging to the true maximum

likelihood estimate x⋆. It is very difficult to generate a series

of (realistic) Monte Carlo simulations with this property.

Therefore we decided to report the computation time of

each method for a single run. Unlike Table II, here we do

not generate our noise samples; instead we use the original

(noisy) datasets shipped with g2o. Empty entries in Table III

denote N/A cases (e.g., number of bootstrapping iterations in

Odometry). In Table III, “Cauchy (single GN)” refers to

the case in which for each set of weights, instead of solving

that intermediate non-linear least squares fully using Gauss-

Newton, we only perform a single Gauss-Newton step. As it

was mentioned in Section III-C, in practice the performance

of “Cauchy (single GN)” is close to the original Cauchy

method, while it is usually faster. According to Table III,

our proposed method does not increase the computational

complexity per iteration of a standard SLAM back-end (we

just need to compute the weights); only the total number

of iterations will change. The total computation time of

our proposed method is comparable to that of alternative

methods.

C. Real Datasets

In addition, we have tested the proposed method on real

datasets. For MIT Killian Court, Cauchy+GN was able

to achieve the maximum likelihood estimate with f⋆ =
39.6 (Figure 3(a)), while Odometry+GN converges to a

local minimum with objective value of 769.70. We also

tested Cauchy+GN on feature-graphs and bundle adjustment

problems. Our method is the only bootstrapper capable of

solving these variants of SLAM. For the Victoria Park

dataset, Cauchy+GN converges to the global minimum with

f⋆ = 9012 (Figure 3(b)) while Odometry+GN converges

to a local minimum with χ2 value of 2327481. We used the

Malaga PARKING-6L dataset [18] to evaluate the perfor-

mance of the proposed algorithm in bundle adjustment. We

have chosen to employ parallax angle parametrization [19]

to avoid potential instabilities when using Gauss-Newton.

Cauchy+GN is able to achieve f⋆ = 14748 (Figure 3(c)),

while the χ2 value for VisualOdometry+GN is 277370.

V. DISCUSSION

Table II clearly shows how unreliable Odometry+GN can

be even for a low noise level. It is of utmost importance

to conduct a Monte Carlo study when evaluating SLAM

algorithms. Failure to do so may result in drawing wrong

conclusions about the reliability of those methods. According

to Table II, for the lowest noise level in Manhattan3500

dataset, Odometry+GN can achieve the maximum likeli-

hood estimate in 50% of the simulations. This means a single

successful realization of noise can be misleading from the

overall perspective. In other words, without a proper Monte

Carlo study, one is not able to take into account the failures

of Odometry+GN in the remaining noise instances/levels

and/or datasets. Therefore using a good bootstrapper is

essential to the success of SLAM back-ends.

The proposed framework in Section III-B has a general

form and only describes the properties of an ideal bootstrap-

per. In this paper we showed that the Cauchy M-estimator

is an effective realization of this general idea. Many of the

alternative algorithms can be viewed as special (or extreme)

cases of our general framework. For example LAGO can

be viewed as an extreme instance of this general idea in

which N = 1 and P1 is a (linear) least squares problem

constructed using the linear approximation method explained

in Section II-A. In [12] Carlone proposes to extend LAGO

by increasing the number of these intermediate steps (which

is equivalent to increasing N in our framework). Incremental

methods such as iSAM also fit within this framework: the
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TABLE III

COMPUTATION TIME FOR A SINGLE RUN OF EACH BOOTSTRAPPER ON AN INTEL COREI5-2400 RUNNING AT 3.10GHZ

Dataset Bootstrapper # Bootstrapping Iterations Bootstrapping Time (s) # +GN Iterations GN Time (s) Total Time (s)

City10000

Cauchy (single GN) 11 1.620 3 0.48 2.1000

Cauchy 64 9.144 3 0.48 9.6240

TORO 100 11.95 3 0.48 12.4300

LAGO - 0.35 2 0.33 0.6800

SpanningTree - ≈ 0 4 0.634 0.634

Odometry - ≈ 0 7 1.069 1.069
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Fig. 3. Results of Cauchy+GN for different variants of SLAM

Pk in incremental approaches is the non-linear least squares

problem that arises in the process of obtaining the maximum

likelihood estimate of the graph vertices at time step k
using all the available edges up to that time. Finally note

that submapping approaches are also consistent with our

general framework: intermediate optimization problems are

the maximum likelihood estimation problems in each submap

(i.e., disjoint subgraphs of G).

VI. CONCLUSION

In this paper we have demonstrated the importance of

using a reliable bootstrapper in graph-based approaches to

SLAM. A general framework for the ideal bootstrapper was

developed. After discussing a number of heuristic realiza-

tions for that ideal framework, we illustrated the connection

between this problem and robustness against outliers, and

proposed to use M-estimators with re-descending influence

functions as our bootstrapper. Our extensive Monte Carlo

study revealed that the proposed method outperforms existing

methods with a comparable computation time. Furthermore,

unlike the alternative methods, the proposed algorithm is

capable of handling different noise levels, graph types and

formulations (e.g., feature-based, bundle adjustment, 3D,

etc). In future work we plan to investigate alternative forms

of the influence function. For instance a dynamic influence

function may be a better realization for our ideal bootstrap-

per.
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