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Abstract— Recent results suggest that compliance and non-
linearity in physical bodies of soft robots may not be disad-
vantageous properties with respect to control, but rather of
advantage. In the context of morphological computation one
could see such complex structures as potential computational
resources. In this study, we implement and exploit this view
point in a spine-driven quadruped robot called Kitty by using
its flexible spine as a computational resource. The spine is an
actuated multi-joint structure consisting of a sequence of soft
silicone blocks. Its complex dynamics are captured by a set
of force sensors and used to construct a closed-loop to drive
the motor commands. We use simple static, linear readout
weights to combine the sensor values to generate multiple gait
patterns (bounding, trotting, turning behavior). In addition, we
demonstrate the robustness of the setup by applying strong
external perturbations in form of additional loads. The system
is able to fully recover to its nominal gait patterns (which are
encoded in the linear readout weights) after the perturbation
has vanished.

I. INTRODUCTION

Traditional robots use rigid materials for structural el-
ements and for actuators, e.g., for their body, arms, and
motors. Such rigid body and high torque servos are widely
used to allow for precise control and to suppress unwanted
dynamics. Although this approach has successfully demon-
strated its applicability for achieving various tasks, it requires
intensive computation as every degree of freedom has to be
precisely controlled at every single time step. Furthermore,
these robots perform much worse and less naturally com-
pared to their biological counterparts. In contrast, robots with
compliant bodies, could solve this problem, for instance, by
applying biologically inspired design to robots to facilitate,
e.g., locomotion, while using simple controller [1]–[5]. This
indicates that part of the computation need for control can
be outsourced to the body by using suitable morphological
properties. In this sense, a compliant body may not be a
factor to make control hard. Instead, it could be a potential
computational resource.

This hypothesis, usually referred to as morphological
computation (MC), has recently received some theoretical
support by Hauser et al. [6], [7]. They proposed theoretical
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models for MC with compliant bodies, where they demon-
strate how compliant physical bodies can be potentially used
as a computational resource. They applied the concept of
reservoir computing1 to random networks of mass-spring
systems. Instead of using a neural network or a network
of leaky integrators (as in standard approaches for reser-
voir computing) the previously mentioned models employ a
compliant physical body as a reservoir. The theory suggests
that complex physical bodies of soft robots could be a
potential computational resource, due to their elasticity and
nonlinearity inherently embedded in their physical bodies.
Additionally, Hauser et al. [7] demonstrated how static feed-
back from the sensor into the physical body (via actuators)
can be used to generate autonomously periodic patterns [5],
e.g., as used in locomotion.

In this context, there have been some successful examples
of the implementation of the concept of MC. In one case,
a simple model of a human musculoskeletal system was
used to identify the capacity of computation [9]. In a more
biologically plausible example, the computational capacity of
a muscular-hydrostat system was investigated and found to
have a characteristic memory capacity [10]. In addition, such
a system has been demonstrated to have the potential to em-
ulate complex nonlinear dynamical systems, and closed-loop
controls [11]. In terms of locomotion, a simulated tensegrity
robot has been demonstrated to be capable of embedding
nonlinear limit cycles based on different online learning
techniques [12]. However, these works are all limited to
simulators based on predefined environments and precise and
sufficient data collection.

In this study, we implemented this theoretical model to a
real spine-driven quadruped robot called Kitty. The impact
of real-world conditions on the physical reservoir will be
considered, including the partial loss of the state of the
morphology, noisy sensory time series, and limited training
phase. The spine embedded in Kitty robot is an actuated
multi-joint structure consisting of a sequence of compliant
silicone blocks and its dynamics is captured by a set of
force sensors [13]. Its design is inspired by the biological
hypothesis of spinal engine stating that locomotion is mainly
achieved by the spine, while the legs may serve as assistance
[14], [15].

In this paper, we first introduce a biologically-inspired

1Reservoir computing is a machine learning technique used to emulate
complex, nonlinear computations by employing a randomly initiated (but
afterwards fixed in their parameters) complex, nonlinear dynamical network
of nonlinear dynamical systems (i.e., the reservoir). For more details we
refer to [8].
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Fig. 1. (a) A quadruped robot equipped with a tendon-driven spine. (b) A biologically inspired spine. (c) The arrangement of 32 force sensors in the
spine. Cubic with red contour stands for the force sensor, while cubic with black contour indicates silicone block. (d) Cross section of the artificial spine:
sagittal view.

multiple degree-of-freedom spine model [16], [17] to a real
quadruped robot and explain its potential to be a compu-
tational resource. Second, the experimental procedures are
described, including the overall information processing based
on MC. Then, experimental results by using actual sensory
data from physical robotic system are presented. The results
suggest that with the help of the complaint spine (as a
computational resource) this MC setup is able to encode
movement patterns, produce rhythmic patterns, and learn
new pattern. Finally, the robustness of this learned behavior
against external perturbation is investigated. We found that
noises coming from the real-world conditions benefit the
robustness of such a system.

II. ROBOT DESIGN

Kitty is equipped with a flexible spine (29 cm wide, 32
cm long, 20 cm high, and 1.4 kg) (Fig. 1 (a)). Three springs
are mounted in each stick-shaped leg to cushion the shock
from the ground. The legs are fixed to the body and have no
relative rotation with respect to it. The bottoms of the feet
are glued with asymmetrical friction material to guide the
walking direction.

Figure 1 (b) shows an artificial spine endowed with
biological characteristics. It consists of cross-shaped rigid
vertebrae made of ABS plastic, intervertebral disks made
of silicone blocks and strings driven by motors, similar to
the anatomical spine structure [18]. As shown in Fig. 1
(b), (d), the vertebrae are separated by the silicone blocks,
which work as intervertebral discs, and connected by four
strings through themselves and the silicone blocks. The
four strings connecting vertebrae and intervertebral disks are
pulled respectively by four RC motors, which can control
the movements of the spine.

Motor command Ii(t) to motor i for the spine movements
is computed with sinusoid function given by:

Ii(t) = Asin(2π fit +ϕi)+ψ i = {u,d,r, l}, (1)

where i stands for the position of the motor mounted
in the robot. u, d, r, and l indicate motors controlling the
strings located at up, down, right, and left side of the spine,
respectively.

The dynamics of the spine is captured by 32 force sensors
(FSR400) randomly embedded into silicone blocks (Fig. 1
(c)). The dynamics of this spine is complex due to its
flexibility and compliance. In addition, according to the
geometrical constraint of the spine configuration, it exhibits
highly nonlinear dynamics during locomotion. This suggests
the possibility of this compliant spine to be a computational
resource and generate diverse locomotive behaviors.

III. INFORMATION PROCESSING IN FLEXIBLE SPINE

The task of Kitty is to generate locomotive behaviors by
using the dynamics of its spine. The pre-designed motor
commands are emulated by static, linear readout units after
learning. Figure 2 shows an overview of the information
processing based on MC. The robot dynamics are generated
by the spine movements driven by four motors. One pattern
generator corresponds to one specific locomotive behavior.
It consists of four linear readout units (blocks in the area
highlighted in grey in Fig. 2) which are associated with
motors controlling the up, down, right, left side of the spine.
The states of the spine are measured through randomly
distributed force sensors (FSR400) in the silicone blocks.
Because it is unclear which arrangement of the sensors is the
best to perform tasks, we adopted random topology similar
to original echo state network.

MC consists of three phases: teaching, learning, and
evaluating phases. We take one specific gait G, where G ∈
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Fig. 2. An overview of information processing in the system. (a) Teaching
phase (open loop): the predefined motors command DG are sent to drive the
robot and the associated sensory responses SG are collected; (b) learning
phase (open loop): linear readouts wG

i are adjusted to emulate desired
outputs; (c) evaluating phase (close loop): the motor commands OG

i (t),
where i∈ {u,d,r, l} are generated by a physical spine and sent to the motors
to drive the spine. The motor commands are computed as a sum of current
states of force sensors multiplied with output weights wG

i .

{bounding, trotting, turningLe f t}, as an example to explain
the information process.

The teaching phase is implemented in open loop where
the motor commands (Eq.1) are sent to the robot and drive
it (Fig. 2 (a)). The target signals for four motors in one gait
are stored as a vector DG = (DG

u , DG
d , DG

r , DG
l ), where u, d,

r, l indicate upside, downside, right side, and left side of the
spine, respectively. Accordingly, the associated state S j(t) of
force sensor j at every time step (t = 1,2, · · · ,M) is collected
in a M×N matrix, SG, where N = 32 (the number of force
sensors), and M is the time step.

The learning process is carried out with open loop (Fig. 2
(b)). In the learning phase, only the linear readouts are
adapted, i.e., wG

i are adjusted. The system is forced into the
desired motor commands by a ”teacher” signal. Therefore,
the optimal output weights wG

i are calculated by wG
i =

(SG)+DG, where (SG)+ stands for the (Moore-Penrose)
pseudo-inverse of SG.

In the evaluating phase, the loops are closed (Fig. 2
(c)). Spine dynamics are sent to linear and static readout
units that compute outputs of the system OG

i (t), where
i ∈ {u,d,r, l}. For each linear readout, OG

i (t) is a sum of
values of the force sensors S j(t) multiplied by output weights
wG

i = (wG
i,1,w

G
i,2, · · · ,wG

i,32): OG
i (t) = ∑ j=1 wG

i, jS j(t). In this
formula, wG

i, j indicate the output weight for j-th force sensor
for linear output i, and S j(t) is the value of the j-th sensor
at time t.

IV. EXPERIMENTAL SETTING

A. Teaching signals

The target signals in this physical reservoir computing are
the commands sent to the motors located at the up, down,
right, and left side of the spine, which control spine move-
ments. The spine of Kitty robot is controlled with periodic
motor commands given by Eq.1 using parameters shown in
Table I. Note that motors whose parameters are marked with
asterisks in the table are controlled with constant values to
keep the natural length without stretching and relaxing.

TABLE I
CONTROLLERS FOR SPINE MOVEMENTS

controller ( fu,ϕu) ( fd ,ϕd) ( fr,ϕr) ( fl ,ϕl)

Sbounding ( 1
π ,0.0) ( 1

π ,π) * *
Strotting * * ( 1

π ,π) ( 1
π ,0.0)

SturningLe f t ( 1
π ,0.0) ( 1

π ,π) ( 1
π ,0.0) ( 1

π ,π)

The bounding gait, as a result of spine flexion-extension
movements, is generated by the controller Sbounding [13]. This
controller only pulls the strings located at the upside and
downside of the spine alternately, while the side strings are
kept the natural length. Similarly, the trotting gait, generated
by spine lateral movements, can be achieved by controller
Strotting. It drives the motors on the left side and right side
alternately. Turning left behavior, controlled by SturningLe f t ,
can be realized by combining bounding gait and trotting gait
together. The only difference between turning right and left
is the flip between ϕr and ϕl , which are the phase lags with
respect to the upside of the spine.

B. Experimental procedures

To achieve MC, three phases are used: teaching, learning,
and evaluating phases. In the teaching phase, the number of
teaching data used to train the reservoir readouts is 600 time
steps after initial 200 samples are discarded as transients.
The number of sampling data for one cycle is heuristically
set to 20.

V. RESULTS

In this section, the behavior of the physical reservoir
is observed first. Then three different resultant locomotive
patterns are analyzed. In the end, robustness of this reservoir
is studied by adding external load on the robot.

A. Versatile behaviors using the same physical body

Figure 3, 4 show the sequential pictures of bounding gait,
turning left behavior in the evaluating phase, as a result of
pronounced spine movements. The signals generated by such
a spine reservoir are able to drive the robot to emulate a
specific gait.

Figure 5, 6, and 7 show the best performance of the spine
reservoir, associated sensory response, and footfall pattern
in bounding gait, trotting gait, and turning left behavior,
respectively. We found that the generated control signals
are periodic and similar to the desired ones in terms of the
frequency and the shape (Fig. 5 (a), 6 (a), and 7 (a)).
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Fig. 3. Sequential pictures of spine movements in the bounding gait in the evaluating phase. Orange arrow represents the walking direction.

Fig. 4. Sequential pictures of spine movements in turning left behaviour
in the evaluating phase. Orange arrow represents the walking direction.

Figure 5 (b), 6 (b), and 7 (b) suggest that the dynamics
of this spine has a specific correspondence to each behavior,
i.e., dynamic of each side of the spine (sensory values of all
sensors located in each side) has different patten according
to each behavior. For instance, the sensors located at the
upside and downside response more than the ones at the
right and left side in the bounding gait, as a result of sagittal
spine movements (Fig. 5 (b)). Lateral spine movements result
in trotting gait. As a consequence, sensory responses at
right and left side of the spine are much higher than the
responses captured in the up and down side (Fig. 6 (b)). Since
turning left behavior emerges when bounding and trotting
gait are combined together, the sensory responses are also a
combination from bounding and trotting gait (Fig. 7 (b)).

We also noticed that the actual signals cannot very
precisely emulate the desired signals. This is due to the
limitation of physical platform and arena. For example, the
motors easily get hot and stop working after 2,000 teaching
time steps, or the robot is sensitive to the terrain because
of the lack of ground clearance. However footfall patterns
clearly show that the legs are coupled correctly to achieve
bounding, trotting, and turning left behaviors, even if little
phase delay and error exist (Fig. 5 (c), 6 (c), and 7 (c)).2 In

2In this paper, we did not adopt measures evaluating the difference
between the target and actual commands, such as Mean Square Error (MSE).
This is because we often observed a case that the actual motor command
generate a seemingly correct motor command with phase shift, compared
with the target motor command. When we use MSE for example, this effect
avoids the appropriate evaluation of the actual motor commands.
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Fig. 5. (a) The performance of pattern generator in evaluating phase:
bounding gait. Four subplots from top to bottom are the results of pattern
generators for motor controlling the up, down, right, left side of the spine,
respectively. Y-axis stands for the amplitude sent to the motor. X-axis
indicates the time steps. The grey thin curve is the target trajectory and the
blue thick curve is the actual output from the spine reservoir. (b) Sensory
responses in evaluating phase. Four subplots from top to bottom are sensory
responses collected at the up, down, right, left side of the spine, respectively.
Y-axis stands for the force [N] measured from the sensors. (c) Footfall
patterns in evaluating phase: bounding gait (FR: front right leg; FL: front
left leg; RR: rear right leg; RL: rear left leg).

this paper, we define the footfall pattern based on whether
the feet move forward or keep stable, because Kitty robot
does not have any actuation on the legs, especially knee
joints which mostly contribute to lift up the feet and produce
ground clearance.

Figure 8 shows the obtained readout weights for each
gait. The weights are adjusted in the learning phase and
then are fixed in the evaluating phase. We observed that in
bounding gait (Fig. 8 (a)), the weights associated with the
up-down motors have higher values than the ones with right-
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Fig. 6. (a) The performance of pattern generator in evaluating phase:
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as Fig. 5 (b) Sensory responses in evaluating phase. Y-axis stands for the
force [N] generated by the sensors.(c) Footfall patterns in evaluating phase:
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left motors. The motors controlling strings located at right
and left sides do not contribute to the bounding gait so much.
This is also reflected in the readout weights for right and left
motors, whose values are close to zero and overlap with each
other. The weights for up motors are nearly mirror image of
the weights for down motors about dashed line. The results
reveal that the weights can reflect the coordination among
the motors. Similarly, in trotting gait, the weights of linear
readouts for up and down motors are nearly zero, while the
weights of linear readout for right and left motors are almost
symmetrical about dashed line. In turning left behavior, the
weights of linear readouts for right and down motors are
overlapped, and the same for the rest two sets.

These results suggest that this compliant spine can be
regarded as a computational device to generate repetitive
movements, in addition to be a mechanical component
connecting the front legs and rear legs. Indeed, multiple
behaviors can be produced by the same physical body, only
by adjusting the linear readouts.

B. Robustness against external perturbation in bounding
gait

One crucial criterion in evaluating the performance of
learning is robustness against external perturbation. There-
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fore, it is important to test how robust the spine reservoir
is against external perturbation. We tested this characteristic
by adding load in the front part of the body (Fig. 9 (a)).
The number of evaluating phase is 360 time steps. In the
first 40 time steps, the robot is moving without any load. At
time step 40, an external load is added to the front body and
remains until time step 200. Different loads ranging from
100 [g] to 1000 [g] have been tested in this spine reservoir,
as shown in Fig. 9 (b). The experiments were conducted five
trials. The average speed and the standard derivation were
recorded when the external load is applied on the robot for
160 time steps. The results suggest that the speed of Kitty has
a negative correlation with the external load. We observe that
with the increase of the load, the performance of the spine
reservoir gets affected more. In other words, the generated
signals more easily get stuck at some points. Accordingly, the
robot vibrates at these postures. This vibrating movements
do not contribute to the speed too much and might account
for the resultant slower speed. In addition, the stability gets
worse with the increase of external loads.

Figure 9 (c) shows two typical cases: one is with load
400 [g] and the other is with 1000 [g]. In the former
case, when the external load is added, the amplitude of the
signals generated by the spine reservoir gets suppressed in
the following three cycles, but the frequency still remains
the same. From time step 100, the spine reservoir recovers
its repetitive performance. After the load is moved, the
performance of this physical reservoir get affected again and
the amplitude drops. It starts to recover after two cycles.
However in the latter case, the load is too heavy, almost
two-thirds of Kitty robot’s own weight. Thus, this load stops
reservoir’s performance. But once it is removed, the ability of
emulating desired signal is restored and locomotive pattern
continues. This good performance of the learned behavior
against external perturbation might be accounted for the
noise, which is inherent to Kitty robot.

Because robustness can be enhanced by manually added
noise in teaching phase in the simulator [7], we think that
the observed good performance against external perturbation
might be accounted for noise, which is inherent to Kitty
robot.

VI. DISCUSSION AND CONCLUSION

In this paper, we demonstrated that the developed com-
pliant spine structure is not only a mechanical component
connecting the front legs and rear legs, but rather can
also serve as a computational resource to achieve different
behaviors, such as bounding gait, trotting gait, and turning
behavior. The results suggest that this computational resource
(compliant spine) together with linear and static readouts
and feedback loops is able to encode movement patterns,
produce rhythmic patterns, and learn new pattern. Remark-
ably, multiple behaviors can be produced by the same fixed
physical body, simply by readjusting the weights of the linear
readouts. In addition, we demonstrated the robustness of
the learned behavior by applying additional load as external
perturbations. The results show that this system is able to
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Fig. 9. (a) Kitty robot with external load. (b) Stability of spine reservoir
against various external loads in bounding gait. (c) The performance of spine
reservoir in evaluating phase with external load in bounding gait. The top
four subplots are the comparison between target signal and actual output
signal from reservoir for the motor controlling the up, down, right, left
side of the spine, respectively. The bottom subplot is the dynamics of the
spine which is average value over 32 force sensors. Red curve represents
the case when external load weighing 400 [g] is applied, while blue curve
is the case with the load of 1000 [g]. Grey curve is the target signal. X-axis
indicates the time steps. The area marked in green is the period when the
spine reservoir is disturbed. In the top four subplots, Y-axis stands for the
amplitude [degree] sent to the motor. In the bottom subplot, Y-axis stands
for the force [N].

recover to its nominal gait patterns encoded in the linear
weights after the perturbation has disappeared.

In our experiments, although we were able to observe a
successful locomotion for each gait pattern, the produced
motor commands were noisy and were unable to emulate
the target commands precisely. This is mainly caused by
the limitation of this platform when it starts to interact with
the environment. For instance, the amount and quality of
the teaching data available in physical platform is much
lower than in comparable simulated work. In spite of it, the
spine reservoir was still able to produce stable and seemingly
periodic locomotive patterns.

A possible solution to reduce the error between the target
and the output signals is to optimize the spine structure by
employing more asymmetrical features. This is inspired by
biology, where asymmetrical spine structure can be observed
in animals. Such features are unevenly distributed muscles
in the spine, asymmetrical muscle stiffness, and the shape of
the spinal column [19]. These properties could increase the
diversity and nonlinearity of the spine reservoir and improve
its performance. In addition, in order to better reflect the
spine dynamics in the sensory time series, the number and
the locations of the sensors within the spine can be explored
and optimized in future work.
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Another future research direction is to ask whether a
gait switching could be achieved in our framework [20],
[21]. One possible scenario would be to explore ways to
embed multiple gaits with a single fixed linear readout and a
feedback loop by introducing an input signal corresponding
to each gait to the spine. The signal acts as an initiation signal
(or a control signal) for the gait switching and would be pro-
vided either as an external or internal control command [7].
Especially in our contexts, the signals can be mechanical,
such as an intentional movements of a head or a tail of the
robot’s body, or can be also generated from an environmental
change, such as the change of the terrain.
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