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Abstract— This paper reports on the use of generic linear
constraint (GLC) node removal as a method to control the
computational complexity of long-term simultaneous localiza-
tion and mapping. We experimentally demonstrate that GLC
provides a principled and flexible tool enabling a wide variety
of complexity management schemes. Specifically, we consider
two main classes: batch multi-session node removal, in which
nodes are removed in a batch operation between mapping
sessions, and online node removal, in which nodes are removed
as the robot operates. Results are shown for 34.9 h of real-
world indoor-outdoor data covering 147.4 km collected over 27
mapping sessions spanning a period of 15 months.

I. INTRODUCTION

Graph-based simultaneous localization and mapping

(SLAM) [1]–[7] has been used to successfully solve many

challenging SLAM problems in robotics. In graph SLAM,

the problem of finding the optimal configuration of historic

robot poses (and optionally the location of landmarks), is

associated with a Markov random field or factor graph. In

the factor graph representation, robot poses are represented

by nodes and measurements between nodes by factors.

Under the assumption of Gaussian measurement noise the

graph represents a least squares optimization problem. The

computational complexity of this problem is dictated by the

density of connectivity within the graph, and by the number

of nodes and factors it contains.

Unfortunately, the standard formulation of graph SLAM

requires that nodes be continually added to the graph for

localization. This is a problem for long-term applications

as the computational complexity of the graph becomes

dependent not only on the spatial extent of the environment,

but also the duration of the exploration (Fig. 1(b)).

Early filtering-based works [8], [9], and more recently

[10], have focused on controlling the computational com-

plexity by enforcing sparse connectivity in the graph. In [11],

an information-theoretic approach is used to slow the rate of

the graph growth by avoiding the addition of uninformative

poses. In [12], when the robot revisits a previously explored

location, it avoids adding new nodes and instead adds links

between existing nodes.
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(a) Full Top View (b) Full Time Scaled

(c) Batch-MR Top View (d) Batch-MR Time Scaled

(e) Batch-ND Top View (f) Batch-ND Time Scaled

(g) Online-RPG Top View (h) Online-RPG Time Scaled

(i) Online-MR Top View (j) Online-MR Time Scaled

Fig. 1: The resulting graphs for 27 mapping sessions conducted over
a period of 15 months using the proposed complexity management
schemes (see Table I). Links include odometry (blue), 3D LIDAR
scan matching (green) and generic linear constraints (magenta). The
full graph without node removal is shown as Full. The left column
shows a top down view. The right column shows an oblique view
scaled by time in the z-axis; each layer along the z-axis represents
a mapping session.
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Recently, many works have proposed removing nodes

from the SLAM graph as a means to control the compu-

tational complexity of the associated optimization problem

[13]–[16]. In [13], the environment is spatially divided into

neighborhoods and then a least-recently-used criteria is used

to remove nodes with the goal of keeping a small set of

example views that capture the changing appearance of the

environment. In [15], nodes that provide the least information

to an occupancy grid are removed. Nodes without associated

imagery are removed in [14]. Finally, in [16], “inactive”

nodes that no longer contribute to the laser-based map

(because the environment has changed) are removed.

Each of the methods described in [12]–[16] provides

insight into the question of which nodes should be removed

from the graph. However, they all rely on pairwise mea-

surement composition, as described in [17], to produce a

new set of factors over the elimination clique (i.e., the nodes

originally connected to the node being removed) after a node

is removed from the graph.

Unfortunately, as shown in [18], pairwise measurement

composition has two key drawbacks when used for node re-

moval. First, it is not uncommon for a graph to be composed

of many different types of “low-rank” constraints, such as

bearing-only, range-only and other partial-state constraints.

In these heterogeneous cases, measurement composition, if

even possible, quickly becomes complicated as the constraint

composition rules for all possible pairs of measurement types

must be well defined. Second, the new constraints created by

measurement composition are generally not independent (i.e.,

measurements may be double counted). This is acknowl-

edged in [12] where an odometry link is discarded and the

robot re-localized (along the lines of [9]) to avoid double

counting measurements. Similarly, [16] uses a maximum of

two newly composed constraints at the beginning and end

of a “removal chain” (a sequence of nodes to remove) to

ensure connectivity without double counting measurements.

However, in general, double counting measurements may

be unavoidable. As an example, consider removing node

x1 from the graph in Fig. 2(a) using pairwise measurement

composition while conforming to the sparsity pattern of the

Chow-Liu tree (CLT) approximation, Fig. 2(c). Measurement

composition will produce new measurements, z02 = z01 ⊕
z12 and z03 = z01 ⊕ z13, which double count z01 and are

clearly not independent.

Methods that remove nodes without measurement com-

position have been proposed in [18]–[20]. These methods

are based on replacing the factors in the marginalization

clique with a linearized potential or a set of linearized

potentials. In [19], these linearized potentials are refereed

to as “star nodes.” The dense formulation of our proposed

generic linear constraint (GLC) [18] is essentially equivalent

to “star nodes” while the sparse approximate GLC replaces

the dense n-nary connectivity with an sparse tree structure.

The method recently proposed in [20] again starts with a

dense linear potential similar to star-nodes and dense-GLC

but then approximates the potential through a L1-regularized

guaranteed-consistent optimization to produce a sparse n-

nary linear factor over the elimination clique.

Linearized potentials representing the result of marginal-

ization are also used in [21] to reduce bandwidth while

transmitting graphs between robots in a multi-robot dis-

tributed estimation framework. Nodes that are not part of

the interaction between the robots’ graphs are removed

from linearized potentials, and a graph of these linearized

potentials, referred to as a “summarized map”, is transmitted

between robots.

In this paper, we promote the use of GLC node removal

[18] for long-term SLAM. GLC node removal shares many

of the properties that make measurement composition appeal-

ing, while addressing heterogeneous graphs with non-full-

state constraints and avoiding double counting measurement

information. Our previous work, [18], demonstrated improve-

ment in accuracy and consistency over pairwise measurement

composition when performing large batch node removal op-

erations. Here, we explore complexity management schemes

that repeatedly apply GLC to remove nodes as the map is

built. The core contributions of this paper are as follows:

• We provide an experimental evaluation of GLC node

removal in both multi-session and online node removal

schemes.

• We propose four complexity management schemes that

can be implemented using GLC and validate them on a

large long-term SLAM problem.

• We demonstrate a large long-term SLAM result with

data collected over the course of 15 months and 27

mapping sessions.

The remainder of this paper is outlined as follows: In §II

we review GLC node removal. We then propose several com-

plexity management schemes that use GLC node removal in

§III, which are experimentally evaluated in §IV. Finally, §V

and §VI offer a discussion and concluding remarks.

II. GENERIC LINEAR CONSTRAINT NODE REMOVAL

We first provide an overview of GLC node removal.

For a full discussion and derivation we refer the reader to

[18]. Here we focus on the CLT-based sparse-approximate

version of GLC node removal as it is most appropriate for

long term SLAM applications in which many more nodes

are removed than kept. Using the dense-exact version of

GLC node removal in these circumstances would produce

graphs with a very high node degree, and therefore, a high

computationally complexity because of the loss of sparsity.

Sparse-approximate GLC node removal is performed as

follows:

1) The potential induced by marginalization over the

elimination clique is computed.

2) The potential is approximated using a Chow-Liu tree.

3) The variables in the CLT potentials are reparameterized

as relative transforms.

4) The CLT potentials are implemented as linear factors,

referred to as generic linear constraints, replacing the

original factors over the elimination clique in the

graph.

An example of this process is shown in Fig. 2.
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Fig. 2: Sample factor graph where node x1 is to be removed (a). Here Xm = [x0,x1,x2,x3]. The factors Zm = [z0, z01, z12, z23, z13]
(highlighted in red in (a)) are those included in calculating the target information over the marginalization clique Xt = [x0,x2,x3] (b).
The original distribution associated with the target information, p(x0,x2,x3|Zm), is approximated using the Chow-Liu maximum mutual
information spanning tree as p(x0|Zm)p(x2|x0,Zm)p(x3|x0,Zm) (c). The pairwise potentials are reparameterized with respect to x0

to avoid linearization in the world-frame (d). New GLC factors are computed and inserted into the graph replacing Zm (highlighted in
green in (e)). Note that node removal only affects the nodes and factors withing the Markov blanket of x1 (dashed line).

A. Computing the Marginalization Potential

The first step in the algorithm is to correctly identify

the potential induced in the graph by marginalization. This

potential is characterized by its information matrix, which

we refer to as the target information, Λt. Letting Xm ⊂ X

be the subset of nodes including the node to be removed

and the nodes in its Markov blanket, and letting Zm ⊂ Z be

the subset of measurement factors that only depend on the

nodes in Xm, we consider the distribution p(Xm|Zm) ∼
N−1

(

ηm,Λm

)

. From Λm we can then compute the desired

target information, Λt, by marginalizing out the elimination

node using the standard Schur-complement form [5]. An

example graph is shown in Fig. 2(a) and Fig. 2(b).

The key observation here is that, because marginalization

only affects the elimination clique, a factor, or set of factors,

which induces the potential characterized by Λt will induce

the same potential as true node marginalization at the given

linearization point.

It is important to note that the constraints in Zm may

be purely relative and/or low-rank (e.g., bearing or range-

only) and, therefore, may not fully constrain p(Xm|Zm). As

a result, Λt, and distributions derived from Λt, may be low

rank. This will be accounted for by GLC in §II-D.

B. Chow-Liu Tree Approximation of the Marginalization

Potential

Unfortunately, inducing the marginalization potential ex-

actly requires an n-ary factor with dense connectivity

amongst the nodes in the Markov blanket. This leads to fill-

in that can greatly increase the computational complexity

of optimizing the graph [2], [7]. In [15], Kretzschmar and

Stachniss insightfully propose the use of a CLT [22] to

approximate the individual elimination cliques as sparse

tree structures. Using GLC we can implement the CLT

approximation without the aforementioned pitfalls of mea-

surement composition and provide a significant improvement

in performance over [15], as shown in [18].

The CLT approximates a joint distribution as the product

of pairwise conditional distributions,

p(x1, · · · ,xn) ≈ p(x1)

n
∏

i=2

p(xi|xp(i)), (1)

where x1 is the root variable of the CLT and xp(i) is

the parent of xi. The pairwise conditional distributions are

selected such that the Kullback-Leibler divergence (KLD)

between the original distribution and the CLT approximation

is minimized. To construct the CLT, the maximum spanning

tree over all possible pairwise mutual information pairings

is found (Fig. 2(c)). Because we wish to reproduce the

marginalization potential we compute the CLT approxima-

tion (1) over Λt, and will represent the CLT’s unary and

binary potentials as new GLC factors.

We first consider CLT binary potentials, p(xi|xp(i)), and

in the following use xj = xp(i) as shorthand for the parent

node of xi. Note that the joint marginal, pt(xi,xj), is

computed directly from Λt
1. From this joint marginal, we

can then easily write the desired conditional, pt(xi|xj) =
N
(

µi|j ,Σi|j

)

≡ N−1
(

ηi|j ,Λi|j

)

, and express it as a con-

straint as

e = xi − µi|j = xi − Λ−1
ii (ηi − Λijxj), (2)

where e ∼ N−1
(

0,Λi|j

)

, and with Jacobian,

E =
[

∂e
∂xi

∂e
∂xj

]

=
[

I Λ−1
ii Λij

]

. (3)

Therefore, using the standard information-form measurement

update, we see that this constraint adds information

E⊤Λi|jE, (4)

where Λi|j is simply Λii.

Similarly, the CLT’s root unary potential, pt(x1) =
N−1

(

η1,Λ1

)

, can be computed from Λt by marginalization.

C. Reparametrizing the CLT Potentials

We now have a set of unary and binary potentials that we

wish to implement as factors in the graph. For each potential,

let its support variables be denoted as xi and its associated

information as Λi.

Creating GLC factors directly from Λi over xi will

commit to linearization points in the world-frame for the

nodes in xi. This may be acceptable in applications where

good world-frame linearization points are known prior to

marginalization; however, a more tenable assumption is that

a good linearization point exists for the local relative-frame

transforms between nodes within the elimination clique.

1In this section, we refer to marginal and conditional distributions with
respect to the target information, Λt, not the distribution represented by the
full graph.
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To account for this in [18] we defined a “root-shift”

function that reparameterizes the variables that support a

general n-ary potential in relative-frame coordinates instead

of in the world-frame. For the CLT approximation, we only

root-shift the binary potentials, as it provides no benefit for

unary potentials.

For a binary potential over nodes in the world-frame, xi =
[xw

1 ,x
w
2 ], the root-shift function becomes

x
′
i =

[

x
a
w

x
a
2

]

= r

([

x
w
1

x
w
2

])

=

[

⊖x
w
1

⊖x
w
1 ⊕ x

w
2

]

. (5)

In this function, the first node is arbitrarily chosen as the

root. The inclusion of the inverse of the root pose, x1
w, is

important as it ensures that the Jacobian of the root-shift

operation, R, is invertible, and allows for the representation

of target information that is not purely relative.

The root-shifted information, Λ′
i, associated with the po-

tential can be calculated as

Λ′
i = R−⊤ΛiR

−1. (6)

Now when a GLC factor is created, the linearized con-

straint will be embedded within a relative coordinate frame

with respect to the first node in the potential, as opposed to

an absolute world coordinate frame (Fig. 2(d)).

D. Generic Linear Constraints

We now have a set of unary and root-shifted binary poten-

tials that we wish to implement as factors in the graph. For

simplicity of notation, let each potential’s support variables

again be denoted as xi and its associated information as Λi.

If we consider an observation model that directly observes

xi with a measurement uncertainty that is defined by Λi,

z = xi +w where w ∼ N−1
(

0,Λi

)

, (7)

and set the measurement value, z, equal to the current

linearization point of the support variables, x̂i, we will

induce the desired potential in the graph.

Unfortunately, as mentioned in §II-A, because Λi is

derived from the target information it may not be full-

rank, which is problematic for optimization methods that

rely upon a square root factorization of the measurement

information matrix [2], [7]. We can, however, use principle

component analysis to transform the measurement to a lower-

dimensional representation that is full-rank.

Due to the nature of its construction, Λi will be a

real, symmetric, positive semi-definite matrix with an eigen-

decomposition given by

Λi =
[

u1 · · · uq

]







λ1 0 0

0
. . . 0

0 0 λq













u
⊤
1
...

u
⊤
q






= UDU⊤,

(8)

where U is a p × q matrix, D is a q × q matrix, p is the

dimension of Λi, and q = rank(Λi). Letting G = D
1

2U⊤

allows us to write a transformed observation model,

zglc = Gz = Gxi +w
′ where w

′ ∼ N−1
(

0,Λ′
)

. (9)

Using the pseudo-inverse [23], Λ+
i = UD−1U⊤, and noting

that U⊤U = Iq×q, we find that

Λ′ = (GΛ+
i G

⊤)−1 = (D
1

2U⊤(UD−1U⊤)UD
1

2 )−1 = Iq×q.

This GLC factor will contribute the desired information back

to the graph, i.e.,

G⊤Λ′G = G⊤Iq×qG = Λi,

but is itself non-singular. This is a key advantage of the

proposed GLC method; it automatically determines the ap-

propriate measurement rank such that Λ′ is q × q and

invertible, and G is a q×p new observation model that maps

the p-dimensional state to the q-dimensional measurement.

The node can then be removed and the existing factors

replaced with the new set of constraints spanning the elimi-

nation clique (Fig. 2(e)).

III. GRAPH COMPLEXITY MANAGEMENT THROUGH

NODE REMOVAL

We now propose four GLC-based graph management

schemes; two that are performed as a batch step between each

mapping session, and two that remove nodes as the robot

moves through the environment. In each case, we attempt

to produce a graph that has a complexity dictated primarily

by spatial extent and not by mapping duration. We therefore

seek to remove spatially redundant nodes. The definition of

spatially redundant nodes varies depending on the motion

constraints of the robot and its sensing modalities. In our

experiments, we used data from a ground robot with 3D

LIDAR as the primary sensing modality. Therefore, we will

only consider translation in the ground plane for adding

new nodes—whenever odometry indicates that the robot

has translated more than 3 m. Similarly, we consider nodes

within 3 m of each other to be spatially redundant.

In the following sections, we will refer to each of the ex-

perimental complexity schemes using the abbreviated names

in Table I.

TABLE I: Experimental Complexity Management Schemes

Scheme Description

Batch-MR Batch - Keep most recent (Alg. 1)
Batch-ND Batch - Keep highest node degree (Alg. 2)
Online-RPG Online - Emulate reduced pose graph (Alg. 3)
Online-MR Online - Keep most recent (Alg. 4)

A. Batch Multi-Session Node Removal

We first consider a multi-session scenario where the robot

repeatedly performs SLAM in discrete sessions. Under these

conditions node removal can be performed between sessions

as a batch operation. In oversampled regions, we seek to

keep the most recently added nodes as this allows the map

to adapt to the changing environment. For example, during

our data collection there were several locations undergoing

construction. As we pass through these regions multiple

times, old nodes that are spatially redundant should be

removed, while new nodes capturing the changing structure

should be kept. Essentially, the map can march forward in
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Algorithm 1 Batch Node Removal: Keep most recent

1: Given nodes in graph, nodes = {n0 . . . nm}
2: nodes = sort by time descending(nodes)
3: keep = {n0}
4: for all ni in nodes do
5: if is not spatially redudant(ni, keep) then
6: keep = keep ∪ ni

7: end if
8: end for
9: GLC remove(nodes \ keep)

Algorithm 2 Batch Node Removal: Keep highest node degree

1: Given all m nodes in graph, nodes = {n0 . . . nm}
2: nodes = sort by node degree descending(nodes)
3: keep = {n0}
4: for all ni in nodes do
5: if is not spatially redudant(ni, keep) then
6: keep = keep ∪ ni

7: end if
8: end for
9: GLC remove(nodes \ keep)

time, replacing old observations with new ones. In practice

this is performed by sorting the nodes according to their

instantiation time, and then looping through the nodes in

order, keeping each node that is “sufficiently far” from all

nodes currently being kept, as detailed in Algorithm 1.

This strategy, however, only considers when a node was

added. Depending on the application, additional information

about each node may be available and may lead to different

criteria. As an example, we consider that some nodes in the

graph may be more useful for registration than others. Nodes

that have been successfully registered against many times

may be good candidates to keep in the graph; first, because

they occur in locations that the robot repeatedly visits and

second, because the observation is such that registration is

repeatedly successful. Therefore, if we first sort by node

degree (the number of edges connected to a node) and then

remove nodes as before, we have a strategy that encourages

the retention of useful nodes, as detailed in Algorithm 2.

Note that many nodes will have the same node degree and

in the case of a tie, instantiation time is used as a secondary

criteria.

B. Online Node Removal

The first online node removal scheme we consider em-

ulates the complexity reduction scheme proposed in [12];

but using GLC instead of measurement composition. In

this method, referred to as the “Reduced Pose Graph”, a

new node is not added when the current pose is spatially

redundant. Instead, the measurements from the current pose

are used to add constraints between existing nodes. Con-

ceptually, this can be thought of as temporarily adding the

current node to the graph, adding its measurements and then

marginalizing out the current node. This practice will add

constraints between the existing nodes without permanently

adding a new redundant node. We can, therefore, easily

emulate this strategy by performing GLC node removal

Algorithm 3 Online Node Removal: Emulate reduced pose graph

1: Given previous nodes in graph, nodes = {n0 . . . nm}
2: Given recent node nm+1

3: neighbors = get redundant neighbors(nm+1, nodes)
4: if neighbors 6= ∅ then
5: GLC remove(nm+1)
6: end if

Algorithm 4 Online Node Removal: Keep most recent

1: Given previous nodes in graph, nodes = {n0 . . . nm}
2: Given recent node nm+1

3: neighbors = get redundant neighbors(nm+1, nodes)
4: GLC remove(neighbors)

to remove recently-added redundant nodes, as detailed in

Algorithm 3. Given a recently added node we look for its

spatially redundant neighbors (i.e., nodes that are sufficiently

close to the new node so as to make it redundant). If any

spatially redundant neighbors are found, the recently-added

node is removed.

From a data association perspective, the Reduced Pose

Graph formulation may not be ideal as it keeps the first

sensory sample of a given location and avoids adding all

subsequent observations. We therefore consider an online

scheme that does exactly the opposite; instead of removing

the recent node, we remove the neighbors that are made

redundant by the recent node, as detailed in Algorithm 4.

This is essentially an online version of Algorithm 1.

IV. EXPERIMENTAL RESULTS

In order to validate the proposed GLC complexity man-

agement schemes, we performed experiments using data

collected over the course of 15 months using a Segway

robotic platform (Fig. 3). Data was collected over 27 trials

(approximately bi-weekly) between January 8th, 2012 and

April 5th, 2013 by manually driving the robot through the

University of Michigan’s North Campus. Data was collected

both indoors and outdoors, at varying times of the day and in

Fig. 3: Segway robotic platform used for experimental data collec-
tion. Outfitted with an RTK GPS (for ground-truth) (1), omnidirec-
tional camera (2), 3D LIDAR (3), Attitude sensor (4), consumer-
grade GPS (5), 1-axis FOG (6), 2D LIDARs (7), and CPU (8).
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Fig. 4: Sample trajectory from one session of data collection,
overlaid on satellite imagery.

the presence of dynamic elements including people and cars.

Additionally, the data set contains several large construction

projects. Each trial through the environment is on average

1.29 h in duration and 5.5 km in length totaling 34.9 h of

data covering 147.4 km (Fig. 4).

In all experiments, graph constraints are derived from

odometry, 3D LIDAR scan matching [24] and, when avail-

able, consumer-grade GPS. GLC was implemented using

iSAM [7], [25] as the underlying optimization engine. The

code is available for download within the iSAM repository

[26].

A ground-truth graph was created from all trajectories

without node removal and with the addition of constraints

from a highly accurate RTK GPS system.

The graphs for each proposed method, at the end of the

last full run, are shown in Fig. 1. In the right column, by

scaling the z-axis according to time, we can clearly see the

effects of the different node removal schemes. Using Batch-

MR we see that the most recent session is well connected

to the previous session with some sparse connectivity to

older nodes in the graph. Batch-ND produces similar results

but with more connectivity to previous nodes, which have

been kept due to a high node degree. Online-MR has also

removed the bulk of the nodes from previous sessions,

additionally removing those from the penultimate session.

In contrast, Online-RPG has kept its earliest observations of

each location and removed newer nodes adding connectivity

between older nodes.

A. Error with respect to Ground-Truth

First, we consider the performance of each complexity

management scheme in terms of translation and attitude error

from the ground-truth. We include a full graph that was

built without node removal as a baseline (Fig. 5). We see

all methods produce estimates with error similar to the full

graph, with the online methods having slightly higher error

than the batch methods in general. It is worth noting that by

the end of each session, before batch sparsification, the batch

methods will have almost double the number of nodes as the

online methods, potentially allowing for more informative

loop closures (Fig. 6(a)). The Online-RPG method produces

the highest error. This is most likely due to the fact that

data association becomes more difficult as the environment

changes with time, as described in §III-B.

5 10 15 20 25
0

1

2

3

4

Session

M
e
a
n
 T

ra
n
s
la

ti
o
n
 E

rr
o
r 

(m
)

 

 

Full Graph

Batch−MR

Batch−ND

Online−RPG

Online−MR

(a) Translation Error

5 10 15 20 25
0

1

2

3

4

Session

M
e
a
n
 A

tt
it
u
d
e
 E

rr
o
r 

(d
e
g
)

 

 

Full Graph

Batch−MR

Batch−ND

Online−RPG

Online−MR

(b) Attitude Error

Fig. 5: Mean error for translation (
√

δ2x + δ2y + δ2z ) and attitude

(
√

δ2r + δ2p + δ2h) with respect to RTK-based ground-truth at the
end of each mapping session for batch and online node removal
methods. 5% and 95% percentile bounds are denoted with dashed
lines. Errors for the node removal methods are compared against
the errors for the full graph from which no nodes were removed
(black).

B. Computational Complexity

Though the graphs produced with GLC node removal

have a similar or slightly higher error than the full graph,

they are vastly less computationally complex. We see in

Fig. 6 that all schemes limit the number of nodes and factors

to be essentially constant as only small additions to the

spatial extent of the map are made after the first session,

with no method exceeding 4,000 nodes or 15,000 factors.

In comparison, the full graph grows linearly ending with

over 46,000 nodes and 200,000 factors. We also see that

the sparsity of the measurement Cholesky Factor, R, is

nearly constant, with Online-RPG growing the fastest as new

connectivity is added between old nodes when newer nodes

are removed. Note, however, that even for Online-RPG the

maximum fill in is 0.4%, still quite sparse.

As new nodes and factors are added to the graph, iSAM

performs two different types of updates; an incremental

update, where the solution is updated without relinearization,

and a batch update, where the solution is repeatedly relin-

earized and solved until convergence. In our experiments the

batch optimization update was called every 50 incremental

updates. In Fig. 7, we see that in the full graph, the com-

putation time for incremental and batch update steps grows

super-linearly, while for the proposed methods they remain

roughly constant (Fig. 7(a) and 7(b)). The time to remove a

node using GLC is also relatively constant and on the order

of 10 ms (Fig. 7(c)), though slightly higher in the case of
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(c) Graph Sparsity

Fig. 6: Graph complexity. Note that for batch methods the complexity statistics are recorded at the end of each session immediately before
node removal.
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(c) GLC Node Removal

Fig. 7: Mean CPU time for incremental and batch iSAM optimization update steps, and for GLC node removal, in seconds.

Online-RPG due to the higher connectivity density.

It is important to note that not all methods perform the

same number of incremental and batch update steps. iSAM

requires a batch optimization step after node removal and it

is desirable to be as close to the optimal as possible before

creating new GLC constraints. Therefore, in the Online-RPG

and Online-MR schemes, we wait until 10 nodes have been

flagged for removal, and then perform a batch-relinearization

optimization step immediately before and after removing

them. This results in the batch optimization step being called

more often for the Online-RPG and Online-MR schemes. The

total processing time for the 34.9 h of logged data, including

graph optimization, node removal, data association and scan

matching, took 58.7 h for the full graph. When using the

proposed complexity management schemes total processing

times were reduced to 6.1 h for Batch-MR, 6.3 h for Batch-

ND, 7.9 h for Online-RPG, and 6.8 h for Online-MR, which

is at least 4.4 times faster than real-time.

C. Distribution Comparison

In the previous experiment, each complexity management

scheme elects to remove a different set of nodes and,

therefore, the robot will make different data association

decisions, resulting in fundamentally different graphs. In

order to isolate the effects of GLC, we wish to directly

compare the distribution produced by repeatedly applying

sparse-approximate GLC node removal to a full distribution

derived using the exact same measurements, from which

no nodes have been removed. This can be done for the

batch methods by accumulating the measurements from each

session into one large graph. The results of this comparison

are shown in Fig. 8. Here we see that repeatedly applying

sparse approximate GLC node removal will produce a dif-

ference in the estimates from the full graph, though the

difference remains low, both in terms of mean (Fig. 8(a)

and 8(b)) and KLD (Fig. 8(c)). By looking at the log-ratio

of the marginal covariance determinants estimated in the

reduced and full graph, we can see that the reduced graph is

neither systematically conservative (strongly positive values)

nor systematically overconfident (strongly negative values)

(Fig. 8(d)). This is due to the fact that the CLT approxima-

tion simply seeks to produce the minimum KLD and does

not guarantee a conservative approximation. Guaranteeing

a conservative approximation, while still producing a low

KLD, remains as future work for GLC.

V. COMPLEXITY MANAGEMENT SCHEME DESIGN

CONSIDERATIONS

Having compared four different complexity management

schemes based on GLC node removal we can highlight some

things to consider when designing new schemes:

• Removing larger sets of nodes less often produces better

results than removing small sets of nodes more often.

Note that there is not really a binary difference between

online and batch node removal, it is just a matter of how

long nodes are left in the graph before removal.

• Even though the GLC constraints are reparameterized

in terms of relative transforms they still commit to a

relative linearization point. Therefore, it is desirable that

the relative transforms be as close as possible to the

optimal solution before node removal. The graph should

be optimized as well as possible before node removal.

• When removing a set of nodes it is important to

note that the order in which they are removed effects

the resulting graph connectivity. Experimentally, we

found that removing long chains of nodes sequentially
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Fig. 8: Comparison of the estimated distributions using batch methods with the estimated distributions using the same measurements but

without node removal. Translation error (a) is defined as
√

δ2x + δ2y + δ2z and attitude error (b) as
√

δ2r + δ2p + δ2h. The average KLD
between resulting marginal covariances for each node are shown in (c). By looking at the log-ratio of the marginal covariances determinants
(d) we can see that the reduced graph is neither systematically conservative (strongly positive values) nor systematically overconfident
(strongly negative values). 5% and 95% percentile bounds are denoted with dashed lines.

sometimes produced large star shaped trees in the

graph. To avoid this, sets of nodes were removed in

a randomized order in all experiments. The variable

elimination ordering problem [27] is well studied for

dense node removal. The application and adaptation of

existing variable elimination ordering strategies for node

removal with sparse connectivity could further improve

the performance of GLC-based complexity management

schemes.

VI. CONCLUSIONS

In this paper, we demonstrated that GLC provides a

principled and flexible tool enabling a variety of complexity

management schemes where pairwise measurement compo-

sition would normally be used. We proposed and evaluated

four complexity management schemes based on GLC node

removal. Each method is shown to successfully solve a large-

scale long-term SLAM while greatly reducing the associated

computational complexity.
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[25] M. Kaess and F. Dellaert, “Covariance recovery from a square root
information matrix for data association,” Robot. and Autonmous Syst.,
vol. 57, pp. 1198–1210, Dec. 2009.

[26] M. Kaess, H. Johannsson, D. Rosen, N. Carlevaris-Bianco,
and J. Leonard, “Open source implementation of iSAM,”
http://people.csail.mit.edu/kaess/isam, 2010.

[27] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-

ples and Techniques. MIT Press, 2009.

1041


