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Abstract— In this study, we propose a method for concept
formation and word acquisition for robots. The proposed
method is based on multimodal latent Dirichlet allocation
(MLDA) and the nested Pitman-Yor language model (NPYLM).
A robot obtains haptic, visual, and auditory information by
grasping, observing, and shaking an object. At the same
time, a user teaches object features to the robot through
speech, which is recognized using only acoustic models and
transformed into phoneme sequences. As the robot is supposed
to have no language model in advance, the recognized phoneme
sequences include many phoneme recognition errors. Moreover,
the recognized phoneme sequences with errors are segmented
into words in an unsupervised manner; however, not all words
are necessarily segmented correctly. The words including these
errors have a negative effect on the learning of word meanings.
To overcome this problem, we propose a method to improve
unsupervised word segmentation and to reduce phoneme recog-
nition errors by using multimodal object concepts. In the
proposed method, object concepts are used to enhance the
accuracy of word segmentation, reduce phoneme recognition
errors, and correct words so as to improve the categorization
accuracy. We experimentally demonstrate that the proposed
method can improve the accuracy of word segmentation and
reduce the phoneme recognition error and that the obtained
words enhance the categorization accuracy.

I. INTRODUCTION

A key feature of human intelligence is the ability to
categorize things. Humans can retrieve information without
referring to all of their experiences by using information cat-
egories. Furthermore, categorization enables humans to infer
unobservable information; such inference can in turn be used
to recognize an environment flexibly. Moreover, categories
are considered as concepts, and humans can understand the
meaning of a word by connecting the word to a concept. We
consider such categorization to be of great importance for
realizing intelligent robots.

In this light, we have proposed multimodal latent Dirichlet
allocation (MLDA) [1], an extension of latent Dirichlet
allocation (LDA) [2], and we have shown that a robot
can accurately perform categorization by using multimodal
information. Furthermore, we have shown that a robot can
understand the meanings of words by connecting words
to concepts formed by multimodal categorization [3]. Our
proposed model enables a robot to infer unobservable infor-
mation by using a previously learnt model. For example, the
robot can infer the sound or hardness of an object from only
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Fig. 1. Overview of proposed method

its appearance. Moreover, it can recall words to represent
sensory information perceived by it.

However, the predefined lexicon used in these methods
is one of their disadvantages. We used continuous speech
recognition to recognize a user’s utterances and a Japanese
morphological analyzer to segment sentences into words.
Consequently, the proposed method cannot deal with words
that are not contained in the lexicon of the speech recognizer
and the morphological analyzer. In contrast, humans can
build a lexicon by segmenting phoneme sequences according
to a phoneme transition probability. We believe that such
an ability is also important for robots to acquire language
flexibly.

Therefore, we have applied phoneme recognition without
a language model and the nested Pitman-Yor language model
(NPYLM) [4] to multimodal categorization [5]. A user’s
utterances are converted into phoneme sequences; then, these
are segmented into words using NPYLM in an unsupervised
manner; and finally, the segmented words are connected to
concepts formed by multimodal categorization. This process
enabled the robot to acquire words without using the pre-
defined lexicon. However, other important problems arise.
One of them is phoneme recognition errors. It is difficult
to correctly recognize the user’s utterances by using only
phoneme recognition without any language model. The other
problem is false segmentation of sentences. NPYLM requires
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a large number of sentences to be able to segment the
sentences correctly. It is considered difficult to collect a large
number of sentences for dialogue between a user and the
robot in order to teach object features.

Therefore, in this study, we propose a novel method to
enhance the accuracy of phoneme recognition and word
segmentation from a limited number of sentences by using
MLDA. Here, it is important to note that the words represent
the concepts that are formed by a physical robot and that
the words and the concepts are interrelated inseparably.
Therefore, objects that are classified into the same category
are likely to be given the same word with a high probability;
furthermore, objects that are connected to the same word
are likely to have common features with a high probability.
When the robot forms an object concept and segments
the user’s utterances, which are recognized by phoneme
recognition, it can use such clues to improve the accuracy
of object categorization, phoneme recognition, and word
segmentation mutually.

Unsupervised word segmentation is one of the most im-
portant problems in the area of natural language processing
(NLP). However, NLP by itself cannot solve semantic seg-
mentation because it requires the grounding of words in the
physical world. Our approach has an important perspective
in that the physical robot helps to solve the problem of NLP
and vice versa.

Figure 1 shows an overview of the proposed method.
First, the robot acquires haptic, visual, and audio information
by grasping, observing, and shaking an object. Simultane-
ously, the user teaches the robot object features. Then, the
user’s utterances are converted into phoneme sequences by
phoneme recognition. At this point, multiple candidates of
phoneme sequences are obtained by the n-best phoneme
recognition results. After that, they are segmented into words.
Again, multiple word candidates are obtained using NPYLM
with random initial parameters. Therefore, we can obtain
N × L word candidates if the N phoneme sequences are
segmented into words L times. Next, the segmented words
are connected to multimodal concepts, and the significant
words are selected according to a probability that denotes
the likelihood of the word representing the concept. Finally,
concepts are formed from the multimodal information and
the selected words. By using the proposed method, a concept
can enhance the word segmentation accuracy and the selected
words can enhance the categorization accuracy.

Many studies have focused on categorization using only
visual information [6], [7], [8], [9]; however, some categories
cannot be formed using only visual information. Some other
studies have focused on categorization using the sound made
by the robot touching an object [10]; these studies indicate
that it is possible to form categories that cannot be formed
using only visual information; however, these studies do not
consider inference among modalities and word acquisition.
We consider that multimodal information is required to form
natural categories for humans.

Some studies have already focused on language acquisition
[11], [12]. Taguchi et al. proposed a method for learning
the correct phoneme sequences by integrating locations and
their names [11]. Zuo et al. have proposed a method to
correct phoneme recognition errors by restating a word [12].
However, predefined expressions are used to teach words in
these studies, and they do not consider word segmentation.

Words

Vision

Audio

Tactile

Fig. 2. Graphical model of multimodal LDA

Fig. 3. Robot platform

II. MULTIMODAL CATEGORIZATION

The robot forms object concepts by using multimodal
information captured by grasping, observing, and shaking
an object. Figure 2 shows a graphical model of multimodal
LDA. In this figure, wv , wa, wt, and ww respectively
denote visual, auditory, haptic, and word information. Details
about each type of information are described later. wv, wa,
wt, and ww are respectively generated from a multinomial
distribution parameterized by βv , βa, βt, and βw, which
are determined by the Dirichlet prior distribution whose
parameters are π∗. Furthermore, θ denotes the parameter of
the multinomial distribution that represents the probability
of occurrence of category z, and the Dirichlet distribution,
whose parameter is α, is assumed to be a hyperparameter
of θ. Object categorization is realized by estimating these
parameters in the model from objects to be learnt.

A. Multimodal Information

Multimodal information is captured by the robot shown
in Fig.3. In this section, the multimodal information is
described in detail.
Visual Information A CCD (charge-coupled device)
camera and a depth camera are mounted on the arm of the
robot (Fig.3). The robot can observe the object from various
viewpoints by moving its arm (Fig.4(a)), and 7 images are
captured from −30◦ to 30◦ in steps of 10◦.

Dense scale-invariant feature transform (DSIFT) [13] is
used as a feature calculated from the captured image. Many
feature vectors (DSIFT descriptors) are obtained from the
image. These feature vectors are vector quantized by using
a 500-dimensional codebook. Finally, a 500-dimensional
histogram that represents the occurrence frequency of 500
vectors in the codebook is used as visual information.
Haptic Information The robotic hand mounted on the arm
and a tactile array sensor mounted on the hand are used to
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Fig. 4. (a) Capture of visual information, (b) Capture of haptic information,
and (c) Capture of auditory information

obtain haptic information (Fig.4(b)). The tactile array sensor
consists of 162 tactile sensors, and 162 time series sensor
values are obtained by the hand grasping the object. The
sensor values are approximated by using a sigmoid function,
the parameters of which are used as feature vectors for the
haptic information [14]. The robot grasps the object five
times, and therefore, 810(= 162 × 5) sensor values are
obtained from one object. Finally, these feature vectors are
vector quantized by using a 15-dimensional codebook, and
a 15-dimensional histogram is used as haptic information.

Auditory Information Sound is captured using a micro-
phone mounted on the robot’s hand while the robot shakes
the object, as shown in Fig.4(c). The sound is divided
into frames, and 13-dimensional MFCCs (Mel-frequency
cepstrum coefficients) are calculated from each frame. By
this process, the frames are transformed into 13-dimensional
feature vectors. Finally, as in the case of the visual informa-
tion, these feature vectors are vector quantized by using a
50-dimensional codebook, and a 50-dimensional histogram
is used as auditory information.

Word Information The user teaches the robot object
features through speech while the robot is observing the
object. Continuous speech signals are converted to phoneme
sequences through phoneme recognition, and each sentence
is segmented into words in an unsupervised manner by using
NPYLM. Finally, a histogram that denotes the occurrence
frequency of the words is used as word information.

B. Object Concept Formation

Object categorization is realized by estimating the pa-
rameters of the graphical model shown in Fig.2 from the
multimodal information that is obtained by the robot. The
model parameters are estimated by using Gibbs sampling.
A category zmij that is assigned to the i-th feature of
modality m of the j-th object is sampled from the posterior
probability:

p(zmij = k|z−mij ,wm, α, πm) ∝

(N−mij
kj + α)

N−mij
mwmk + πm

N−mij
mk +Wmπm

, (1)

where Wm denotes the dimension of the modality m infor-
mation and Nmwmkj , the number of times that category k is
assigned to wm of the j-th object. Therefore, Nmwmk, Nkj ,

Algorithm 1 Algorithm for parameter estimation

1: Iterate the following until convergence
2: for all m, i, j y do
3: u← random value [0, 1]
4: for k ← 1 to K do

5: P [k]← P [k − 1] + (N−mij
kj + α)

N
−mij

mwmk
+πm

N
−mij

mk
+Wmπm

6: end for
7: for k ← 1 to K do
8: if u < P [k]/P [K] then
9: zmij = k, break

10: end if
11: end for
12: end for

and Nmk are written as follows:

Nmwmk =
∑
j

Nmwmkj , (2)

Nkj =
∑

m,wm

Nmwmkj , (3)

Nmk =
∑
wm,j

Nmwmkj . (4)

Here, Nmwmk denotes the number of times a category
k is assigned to wm in all objects; Nkj , the number of
times that category k is assigned to all features in the j-
th object; and Nmk, the number of times that category k
is assigned to the features of modality m information in all
objects. The subscript with the minus sign in Eq.(1) indicates
the exception of a feature, e.g., z

−mij denotes the set of
categories that are assigned to all features except for the i-th
feature of modality m of the j-th object.

An assignment of a category of the i-th feature of modality
m of the j-th object is sampled according to Eq.(1) using
Gibbs sampling. By iterating the sampling, the parameters
N∗ are converged to N̄∗. Finally, the estimated parameters

β̂m
wmk and θ̂kj are calculated as follows:

β̂m
wmk =

N̄mwmk + πm

N̄mk +Wmπm
, (5)

θ̂kj =
N̄kj + α

Nj +Kα
. (6)

The algorithm for parameter estimation is summarized in
Algorithm 1.

C. Category Recognition of Unseen Object

By using the learnt MLDA model, it is possible to recog-
nize the category of an unseen object. The category is deter-
mined by calculating the probability that the unseen object is
classified into each category from the multimodal informa-
tion obtained from it. When obtaining multimodal informa-
tion w

v
obs, wa

obs, and w
t
obs, the category z is determined by

maximizing the probability P (z|wv
obs,w

a
obs,w

t
obs). There-

fore, the category z of an unseen object is calculated as
follows:

ẑ = argmax
z

P (z|wv
obs,w

a
obs,w

t
obs)

= argmax
z

∫
P (z|θ)P (θ|wv

obs,w
a
obs,w

t
obs)dθ (7)
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In this equation, P (θ|wv
obs,w

a
obs, w

t
obs) is required to be re-

calculated depending on the unseen object, and it is obtained
by the same algorithm as that used in the learning phase by
using the following equation instead of Eq.(1).

p(zmij = k|z−mij ,wm, α, πm) ∝

(N−mij
kj + α)

N̄mwmk +N−mij
mwmk + πm

N̄mk +N−mij
mk +Wmπm

(8)

where N̄mwmk and N̄mk are converged values in the learning
phase.

D. Inference of Unobservable Information

The proposed multimodal categorization enables not only
the classification of objects but also the inference of the
unobservable information of an object. The robot can infer
the properties of the object only from visual information,
such as how hard it is, whether it makes a sound, what
sound it makes, and which word it is represented by. For
example, we consider the case of the inference of word
information from only visual information. The probability
that word information ww is generated from only visual
information w

v
obs is written as follows:

p(ww|wv
obs) =

∫ ∑
z

p(ww|z)p(z|θ)p(θ|wv
obs)dθ. (9)

p(θ|wv
obs) can also be recalculated in the same manner as in

the previous section.

III. UNSUPERVISED WORD SEGMENTATION

The lexicon has been assumed to be predefined, and we
used the morphological analyzer that we had previously used
in our research [3]. As mentioned earlier, there exists the
problem that the robot cannot deal with words that are not
contained in the dictionary of the morphological analyzer.
To overcome this problem, we use the nested Pitman-Yor
language model, using which sentences are segmented into
words in an unsupervised manner.

A. Hierarchical Pitman-Yor Language Model

The hierarchical Pitman-Yor language model (HPYLM)
is an n-gram model with a hierarchical Pitman-Yor process.
The probability that word w appears after context h is written
as follows:

p(w|h) =
c(w|h)− d · thw
θ +

∑
w c(w|h)

+
θ + d ·

∑
w thw

θ +
∑

w c(w|h)
p(w|h′)

(10)

where h′ denotes the (n − 1)-gram. Therefore, p(w|h′) is
the probability that w appears after the context, which is one
shorter context than h, and it can be computed recursively.
Furthermore, c(w|h) denotes the number of occurrences of
w, which is generated from context h, and thw, the number
of occurrences of w, which is generated from context h′,
in c(w|h). The parameters d and θ are estimated by using
Gibbs sampling.

B. Nested Pitman-Yor Language Model

If the lexicon is given, the probability p(w|h′) can be
set to the inverse of the number of words. However, it is
difficult to calculate this probability without a predefined
dictionary, because all substrings could be a word. NPYLM
solves this problem by using a character HPYLM as a base
measure of the word unigram. This model is called the
nested Pitman-Yor language model (NPYLM) because the
character HPYLM is embedded as a base measure of the
word HPYLM. NPYLM can rapidly segment sentences by
using a blocked Gibbs sampler and dynamic programming.

IV. WORD MEANING ACQUISITION

NPYLM can be used to segment sentences in an unsu-
pervised manner. If a large number of sentences that do
not include errors are obtained, NPYLM can segment these
sentences into words with high accuracy [4]. However, it is
considered difficult to obtain many sentences for learning
when a user teaches words that represent object features to
the robot. Furthermore, it is difficult to obtain a phoneme
sequence without errors. Moreover, another problem exists
in that the segmentation result varies each time because the
learning of NPYLM is based on the sampling. To overcome
these problems, we use the object concept, which is formed
by MLDA. First, multiple candidates for words are computed
by applying NPYLM to n-best phoneme recognition results
many times. Then, words that are strongly connected to the
object concept are selected by using multimodal categoriza-
tion. Therefore, the robot can obtain words that represent
the objects and their features. The detailed algorithm for this
procedure is as follows.

1) An i-th user’s utterance given for a j-th object are
recognized by using phoneme recognition, and N -best
phoneme sequences pjin(1 ≤ n ≤ N ) are obtained.

2) The phoneme sequences pjin are segmented into words
by applying NPYLM L times, and word histograms
w̄

w
jinl(1 ≤ l ≤ L), which represent the occurrence

frequency of the words, are computed. Therefore, N×
L candidates of a word histogram of the i-th user’s
utterance given for the j-th object are obtained, and a
set of the candidates of word histograms of all objects
is denoted by W̄

w
= {w̄w

jinl|1 ≤ j ≤ J, 1 ≤ i ≤
Ij , 1 ≤ n ≤ N, 1 ≤ l ≤ L}. Ij denotes the number of
user’s utterances for the j-th object.

3) Iterate the following for all j(= 0, · · · , J)

i) Object concepts are formed by using the
multimodal information W

v
−j ,W

a
−j ,W

t
−j , and

W̄
w

−j , where a subscript with a minus sign indi-
cates the exception of the j-th object’s informa-
tion from W

v,W a,W t, and W̄
w

, respectively.
ii) A histogram w

w
ji that represents the occurrence

frequency of words of the i-th sentence given for
the j-th object is selected from the candidate with
the highest probability among the candidates of
word histogram w̄

w
jinl(1 ≤ n ≤ N, 1 ≤ l ≤ L)

as follows:

w
w
ji = argmaxn,l p(w̄

w
jinl|w

v
j ,w

a
j ,w

h
j ). (11)

In this equation, the probability that words
w̄

w
jinl are generated from multimodal information

w
v
j ,w

a
j ,w

h
j is computed by using the model

learnt in (i) and Eq.(9).
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Spray can Plastic bottle

Glass bottle Noodle

Shampoo Flooring cleaner

Rattle

Snack Cookie Plushie

Fig. 5. Objects used in the experiment

This is a red spray can. 

This makes a sound when shaken. 

This is made of metal and is hard. 

This is a green plushie of a frog.

This is soft. 

This is an animal.

This is a green plastic bottle.

This is green tea.

Fig. 6. Examples of the sentences used in the experiment

iii) By summing the word histograms w
w
ji, the word

histogram of the j-th object is calculated as
follows:

w
w
j =

∑Ij

i
w

w
ji. (12)

4) Finally, the object concepts are formed by MLDA
by using a set of the selected histograms W

w =
{ww

1 ,w
w
2 , · · · ,w

w
J } and the sets of multimodal infor-

mation W
v,W a, and W

t.

A user’s utterances can be converted into words that represent
object features by integrating unsupervised word segmenta-
tion and multimodal categorization as described above.

V. EXPERIMENTS

An experiment was conducted to validate the proposed
method. In the experiment, 50 objects that are classified
into 10 categories (e.g., plastic bottles, plushies, etc.) were
used. Furthermore, a user taught object features to the
robot through speech, and their speech was converted into
text through phoneme recognition. The user was a native
Japanese speaker, and Japanese sentences were used in this
experiment. Fig. 6 shows examples of the sentences used.
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Fig. 7. Average of Levenshtein distance between the selected phoneme
sequences and the correct phoneme sequences

TABLE I

THE NUMBER OF WORDS IN THE SELECTED PHONEME SEQUENCES

(N,L) (1, 1) (10, 1) (1, 20) (10, 20)
# of words 255 204 238 208

A. Word Selection

The word selection was conducted by using multimodal
information, which were acquired by the robot, and users’
utterances. We tested the proposed method by different
conditions. The 1-best recognition results (N = 1) or 10-
best recognition results (N = 10) of phoneme recognition
were used as candidates of a phoneme sequence. In addi-
tion, word candidates were computed from each candidate
of the phoneme sequence by applying NPYLM 1 time
(L = 1) or 20 times (L = 20). Therefore, we compared
the proposed method under the following four conditions:
(N,L) = (1, 1), (1, 20), (10, 1), (10, 20). (N,L) = (1, 1) is
the method proposed in [5].

First, we evaluated the difference between the selected
phoneme sequences and the correct phoneme sequences. The
Levenshtein distance, which represents a string metric for
measuring the difference between two sequences, was used
as the difference. It is defined as the minimum number of
edits needed to transform one string into the other, with
the allowable edit operations being insertion, deletion, or
substitution of a single character. Fig. 7 shows the average
distances between the selected phoneme sequences and the
correct phoneme sequences of all user’s utterances under
each condition. From this figure, the distance of phoneme
sequences selected from the candidates of N = 10 was
shorter than that of N = 1. This result indicates that
the proposed method can select a more correct phoneme
sequence from 10-best phoneme sequences. Tbl. I shows the
number of words selected by the proposed method. In the
case of (N,L) = (1, 1), which includes only one candidate,
the number of words was the largest. This was because
the same words were treated as different words owing to
false recognition and false segmentation. For example, if
“plushie” was recognized as “flushie,” this word was treated
as a different word from “plushie.” On the other hand, in the
case of N = 10, the number of words was smaller. This was
because the likelihood became larger if words that had same
meaning were represented by the same phoneme sequence. If
the candidates of “flushie” included “plushie”, the proposed
method was able to select the correct word “plushie.”

From these results, the selection of phoneme sequences
worked well by integrating multimodal categorization,
phoneme recognition, and NPYLM.

161



0

2

4

6

8

0 2 4 6 8

(b)

0

2

4

6

8

0 2 4 6 8

(d)

0

2

4

6

8

0 2 4 6 8

(a)

O
b
je
ct
 c
at
eg
o
ry

Category ID Category ID

O
b
je
ct
 c
at
eg
o
ry

O
b
je
ct
 c
at
eg
o
ry

0

2

4

6

8

0 2 4 6 8

(c)

O
b
je
ct
 c
at
eg
o
ry

Category ID Category ID

Fig. 8. Classification results by using a word histogram selected from (a)
(N,L) = (1, 1), (b) (N,L) = (10, 1), (c) (N,L) = (1, 20), and (d)
(N,L) = (10, 20)
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Fig. 9. Classification accuracy by using a word histogram selected from
each condition

B. Multimodal Categorization

Multimodal object concepts were formed by using the
multimodal information and the words selected in Sec. V-
A. Fig. 8 shows the result. In this figure, the vertical axis
represents an index of correct categories, the horizontal axis
represents an index of a category into which the object is
classified, and the brightness reflects the number of objects
classified into the category. Furthermore, the classification
accuracy under each condition is shown in Fig. 9. We
can see that the accuracy under the condition of using
1-best phoneme recognition (N = 1) was smaller than
that under other cases. It was considered difficult to obtain
correct words even though multiple candidates of words
were computed by NPYLM ((N,L) = (1, 20)) because the
word candidates included phoneme recognition errors. On the
other hand, in the case of selecting from the 10-best results
of phoneme recognition ((N,L) = (10, 1)), the accuracy of
classification was 88%, because more correct words were
selected by the proposed method. Moreover, in the case of
computing multiple candidates by applying NPYLM to the
10-best results of phoneme recognition ((N,L) = (10, 20)),
the accuracy was 90%, which was the largest accuracy in all
conditions.

These results indicate that more correct words can be
selected by using the multimodal object concepts, and con-
versely, the objects can be classified more correctly by using
the selected words.

VI. CONCLUSION

In this study, we applied NPYLM to multimodal cate-
gorization. Sentences uttered by a user are recognized by
phoneme recognition and segmented into words in an unsu-
pervised manner. However, it is difficult to acquire correct
words from a limited number of sentences, some of which
also include errors. To overcome this problem, many words
candidates are computed, and words that represent the object
features were selected by the object concept by considering
the probabilities that words are generated from the objects.

In future work, we will apply this method to online multi-
modal categorization [14], which we have studied previously,
and we will construct a system that can learn objects more
interactively. Moreover, we are considering the use of the
learnt language model for speech recognition and a method
for improving acoustic models through the learning process.
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