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Abstract— Given a stochastic policy learned by reinforce-
ment, we wish to ensure that it can be deployed on a robot
with demonstrably low probability of unsafe behavior. Our
case study is about learning to reach target objects positioned
close to obstacles, and ensuring a reasonably low collision
probability. Learning is carried out in a simulator to avoid
physical damage in the trial-and-error phase. Once a policy is
learned, we analyze it with probabilistic model checking tools
to identify and correct potential unsafe behaviors. The whole
process is automated and, in principle, it can be integrated step-
by-step with routine task-learning. As our results demonstrate,
automated fixing of policies is both feasible and highly effective
in bounding the probability of unsafe behaviors.

I. INTRODUCTION

Reinforcement Learning (RL), see, e.g., [1], is one of
the most widely adopted paradigms to obtain intelligent
behavior from interactive robots. Several RL applications
have been proposed in the literature wherein control policies
are synthesized by RL for a variety of tasks However, as
mentioned in [2], the asymptotic nature of guarantees about
performance of RL makes it difficult to bound the probability
of damaging the controlled robot and/or the environment.
This limits its applicability in all those cases where robots
are deployed, e.g., in close contacts with humans, or in other
safety-critical contexts.

Our goal is to guarantee that, given a control policy
synthesized by RL, such policy will keep the robot and
the environment safe with high probability. Safety could be
ensured through control-theoretic methods, e.g, Lyapunov
functions [3], or risk-sensitive learning as in [4], but these
methods require knowledge of either domains or algorithms,
while we are interested in Model Checking techniques [5],
[6] to verify safety properties automatically. Since we wish
to consider stochastic policies, safety cannot be assessed
in terms of Boolean logic, but probabilistic reasoning is to
be used instead. This can be achieved through Probabilistic
Model Checking techniques – see, e.g., [7] – wherein system
and properties have probability values associated to them. We
consider also the problem of automating repair, i.e., once
the policy is found unsatisfactory, it should be fixed without
manual inspections.
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Fig. 1: Experimental setup with the iCub. Picture (a) shows the scene as seen in
the iCub simulator during learning: the red ball is the target, and the green cylinder is
the obstacle; reaching is performed with the right hand. Picture (b) is a snapshot from
MoBeE tool, that we utilize to check collisions between iCub and objects which is not
supported by the iCub simulator. Picture (c) is the red iCub during the test phase: the
green ball is to be reached with the right hand, and the paper cup is the obstacle.

We contribute a new methodology based on probabilis-
tic model checking to ensure safety of stochastic policies
obtained with RL. In particular, we provide an automated
procedure to verify and fix learned policies until they comply
to stated safety requirements. We showcase our method with
the iCub humanoid [8] considering a task where the robot
is to reach a target object on a table in the presence of
nearby objects (obstacles) which should not be affected by
the robot’s movement. The setup is presented in Figure 1:
Figure 1 (a) is a snapshot of the iCub simulator [9] used
in the learning phase in order to avoid damage to the real
iCub. Since the simulator does not support detection of
collisions with external objects, we added MoBeE [10] –
shown in Figure 1 (b) – in order to detect collisions and
assign proper rewards and/or control the duration of learning
episodes. Finally, we tested repaired policies on the “red
iCub” depicted in Figure 1 (c). Notice that in both simulated
and physical setups, we did not consider any other source of
difficulty other than the proximity of the target objects and
the obstacle, which itself makes the learning problem quite
complex in terms of safety guarantees – further details on
the case study are presented in Section II.

After a short introduction to probabilistic model checking
in Section III, Section IV describes our main contribution.
The interaction between iCub and the environment is mod-
eled as a deterministic time Markov chain computed at the
end of the learning process. The likelihood of ill behaviors is
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encoded as reachability properties on the Markov chain. Re-
pair leverages the results of model checking to fix agents in
order to comply to stated safety requirements. Experimental
evaluation of verification and repair with the state-of-the-
art probabilistic model checker COMICS [11] is shown in
Section V. Repair is evaluated in terms of efficiency, i.e.,
how much time it is required to “fix” agents, effectiveness,
i.e., how compliant is the repaired agent to the stated
safety requirements, and invasiveness, i.e., how strong is
the performance degradation of repaired agents with respect
to the original ones. Our empirical evaluation shows that
probabilistic model checking is essential to achieve safety
guarantees that cannot be obtained using RL alone.

II. REACHING OBJECTS WITH ICUB

Our case study is about the humanoid iCub [8] learning
to reach for an object (target) placed on a table, without
damaging other objects (obstacles). The task is accomplished
with the iCub acting at two levels: A low-level controller
ensures that the trajectory of the robot is smooth and efficient
– see [12].1 A corresponding high-level controller has to
choose an action suggested by the learner. State-space at
this level is discrete and the overall hierarchical structure
ensures practical feasibility and scalability – see, e.g., [13].2

In particular, the first three dimensions of state space rep-
resent the Cartesian coordinates, and the fourth dimension
encodes orientation. The action-space is a discretized 5-D
space, wherein the first four dimensions coincide with the
state-space, and the fifth dimension is the time taken for
action execution. Hence, constrained reaching movement is
modeled as a spatio-temporal task. For sake of simplicity,
objects are simple convex shapes and orientation was simple
enumeration of few standard poses.

We formalize the learning problem considering a finite set
S which contains all possible positions in the discretized
state-space. The compact sets Si, St, So ⊂ S represent ini-
tial, target, and obstacle positions, respectively. We consider
a finite set of actions A and, for each state s ∈ S, As ⊆ A
is the set of all plausible actions from state s, i.e., the set
of actions which is effectively enabled in that state – for
instance, actions that would lead the robot out of the working
space will not be plausible in “boundary” states. We denote
with succ(s, a) ∈ S the successor of state s when action a
is executed. Given two states s, t ∈ S, the minimum distance
d(s, t) between them is defined recursively as

d =

{
0 if s = t
1 + mina∈As d(succ(s, a), t) otherwise (1)

1While various principles could be applied to prefer one trajectory
over another, the controller implemented in iCub generates minimum-jerk
trajectories with desired orientation as fitness function and desired position
as constraint.

2The choice of the task and related learning are bio-inspired, taking cue
from physiological studies on cognitive development of infants [14]. In
particular, we have used the fact that infants learn to reach for an object by
making series of similar sub-movements, a discrete set of small bell-shaped
velocities rather than one large smooth movement.

Since we do not have a model of the underlying transi-
tion system, but we can assume stationarity and history-
independence, learning to reach objects in the above setting
can be reduced to the solution of a goal-directed, determin-
istic, uninformed reinforcement learning problem. In order
to guarantee convergence in finite time, it is sufficient to
have ∀s ∈ Si, g ∈ St, d(s, g) < ∞ – see,e.g. [15] – which
is clearly satisfied in our case. Following [15], a nominal
penalty is attached to each action, which also helps in making
such problems tractable.

Given the problem as stated above, a policy for implement-
ing reaching on iCub can be obtained using the SARSA [16]
RL algorithm. In our learning setup we know that there
exists a tight bound of O(|S|

∑
s∈S |As|) on the number

of trials required to converge to the shortest possible path,
i.e., an optimal control policy [17]. However, since the state-
action space is about 2.1 million elements, a naive schema
rewarding goal-state alone would require about 12 billion
trials to converge. We thus consider the following, more
elaborate, but also more effective rewarding schema. Let
us assume that the simulator can detect collisions and end-
of-episode, and that such conditions are signalled by flags
collision and reset, resepctively. At each time step, the reward
received is:

R =

 Rt + f(T ) if only reset=TRUE
Ro if collision=TRUE
Rn + g(d) if all flags are FALSE

(2)

where T is the number of time-steps required to reach the
goal, and f : N → R is a monotonic bounded-downwards
function defined as f(T ) = max(−C1, 1 − eC2·T ), with
C1 > 0 and C2 that can be seen as negative utility for longer
actions; d is the distance of the current state from the goal,
and g : N→ R is a monotonic bounded-downwards function
defined as g(d) = min(K1,

K2

1−e−d ) with K1 > K2 > 0,
and K2 representing how preferable is a closer location
with respect to a farther one considering the goal. Rn is a
small penalty imposed on each action in order to quicken
convergence of learning. Rt is the reward agent receives
when the target is reached, whereas Ro is the negative reward
for hitting the obstacle, in both cases the episode comes to
an end. To summarize, an episode starts with initial state
s ∈ Si, continues the episode by taking actions and noticing
next states, and comes to end when either s ∈ So or s ∈ St
or simply upper bound on d is reached. No extra rewards are
levied in the last case.

For iCub to learn effective policies in the above setup,
various conflicting goals should be taken into account. While
a straight movement toward the target could fetch a higher
reward because of f(T ), it might also entail a lower reward
Ro on account of hitting the obstacle. The other rewards
could also interfere with one another. Hence, naive way
of providing infinitely negative reward for unsafe states,
would guarantee safe behavior but significantly hamper the
prospects of effective learning. In other words, it is not
straightforward to devise a learning algorithm that ensures
task completion with desired level of probabilistic guarantee
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against collisions. Since our learning algorithm depends on
Q-value of states, one could change the update rule to reflect
frequency of unsafe states as was done in [18]. However, this
relation between rewarding function and desired safety limit
would still remain implicit and hard to implement. Notice
that our interpretation of collision is that of a fatal event.
This is because, on the real robot, collisions may not be
detected timely, or may not even be detected at all, so their
occurrence should be avoided at all times.

III. PROBABILISTIC MODEL CHECKING

RL techniques model the interaction between the robot
and the environment as a Markov Decision Process (MDP)
wherein an agent can perceive a set of distinct states S
of its environment and has a set of actions A that it can
perform. At each discrete time step i, the agent senses state
si, and performs action ai. The environment responds by
giving the agent a reward Ri and by producing a transition to
the succeeding state si+1. For all states, RL yields a policy
π : S → A which suggest an action to be perfomed, so
that the cumulative reward will be (close to) optimal. In
order to demonstrate that safety requirements are satisfied,
we need to combine π with the underlying MDP to yield a
discrete-time Markov chain (DTMC) describing all possible
interactions of the robot with the environment. Analyzing
the DTMC, we compute the safety level of π and, in case
of an unsatisfactory answer, we attempt to fix it. This can
be done in the framework of Probabilistic model checking
(PMC) – see, e.g., [7], for a comprehensive survey. Briefly
stated, in PMC we are given a DTMCM and a requirement
ϕ, and we establish whether ϕ holds in M by means of an
(implicit) exhaustive exploration of the possible executions
of M.

Following [7], given a set of Boolean facts AP , a DTMC
is defined as a tuple (W,w,P, L) where
• W is a finite set of states
• w is the initial state
• P : W × W → [0, 1] is the transition probability

matrix.3

• L : W → 2AP is the labeling function.
An element P(w,w′) gives the probability of making a
transition from state w to state w′ with the requirement that∑
w′∈W P(w,w′) = 1 for all states w ∈ W . A terminating

(absorbing) state w is modeled by letting P(w,w) = 1. The
labeling function maps every state to a set of Boolean facts
from AP which are true in that state. An example of such
a fact is a flag bad which is true in all the states which are
undesirable.

Requirements for DTMCs can be expressed in terms of
Probabilistic Computational Tree Logic (PCTL) formulas,
whose syntax is defined considering the set Σ of state
formulas, and the set Π of path formulas. Σ is defined
inductively as:
• if ϕ ∈ AP then ϕ ∈ Σ;

3[0, 1] denotes a closed sub-interval of R, i.e., every x ∈ R such that
0 ≤ x ≤ 1.

• > ∈ Σ; if α, β ∈ Σ then also α ∧ β ∈ Σ and ¬α ∈ Σ
• P./p[ψ] ∈ Σ where ./∈ {≤, <,≥, >}, p ∈ [0, 1] and
ψ ∈ Π.

Notice that path formulas only occur as the parameter of
the probabilistic path operator P./p[ψ]. The set Π contains
exactly the expressions of type Xα (next), αU≤kβ (bounded
until) and αUβ (until) where α, β ∈ Σ and k ∈ N. We
also abbreviate >Uβ as Fβ (eventually) and >U≤kβ as
F≤kβ (bounded eventually). A path is defined as a non-
empty sequence of states w0, w1, w2, . . . where wi ∈W and
P(si, si+1) > 0 for all i ≥ 0. We denote the ith state of
τ by τ(i). Paths can be either finite of infinite. In case of
finite paths, the length of the path is just the number of states
in the path, and we denote with Pathw the set of (infinite)
paths starting from w.

Given a DTMC M = (W,w,P, L) and a state w ∈ W ,
let M, w |= ϕ denote that ϕ ∈ Σ is satisfied in s. Similarly,
we write M, τ |= ψ for a path τ of M satisfying a formula
ψ ∈ Π. When M is clear from the context, we omit it and
write w |= ϕ and τ |= ψ, respectively. The semantics of path
formulas can thus be defined as follows:
• τ |= Xα exactly when τ(1) |= α;
• τ |= αU≤kβ exactly when there is some i ≤ k such

that τ(i) |= β and τ(j) |= α for all j < i;
• τ |= αUβ exactly when there is some k ≥ 0 such that
τ |= αU≤kβ.

Accordingly, the semantics of state formulas can be stated
as follows:
• w |= a with a ∈ AP iff a ∈ L(w);
• w |= > for all w ∈W ; w |= α∧β exactly when w |= α

and w |= β; w |= ¬α exactly when w |= α does not
hold;

• w |= P./p[ψ] exactly when Probw({τ ∈ Pathw | τ |=
ψ}) ./ p

Intuitively, Probw(. . .) is the probability that the paths in
Pathw that also satisfy ψ are taken. Probw(. . .) is provably
measurable for all possible PCTL path formulas, and it can
be computed by the transition probability matrix P – see [7]
for details.

IV. ANALYZING AND FIXING POLICIES

In this section, we describe how to obtain a DTMC
M representing expected interactions of the robot with the
environment, we discuss which PCTL properties are to be
checked on M to assess safety, and how counterexamples
of such properties can aid in fixing policies. To this end, we
assume that states and transitions explored while learning are
logged in a table T : S × A → 2S×N, where S denotes the
set of states perceived by the agent, and A denotes the set of
possible actions. For each state s ∈ S and action a ∈ A, we
have that T (s, a) = {(s1;n1), . . . , (sk;nk)} where si ∈ S
for all 1 ≤ i ≤ k, and ni is the number of times the state
si occurred as next state in a transition from state s on
action a. Each cell (s, a) of T stores only the pairs (s′;n)
such that n > 0, i.e., state s′ appeared at least once in a
transition from an explored state s on action a. For all actions
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a ∈ A, if the state s ∈ S was explored, but had no outgoing
transitions, then T (s, a) = ∅; if a state was not explored,
then T (s, a) = ⊥.4 We also keep track of collisions detected
while learning with the table F : S → {TRUE, FALSE},
where F (s) = TRUE exactly when state s is a terminal state
wherein a collision occurred.

A. Encoding agent’s behaviors and safety

A DTMCM = (W,w,P, L), representing the interaction
between the agent and the environment, is obtained by
combining tables T and F and the Q-table filled by the
learning algorithm. The set AP of atomic propositions has
just one element bad which denotes undesirable states, i.e.,
collisions. The construction of M is the following:

1) The set of states W is initialized to explored states
logged in T , i.e., all the states s ∈ S such that for
all actions a ∈ A we have T (s, a) 6= ⊥, plus three
additional states w0, wok, wbad 6∈ S. The initial state
w is w0. For all v, w ∈W , we initialize P(v, w) = 0,
and L(w) = {}.

2) Let I ⊆ S be the set of source states in T , i.e., s ∈ I
exactly when (s, n) 6∈ T (s′, a) for all s′ ∈ S, n ∈ N
and a ∈ A. We make w0 the unique initial state by
requiring

∀w ∈ I, P(w0, w) =
1

|I|
(3)

meaning that w0 has an equal-probability transition to
every source state.

3) Given two states v, w ∈ W such that v, w 6∈
{w0, wok, wbad}, the probability of transition is defined
as

P(v, w) =
∑
a∈A

pQ(v, a, w) · pT (v, a, w) (4)

The probability pQ(v, â, w) is the probability of taking
action â ∈ A in state v, and it is computed from
Q(v, a) using a softmax criterion [1]

pQ(v, â, w) =
eQ(v,â)∑
b∈A e

Q(v,b)
(5)

This is coherent with the fact that action selection on
the iCub is carried out with a softmax-based stochastic
policy extracted from the Q-table. The probability
pT (v, â, w) is the probability of observing w as a
successor of v given that action â was taken. Assuming
T (v, â) = {(w1;n1), . . . , (wk;nk)} we have

pT (v, â, w) =
nw∑k
i=1 ni

(6)

if (w;nw) = (wj ;nj) for some 1 ≤ j ≤ k, and
pT (v, â, w) = 0 otherwise.

4) Let K ⊆ S be the set of sink states in T , i.e., s ∈ K
exactly when T (s, a) = ∅ for all a ∈ A. The state wok

4Notice that playing an action in a state should have a deterministic effect
as shown in Section II. However, coarse quantization, as well as slight
inaccuracies of the iCub minimum-jerk controller, cause some observable
uncertainity in the effects of actions that must be taken into account.

is an abstraction of all sink states s ∈ K such that
F (s) = FALSE. We make wok absorbing by setting
P(wok, wok) = 1. For each state v, let safe(v) ⊆ K
be the set of all safe sink states that can be reached
from v, i.e., all states w ∈ K such that there exist
a ∈ A with (w;nw) ∈ T (v, a) and F (w) = FALSE; for
all states v such that safe(v) 6= ∅, we set P(v, wok) =∑
w∈safe(v) P(v, w) and then P(v, w) = 0 for all w ∈

safe(v).
5) Symmetrically to wok, the state wbad is an abstrac-

tion for all unsafe sink states. Therefore we set
P(wbad, wbad) = 1 and L(wbad) = {bad}. For each
state v, unsafe(v) ⊆ K is the set of all unsafe sink
states that can be reached from v, i.e., all states w ∈ K
such that there exist a ∈ A with (w;nw) ∈ T (v, a) and
F (w) = TRUE; for all states v such that unsafe(v) 6= ∅,
we set P(v, wbad) =

∑
w∈unsafe(v) P(v, w) and then

P(v, w) = 0 for all w ∈ unsafe(v).
6) As a last step, with the exception of w0, we remove

from W all orphan states, i.e,, states w ∈W such that
P(v, w) = 0 for all v ∈ W with v 6= w. Notice that,
by construction, orphan states will be only sink states
that were collapsed to wok and wbad in the previous
two steps.

In particular, we wish to guarantee that the probability
of performing an unsafe action is (very) low in M. This
amounts to show that the probability of reaching wbad is
low, because wbad abstracts all the states wherein a collision
occurred during learning. Since wbad is the only state w ∈W
such that L(w) = {bad}, this amounts to check

M, w0 |= P<σ[F bad], (7)

where σ ∈ [0, 1] is a safety assurance probability. Typical
assertions that can be checked in this context include, e.g.,
the probability of a failure being less than 1%, i.e., checking
that M, w0 |= P<0.01[F bad] holds.

B. Fixing agents using counterexamples

We define agent repair as a verification-based procedure
that modifies the Q-table obtained by RL. Since the agent’s
policy is extracted from the Q-table, the goal of repair is to
fix the agent by altering state-action values. Repair is driven
by counterexamples that witness the violation of property (7)
for some threshold σ. Since there are no infinite paths inM,
property (7) is violated only if σ is less than the probability
of choosing a path τ = w0, w1, . . . , wk such that wk = wbad.
The probability mass of a path τ is defined as

Prob(τ) = Πk
j=1P(wj−1, wj) (8)

and extended to a set of paths C = {τ1, . . . , τn} ⊆ Pathw0

as

Prob(C) =

n∑
i=1

Prob(τi) (9)

C is a counterexample of property (7) if, for all 1 ≤ i ≤ n, we
have τi = wi,0, wi,1, . . . , wi,ki with wi,0 = w0 and wi,ki =
wbad and Prob(C) > σ. Notice that a counterexample C
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is unique only if it contains all paths starting with w0

and ending with wbad, and for all C′ ⊂ C we have that
Prob(C′) < σ. Given our assumptions, the counterexample
C = {τ1, . . . , τn} is a DAG such that |C| ≤ |Pathw0 |.
However, unless learning is highly ineffective, we expect
that |C| � |Pathw0

|, i.e., focusing on the counterexample is
an effective way to limit the repair procedure to a handful
of “critical” paths whose safety can hardly be improved
by finitely-many learning trials. However, focusing on the
counterexample is just the first step in verification-based
repair, and we also need to find an effective way to alter
the policy, i.e., the Q-values, so that probability masses
are shifted in the DTMC and property (7) is satisfied. Our
implementation leverages two key ideas to accomplsh this.
The first one is that transitions between states which are
“far” from wbad should be discouraged less that those that
are “near” wbad. The second idea is that probabilities should
“flow away” from paths ending with wbad towards paths
ending with wok. In particular, altering transitions which
are close to wbad helps to keep changes to the policy as
local as possible, and to avoid wasting useful learning results.
Ensuring that probabilities are shifted towards paths ending
with wok is needed to avoid moving probability mass from
one unsafe path to another, yielding no global improvement.

We formalize the intuitions above with the following
definitions. Given a path τ = w0, . . . , wk such that τ ∈ C,
let τ−1(w) : W → {0, . . . , k} be the index of w in τ ,
i.e., τ−1(w) = i if w = wi in τ ; The successor of w
along τ , denoted by succτ (w), is the state v such that
τ−1(v) = τ−1(w) + 1. Given a counterexample C and
path τ = w0, . . . , wk such that τ ∈ C, we know that
L(w) = {bad} only if w = wk. Therefore, we can define the
distance to the bad state along τ as bτ (w) = k − τ−1(w).
Given a counterexample C and a path τ ∈ C, for every state
w ∈ τ we consider a penalty function

zτ (w) = (1− Prob(τ)) · (1− e−
bτ (w)
δ ) (10)

where δ ∈ R+ is a real constant modulating the decay of
the exponential for growing values of bτ (w): all other things
being equal, the higher is δ, the slower is the convergence
of of zτ (w) to 1− Prob(τ) for increasing values of bτ (w).
Notice that, given two states w,w′ along the same path τ
such that bτ (w) < bτ (w′), we have zτ (w) > zτ (w′); given
two paths τ, τ ′ ∈ C such that Prob(τ) > Prob(τ ′), for
all states w along τ and all states w′ along τ ′, if bτ (w) =
bτ ′(w

′) we have that zτ (w) > zτ (w′). In conclusions, states
which are close to the bad state on a path whose probability
mass is relatively high, are always more penalized than states
which are far from the bad state, or come along a path whose
probability mass is relatively small.

Given a modelM built out of tables Q, T , F as described
in Section IV, a counterexample C = {τ1, . . . , τn} of the
safety property (7) for a given threshold σ, and a iteration
parameter θ ∈ N, repair is implemented by the following
algorithm:

1) Make a copy Q′ of the (current) Q-table Q.

2) Choose τ ∈ C such that Prob(τ) ≥ Prob(τ ′) for
all τ ′ ∈ C, i.e., τ is the path in C with the largest
probability mass.

3) For each wi ∈ τ (0 ≤ i < k), compute bτ (wi) and
let v = succτ (w); find the action a ∈ A such that
(v;nv) ∈ T (w, a) and modify Q′(w, a) as follows

Q′(w, a) =

{
Q′(w, a) · zτ (w) if Q′(w, a) ≥ 0
Q′(w, a) · 1

zτ (w) if Q′(w, a) < 0

4) Let C = C \ {τ}; go back to step (2), unless C = ∅ or
the number of paths considered so far is higher than
θ.

5) LetM′ be the DTMC obtained by T , F and Q′ in the
usual way; check if M′ fulfills (7); if so, then stop,
otherwise a new counterexample C′ is available: let
C = C′, M =M′, Q = Q′ and go back to step (1).

V. EXPERIMENTAL RESULTS

In the experimental setup, the state-space coordinates
have the following ranges (in meters): x ∈ [−0.35,−0.1],
y ∈ [−0.15, 0.25], z ∈ [−0.05, 0.15] with discretization step
of 0.01m, 0.02m and 0.04m, respectively. The orientation
o ∈ {−1, 0, 1} considers only three positions: “face down”,
“face up”, and “face left”, respectively. This yields a total of
9828 possible states. Additional signals reveal collisions with
the obstacle, and reaching in postures other than o = 1. As
shown in Figure 2 (left), after about 8000 episodes, the robot
can reach the ball while simultaneously avoiding contact
with the obstacle in most cases. Because of the realistic task
execution time in the iCub simulator, this result requires
nearly 12 hours of wall-clock time. Moreover, as shown
in Figure 2 (right), the progress in safety alongside with
learning is quite erratic.

We checked safety of the DTMC obtained considering a
policy learned after about 13 hours of wall-clock time on the
simulator. The DTMC has 590 states and 2148 transitions,
and COMICS is able to complete the safety check in less
than 0.01 CPU seconds. As for repair, in Figure 2 we see
that data obtained before repair (red line) and after repair
(green line) suggest that fixing the policy improves on safety
and it is not invasive: starting from an initial σ = 0.0081
we repair the policy, till we obtain σ = 6.10 · 10−5.
To confirm this observation, we introduce artificial noise
in the state feedback. In this way, we can make learning
convergence slower, and have a chance to experiment with
repair on suboptimal policies. In Table I, we show the
results of this experiment. The first row (“Absent”) reports
data corresponding to Figure 2. From the second row, we
start introducing additive gaussian noise to the iCub’s hand
coordinates. Noise has zero mean and increasing standard
deviation s: “Low” corresponds to s = 0.005m, “Medium”
to s = 0.01m, and “High” to s = 0.02m. We can observe
that noise always impacts negatively on effectiveness and
safety, but repair — see last column of the table — is
able to fix safety issues without changing effectiveness in a
substantial way. Noticeably, for “High” noise, repairing the
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Fig. 2: Performance (left) and safety (right) while learning (blue dotted line), during testing (red dashed line), and after repair (green solid line). The x-axis in both plots
indicates the total time (in seconds) for trial episodes. The plot on the left reports the average reward attained per episode, and the plot on the right reports the average number
of collisions.

Noise Initial Learning Repair
Eff. Safety Eff. Safety Eff. Safety

Absent 0.5770 0.0043 2.0127 0.0081 2.0025 6.10·10−05

Low 0.6068 0.0040 1.0980 0.0675 1.0990 3.93·10−06

Medium 0.2359 0.0048 0.9996 0.0135 0.9910 5.07·10−12

High 0.2570 0.0107 0.5626 0.0366 0.5914 4.053·10−06

TABLE I: Effectiveness and safety levels in learning to reach objects. “Noise” is
how much the initial position of the hand varies because of noise. “Initial”, “Learning”
and “Repair” denote that the measurements is done before learning, after learning and
after repair, respectively. Effectiveness (“Eff.”) is the average reward obtained, and
“Safety” is the value of the threshold σ.

policy turns out to have a positive impact on effectiveness
as well.

VI. CONCLUSIONS

Summing up, we have shown a method based on proba-
bilistic model checking to automate verification and repair of
policies learned by reinforcement. Our experimental results
support the feasibility of our method in a realistically-sized
learning application on the iCub. In particular, we have
shown that it is possible to automatically modify learned
policies with unsatisfactory failure rates, and achieve fail-
ure rates in the order of one-per-ten-thousands, consuming
negligible amounts of CPU time, and without decreasing the
performance of the iCub in a substantial way. Further details
about the tools cosidered in the paper, analyses, data and
videos about our experimental sessions can be found in the
companion site of the paper at http://www.mind-lab.
it/˜shashank/IROS2013/.

Further developments along this line of research will
include more complex setups where the iCub is to guarantee
safety at all times and learning control programs for real
robots, in order to assess scalability issues of verification and
repair. Another interesting direction, would be considering
safety of agents whose policies map a continuous state space
to a (continuous or discrete) action space and lack a suitable
discrete abstraction. While this would improve scalability of
learning itself, it will also introduce steep challenges from
verification methods that would probably require introducing
abstraction-refinement techniques in this context.
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