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Abstract— The kinematics of the anatomical shoulder are
analysed and modelled as a parallel mechanism similar to
a Stewart platform. A new method is proposed to describe
the shoulder kinematics with minimal coordinates and solve
the indeterminacy. The minimal coordinates are defined from
bony landmarks and the scapulothoracic kinematic constraints.
Independent from one another, they uniquely characterise the
shoulder motion. A humanoid mechanism is then proposed
with identical kinematic properties. It is then shown how
minimal coordinates can be obtained for this mechanism and
how the coordinates simplify both the motion-planning task

and trajectory-tracking control. Lastly, the coordinates are also
shown to have an application in the field of biomechanics where
they can be used to model the scapulohumeral rhythm.

Index Terms— shoulder kinematics, joint coordinates, mini-
mal coordinates, motion planning.

I. INTRODUCTION

The shoulder is a complex part of the human body.

Comprised of three bones, three joints, and the thorax, it

is capable of performing sophisticated motions due to a

kinematically redundant structure. To achieve the level of

performance, humans solve the indeterminacy using a highly

evolved coordination strategy known as the scapulohumeral

rhythm. These attributes make the shoulder a very attractive

system to mimic.

Over the years, numerous models of the system have

been developed by the biomechanics community to try to

reproduce the mobility and coordination of the system. The

first shoulder model used linkages to describe the movement

of the bones [1]. A later model was developed, where each

joint was modelled using ideal mechanical joints (spherical,

universal) and joint coordinates were introduced [2], [3].

The maximal range of motion of each joint was modelled

using joint sinus cones constructed from measured data [4],

[5]. A similar model was used to develop a non-linear

regression model of the scapulohumeral rhythm (coordinated

motion patterns of scapula and humerus), where the joint

coordinates of the scapula and clavicle are expressed as non-

linear functions of the humeral joint coordinates [6], [7].

The last model representing a significant contribution was

developed by van der Helm [8], where the contact between

the scapula and thorax was modelled by imposing that the
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scapula remain in contact with the surface of an ellipsoid

representing the thorax.

Since the van der Helm model was developed, there has

been little change in modelling techniques, and his model

remains a benchmark. In 2005, the international society of

biomechanics (ISB) standardised the modelling process by

defining a specific set of coordinates and reference systems

for describing the geometry and kinematics [9].

Because of the technological difficulties involved in mim-

icking human joints and motion, it is only in recent years

that mechanisms have been developed with similar kinematic

properties as the shoulder. In [10] a mechanical shoulder

is proposed based on the observations from Leonardo da

Vinci’s Vetruvian Man. In [11] and [12] parallel architectures

are proposed. In [13] a spherical architecture is proposed to

replicate the range of motion. In [14] a humanoid shoulder

is proposed incorporating a shoulder blade and in [15] the

scapulothoracic contact is mimicked.

Thus, the shoulder has been extensively modelled for biome-

chanics purposes and we are rapidly improving our ability

to mimic its behaviour mechanically. However, reproducing

the level of coordination exhibited by scapulohumeral rhythm

remains a difficult problem because it is not easily measured.

In biomechanics, the main solution is to use regression

models [7], [16], [17]. In robotics, inverse kinematics is the

most widely used approach [12], [18]. Regression models are

biomechanically accurate but are mainly linear models and

can only replicate the coordination locally. Inverse kinemat-

ics solutions are difficult to apply because the coordination is

difficult to formulate mathematically due to its nonlinearity.

The goal of this paper is therefore to present a kine-

matic model of the anatomical shoulder as defined by the

biomechanics community, and to propose a new method of

solving its kinematic redundancy. To this affect, minimal

coordinates are constructed from a geometric description

of the shoulder model. Independent from one another, they

uniquely describe any motion of the shoulder. Through the

kinematic analysis, the shoulder is shown to be a parallel

mechanism and a discussion is presented on the possibility of

developing a humanoid mechanism with identical kinematic

characteristics. The minimal coordinates are shown to be

particularly well suited for the motion planning and control

of such a mechanism. Lastly, a biomechanics application for

modelling the scapulohumeral rhythm is discussed.
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II. KINEMATICS OF THE SHOULDER

A. Skeletal Structure

The skeletal structure of the shoulder is comprised of three

bones: the clavicle (c), scapula (s) and humerus (h). The

bones are connected together by two joints. The acromio-

clavicular joint (AC) connecting the clavicle to the scapula

and the glenohumeral joint (GH) connecting the scapula to

the humerus. A third joint, the sternoclavicular joint (SC),

connects the clavicle to the sternum, thereby linking the

shoulder to the thorax (Fig.1).
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Fig. 1. Illustration of the shoulder skeletal structure.

A second connection exists between the shoulder bones

and thorax, known as the scapulothoracic gliding plane (ST).

The underside of the scapula’s medial border glides over the

surface of the ribcage. The scapulothoracic joint is not a joint

in the anatomical sense because it does not have ligaments

or capsules holding the bones together. Contact is held by

the action of a number of muscles, which keep the scapula

pressed against the thorax, making the scapulothoracic glid-

ing plane a joint in the kinematic sense. The importance of

this joint is two-fold. Kinematically, the contact constrains

the system motions, while dynamically the contact surface

absorbs part of the load [8].

B. Bony Landmarks & Geometric Model

The skeletal structure is reduced, in terms of geometry,

to a set bony landmarks. There are six landmarks necessary

to describe the geometry of the shoulder with respect to an

absolute reference point (Fig. 2):

1) IJ : Jugular Inscision & Absolute reference point,

2) SC : Center of Sternoclavicular joint,

3) AC : Center of Acromioclavicular joint,

4) GH : Center of Glenohumeral joint,

5) HU : Center of Humeroulnar joint,

6) TS : Trigonum Spinae (superior point on medial bor-

der),

7) AI : Angulus Inferior (inferior point on medial border),

The geometric model is constructed by reducing each bone to

a subset of bony landmarks, yielding a characteristic length

or shape. The clavicle is represented by the line segment

between the SC and AC joints. The scapula is characterised

by the quadrilateral formed by the AC joint, the GH joint

and the two end points of the scapula’s medial border (TS &

AI). The humerus is characterised by the line segment from

the GH joint to the humeroulnar joint centre (HU).

C. Kinematic Model

The shoulder is comprised of three moving parts: the

clavicle, scapula and humerus, which rotate around the

different joints. The thorax (sternum & ribcage) constitutes

the frame and reference point for the motion.

The system has three physiological joints (SC, AC & GH)

and one purely kinematic joint (ST). The three joints are

modelled as spherical joints, while the scapulothoracic joint

is modelled using two spherical slider joints (Fig. 3). The

two points at either end of the scapula’s medial border are

constrained to glide over a surface approximating the ribcage,

similar to the models from [8], [19], [20].

The system has 7 degrees of freedom according to the

following formula

M = 6n−
m

∑
j=1

(6− k j) = 7, (1)

where n = 3 is the number of links, m = 5 is the number

of joints and k is the associated degrees of freedom (DOF)

(Fig. 3).
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Fig. 2. Bony landmarks and characteristic geometry of the shoulder bones.
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Fig. 3. Kinematic diagram of the shoulder skeletal structure.

D. Reference Frames & Joint Coordinates

Since bones rotate around joints, joint rotation coordinates

are a natural choice. Consequently, each bone is attributed

with a reference system (ei
1ei

2ei
3, i = c,s,h)1, placed at the

1Notation: bold lower-case letters are vectors, bold upper-case letters are
matrices, plain lower-case letters are scalars and plain upper-case letters are
geometric points.
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centre of the joint around which it rotates (Fig. 4). The

humerus rotates around the GH joint, the scapula rotates

around the AC joint and the clavicle rotates around the SC

joint. The orientation of each reference frame is defined

according to the recommendations set by the International

Society of Biomechanics (ISB) [9].

The joint coordinates are defined as Euler angles. The 2-1-

3 sequence is used to define the rotations of the clavicle and

scapula around the SC and AC joints respectively. The 2-1-

2 sequence is used to describe the rotation of the humerus

around the GH joint. Thus, each joint is attributed a set of

three coordinates

xc =
(

θ c
2 θ c

1 θ c
3

)T
, xs =

(

θ s
2 θ s

1 θ s
3

)T
, xh =

(

θ h
2 θ h

1 θ̃ h
2

)T
. (2)

The joint angles are referenced by defining the zero rotation

configuration of a joint, when its reference system is aligned

with the absolute reference system.
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Fig. 4. Joint Reference Systems and Coordinates associated to each joint.

Consider pj (j = c,s,h), a point on a bone, defined in the

local reference system. The position of the same point in the

absolute reference system is defined by

qct = Rc pc + SCt, (3)

qst = Rs ps +ACt = Rs ps +Rc ACc + SCt, (4)

qht = Rh ph +GHt = Rh ph +Rs GHs +Rc ACc + SCt. (5)

The subindexes on the points indicate the reference system

where the point is defined. The local to absolute reference

frame rotation matrices Rj are defined as

Rj = Rj(xj) = R(θ
j
2)R

T (θ
j
1)R(θ

j
3), j = c,s, (6)

Rh = Rh(xh) = R(θ h
2 )R

T (θ h
1 )R(θ̃ h

2 ), (7)

R(θ
j
1) =

[

1 0 0

0 c
j
1
−s

j
1

0 s
j
1

c
j
1

]

, R(θ
j
2) =

[

c
j
2 0 −s

j
2

0 1 0

s
j
2

0 c
j
2

]

, R(θ
j
3) =

[

c
j
3
−s

j
3

0

s
j
3

c
j
3

0

0 0 1

]

,

with c ≡ cos(θ ),s ≡ sin(θ ).

E. Scapulothoracic Gliding Plane

The ST joint is modelled using two spherical slider joints.

The two end-points of the scapula’s medial border are con-

strained to remain in contact with the ribcage, approximated

as an ellipsoid using CT scans (Fig. 5), which best fits the

area over which the scapula glides [8], [20]. To account for

the layer of muscle tissue between the scapula and ribcage,

the points TS and AI are then projected onto the ellipsoid

along the normal to the surface, yielding two new points

TSp and AIp. The joint model is defined by constraining the

distances between the points TS and AI and their projection

to remain constant, leading to two holonomic constraints,

polynomial functions of the SC and AC joint coordinates.

A detailed construction of the constraints is given in the

appendix A.

ΦTS(xc,xs) = 0, ΦAI(xc,xs) = 0. (8)

Fig. 5. Representation of the original thorax ellipsoid defining the scapulo-
thoracic joint.

F. Forward Kinematic Model

The forward kinematic shoulder model is defined by

choosing the point HU as the end-effector and imposing the

scapulothoracic gliding plane constraints on the map (5).

ζS : XS→ WS ⊂ R
3,

x = (xc,xs,xh) 7→ ζS(x) = Rh HUh +Rs GHs +Rc ACc +SCt, (9)

s.t. ΦTS(xc,xs) = 0, TS contact constraint, (10)

ΦAI(xc,xs) = 0, AI contact constraint, (11)

The spaces XS and WS are the joint space and end-effector

work space respectively [21].

Defined by 9 coordinates subject to two equality constraints,

the joint space XS is an embedded sub-manifold of dimen-

sion 7. The range space WS of ζS is a subset of R3 analyzed

in [4], [22], [23]. The humerus and clavicle rotate around

their longitudinal axes without changing the end-effector

position, the shoulder is therefore a redundant system of

degree 2 [24].

G. The Scapulohumeral Rhythm

The scapulohumeral rhythm defines the coordinated mo-

tion of the scapula relative to the humerus. As the humerus

moves, the scapula is observed to move in similar fashion but

with less amplitude. To illustrate this point, consider raising

the arm in the scapular plane (plane parallel to the triangular

shape of the scapula). As the humerus rotates upwards or

abducts, the scapula rotates by a fraction of the angle. When

measured the scapulohumeral rhythm can differ significantly

from one individual to another and is of a highly nonlinear

nature. The observations from [25] indicate a ratio of 1/3

5539



between the absolute angles (Fig. 6), but this description is

not universal and others have been proposed [26], [27], [17],

leaving a certain freedom in modelling the shoulder rhythm.

The coordinated motion of the shoulder is achieved

through control of the surrounding muscles. The

scapulohumeral rhythm is therefore not naturally associated

with the kinematic model, but rather represents nature’s

solution to the kinematic redundancy of the shoulder.

Modeling the scapulohumeral rhythm is not without diffi-

culty since there is no exact definition as stated previously.

The main approach thus far has been to use regression

models constructed from measured data [7], [16], [17]. This

yields a set of functions describing the AC and SC joint

angles in terms of the glenohumeral joint angles. The models

are mostly linear and therefore model the rhythm locally

[16], [17].

90◦ Humeral rotation

30◦

30◦ Clavicle Elevation

90◦ Humeral Abduction

Scapular Rotation

Fig. 6. Schematic description of scapulohumeral rhythm presented in [25].

III. MINIMAL COORDINATES

A. The Shoulder as a Parallel Mechanism

The parallel nature of the shoulder is not directly obvious

from the structure of the model previously described. Further

analysis of the system shows the shoulder to be comprised

of a series mechanism: the humerus, and a closed-loop

parallel mechanism: the shoulder girdle. Defined by the

thorax, clavicle and scapula, the shoulder girdle forms a

parallel mechanism similar to a 3-3 Stewart-Gough platform

(Fig. 7). The 3-3 or 3-SPS Stewart platform is defined as a

platform supported by ball joints over three legs of adjustable

lengths connected to the base through ball joints [28]. In

contrast the shoulder girdle is defined as a platform (scapula)

supported by three ball joints (AC, TS & AI) over three

legs. The first leg (clavicle) is of fixed length and connected

to the base (thorax) trough a ball joint (SC). The other

two legs are of adjustable lengths and are connected to the

base through two superimposed universal joints (ST). The

lengths of the adjustable legs are constrained and depend on

the orientations of the legs with respect to the base. This

constraint imposes the scapulothoracic gliding plane.

The purpose of the parallel structure is to increase the

range of the glenohumeral joint. The shoulder girdle acts as

a positioning and orienting mechanism for the glenohumeral

joint, thereby increasing its range. The entire shoulder struc-

ture thus represents a highly efficient parallel manipulator.

3-3 Stewart Platform Shoulder Girdle: Parallel Mechanism

AC

TS
AI

SC

ST (2 x universal)

Scapula

Scapulothoracic

contact

Clavicle

GH

Humerus

1
2

3

Platform

Base

Ball Joint

Adjustable Leg

Thorax

Universal Joint

Fig. 7. Diagrams of the 3-3 Stewart platform and shoulder girdle.

B. Minimal Coordinates

The following discussion considers the shoulder mech-

anism as presented in Figure 8. A platform supported by

three links, two of which are of adjustable lengths. On the

platform sits a fourth link. The kinematics of this model

are defined by the same forward kinematic map (9) subject

to the same constraints (10)-(11). To solve the kinematic

redundancy a minimal set of 7 independent coordinates are

proposed which, provide a simple manner of describing the

system’s motion.

m =
(

m1 m2 m3 m4 m5 m6 m7

)T
. (12)

The 7 degrees of freedom are defined as follows: 5 degrees

of freedom (m2 to m6) define the position of the end-effector

E (Fig. 8) and 2 degrees of freedom (m1 & m7) define the

self rotations of the links B1 −P1 and P4 −E .

P1

P2

P3

B1

B2

Platform

Base

E End-Effector

P4

m1

m7

Fig. 8. Diagram of the shoulder parallel mechanism.

The 5 coordinates are defined using a geometric descrip-

tion of the model. The absolute origin is placed at the

centre of the superimposed universal joints B2 and cartesian

coordinates are attributed to each point (18 coordinates total).

B1 =
(

x1
x2
x3

)

, P1 =
(

y1
y2
y3

)

, P2 =
(

z1
z2
z3

)

, (13)

P3 =
(

u1
u2
u3

)

, P4 =
(

v1
v2
v3

)

, E =
(

w1
w2
w3

)

. (14)

The spatial configuration of the points with respect to each

other and to the origin is defined by a set of 8 polynomial
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equations.

(y1 − x1)
2 +(y2 − x2)

2 +(y3 − x3)
2 = ‖P1 −B1‖

2
2, (15)

(z1 − y1)
2 +(z2 − y2)

2 +(z3 − y3)
2 = ‖P2 −P1‖

2
2, (16)

(u1 − y1)
2 +(u2 − y2)

2 +(u3 − y3)
2 = ‖P3 −P1‖

2
2, (17)

(v1 − y1)
2 +(v2 − y2)

2 +(v3 − y3)
2 = ‖P4 −P1‖

2
2, (18)

(z1 −u1)
2 +(z2 −u2)

2 +(z3 −u3)
2 = ‖P2 −P3‖

2
2, (19)

(z1 − v1)
2 +(z2 − v2)

2 +(z3 − v3)
2 = ‖P2 −P4‖

2
2, (20)

(u1 − v1)
2 +(u2 − v2)

2 +(u3 − v3)
2 = ‖P3 −P4‖

2
2, (21)

(w1 − v1)
2 +(w2 − v2)

2 +(w3 − v3)
2 = ‖E−P4‖

2
2, (22)

where ‖ · ‖2 is the Euclidean norm. The two constraint

equations (10)-(11) are added, yielding a set of 10 equations.

P2 :
z2

1

a2
+

z2
2

b2
+

z2
3

c2
−1 = 0, (23)

P3 :
u2

1

a2
+

u2
2

b2
+

u2
3

c2
−1 = 0, a,b,c : ellipsoid axes lengths. (24)

The point SC is fixed with respect to the origin. Therefore,

the 10 equations are function of 15 cartesian coordinates,

which can be reduced to 5.

To begin the coordinate reduction, the point E is defined

by the sphere equation (22), and can be parameterized using

two spherical coordinates α and β .

E :







‖E−P4‖cos(α)sin(β )+ v1,
‖E−P4‖sin(α)sin(β )+ v2,
‖E−P4‖cos(β )+ v3.

(25)

The position of the point P4 is defined with respect to the

platform origin located at P1. To define the configuration

(position & orientation) of the platform, the position of three

points are needed. To start, the point P3 is defined by the

ellipsoid equation (24). Its motion can be described using

the spherical coordinates γ and ν .

P3 :







acos(γ)sin(ν),
bsin(γ)sin(ν),
ccos(ν).

(26)

The point P2 lies on the intersection of the sphere defined

by (19) and the ellipsoid defined by (23). The intersection

defines a locus of points homeomorphic to a circle, which

depends on the position of the point P3. Practically, the locus

is defined by expressing two of the three coordinates of the

point P2 in terms of the third and the coordinates of the

point P3. The explicit computation of the locus is given in

appendix B.

P2 :







z1(z3,u1,u2,u3) = z1(z3,γ,ν),
z2(z3,u1,u2,u3) = z2(z3,γ,ν),
z3.

(27)

Once the locations of P2 and P3 are known, the point P1 is

located at the intersection of three spheres centred on B1, P2

and P3 ((15)-(17)). The resulting locus of the intersection is

a pair of points, one of which is the desired point.

The definition of the points P1, P2 and P3 completely de-

fines the configuration of the platform and therefore the

mechanism. The 5 coordinates necessary to describe the

configuration of the six points B1, P1, P2, P3, P4 and E are

(γ, ν, z3, α, β ) . (28)

The two remaining coordinates, defining the self rotations of

the links B1−P1 and P4−E , do not change the configuration

of the six points. However, since these links correspond to

the clavicle and humerus which are 3D solids, these rotations

are necessary to fully define the configuration of the shoulder

skeletal structure. Lastly, the spherical coordinates α and β
of the humeral motion are equivalent to the two Euler angles

from the joint coordinate model ((9)-(11)): θ h
1 = α , θ h

2 = β .

The 7 minimal coordinates are given by

m =
(

θ c
1 γ ν z3 θ h

1 θ h
2 θ̃ h

2

)T
. (29)

C. Mapping Minimal Coordinates to Joint Coordinates

The proposed minimal coordinates solve the motion plan-

ning problem efficiently but constructing a dynamic model

is not straightforward. Therefore, it is necessary to construct

a map between them and the joint angles which are suitable

for dynamic modelling.

χ : MS ⊂ R
7 → XS ⊂ R

9,

m 7→ χ(m) = x. (30)

The map is constructed by computing the local reference-

frame vectors of each bone in terms of the minimal

coordinates. The rotation matrix to pass from the absolute

reference frame is then defined and the joint angles are

extracted knowing that the sequence is 2-1-3, as stated

previously in Section II-D. This method is possible since

the initial configuration of each reference frame is known

through the geometric dataset.

D. Remarks

The polynomial description of the system illustrates a

number of differences between the shoulder and Stewart

platform. Both systems can be described using polynomial

equations and share 8 out of 10 of the equations. However,

the Stewart platform has legs of variable length, and therefore

certain terms on the righthand side are not constant. Also

the last two equations ((23)-(24)) differ. A more in-depth

comparison between the two mechanisms could be achieved

using reduction theory and Groebner basis on polynomial

ideals [29], [30]. The minimal coordinates also provide a

means of analysing the topological structure of the config-

uration manifold MS. This in turn could lead to a better

understanding of the scpulohumeral rhythm.

IV. DISCUSSION

A. Humanoid Mechanism Design

The comparison of the shoulder skeletal structure to the

Stewart platform leads to the natural question of whether

a mechanical system can be constructed with identical or

similar kinematic characteristics to that of the shoulder?

A possible feasible mechanism is obtained by separating the
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two universal joints (Fig. 9). Indeed, the shoulder mechanism

as presented in Figure 8 is not directly a possible solution

because of the superimposed universal joints. The change in

joint location does not alter the kinematic properties of the

system. Indeed, the kinematics are still defined by a set of

polynomial equations ((15)-(24)) with the difference that one

of the ellipsoid equations is translated away from the origin.

Also, the minimal coordinate construction method remains

the same.

It is of course not necessary to impose the ellipsoid nature

of the scapulothoracic gliding plane on the length of the legs

B2−P2 and B3−P3. One could impose spherical behaviour or

even planar behaviour ((31)-(32)). This would considerably

simplify the description of the platforms motion. In both

cases the point P2 would be described with respect to P3,

using a polar coordinate. For spherical behaviour, P2 moves

on the intersection of two spheres which is a circle. For

planar behaviour, P2 moves in a circle around P3.

P2 : ax+ by+ cz= d, (31)

P3 : ax+ by+ cz= d. (32)

P1

P2

P3

B1

B2 ≡ O

Platform

B3Base

P4

E End-effector

Fig. 9. Schematic of a robotic humanoid shoulder mechanism with identical
kinematic characteristics to the shoulder.

Before a physical implementation of the system is consid-

ered, it would be necessary to investigate their kinematics

in detail to locate any possible singular points and whether

or not the control is actually possible. Additionally, the

structural properties of such systems should also require

attention.

B. Platform Control & Motion Planning

The minimal coordinates presented in this paper have

the property of being differentially independent and can be

expressed as functions of the joint coordinates. The joint

coordinates can also be expressed as functions of the minimal

coordinates. Therefore, they represent the flat outputs of the

system of which they describe the motion [31]. Indeed, the

shoulder model and the humanoid mechanism are differen-

tially flat systems.

Flat systems are of interest because they make motion plan-

ning straightforward and allow the development of trajectory

tracking control strategies. Differential flatness has been for

instance, extensively used to plan the motion of a car with

n trailers [32]. Differential flatness has also been used to

develop a control strategy for a crane [33].

Practically, the motion of a flat system can be obtained by

planning the motion of each of the flat outputs independantly

using the following polynomial equation.

mi(t) = mi(t0)+
n

∑
j=1

p j (mi(T )−mi(t0))

(

t − t0

T − t0

) j

. (33)

Combined with the coordinate map χ ((30)), an end-effector

path can easily be planned and controlled.

C. Other Applications

The simplicity of motion planning using the minimal

coordinates can be applied to other problems than control of

a humanoid mechanism. Indeed, the scapulohumeral rhythm

discussed in Section II-G could also be modelled using

the minimal coordinates. The methods proposed so far use

measured data, either directly ([34], [35]) or to construct re-

gression models ([7], [16], [17]), which is difficult to obtain.

Additionally, inverse kinematics, cannot easily reproduce the

level of coordination exhibited by the physical system [19].

If combined with measured data, the minimal coordinates

could provide a high-quality nonlinear description of the

scapulohumeral rhythm.

V. CONCLUSIONS

In this paper the kinematics of the anatomical shoulder are

described using a model from the biomechanics literature.

The kinematic model is then compared to a 3-3 Stewart

platform, thereby underlining the parallel structure of the

shoulder. A new method is proposed for solving the shoulder

kinematic indeterminacy, using minimal coordinates. The

coordinates are constructed from simple geometric relations

between bony landmarks and the scapulothoracic gliding

plane constraints. A humanoid robotic shoulder mechanism

is then proposed based on an identical kinematic structure

as the shoulder model. It is shown how a set of minimal

coordinates can easily be obtained for such a system using

the same approach as the shoulder. A possible control

strategy is discussed along with considerations on feasibility.

The coordinates are advantageous in the simplicity with

which they can be applied. They also present an attractive

solution for control strategies since they can be considered

as flat outputs of the system.

APPENDIX

A. Constructing the Scapulothoracic Constraints

In the ellipsoid reference frame, the projections TSp and

AIp of the points TS and AI onto the ellipsoid satisfy the

ellipsoid equations (23)-(24). They can also be computed in

terms of the coordinates of TS and AI. Considering the point

TS, the point TSp is obtained by

TSp = TS+ηn, (A.1)

where n is the normal to the surface and η a scalar factor.

The normal to the surface of the ellipsoid is defined by

n =
(

2x
a2

2y

b2
2z
c2

)T

, (A.2)
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where (x,y,z) are the coordinates of the point where the

normal is evaluated. Using this relation in (A.1) leads to

(

x y z
)T

=
(

z̄1 z̄2 z̄3

)T
+η

(

2x
a2

2y

b2
2z
c2

)T

(A.3)

Finally the point TSp is defined by

TSp =
(

z1 z2 z3

)T
=
(

a2 z̄1

a2−2η
b2z̄2

b2−2η
c2 z̄3

c2−2η

)T

(A.4)

The constraint equation is therefore defined by

ΦTS =
a2z̄2

1

(a2 − 2η)2
+

b2z̄2
2

(b2 − 2η)2
+

c2z̄2
3

(c2 − 2η)2
− 1 = 0

(A.5)

The parameter η remains the same if the normal vector is

normalised, and can therefore be computed in the initial posi-

tion using a nonlinear function solver. The second constraint

is exactly identical.

B. Constructing the Sphere-Ellipsoid Intersection

The point TS is constrained by the following equations

which define a locus of points.

z2
1/a2

1 + z2
2/b2

1 + z2
3/c2

1 − 1= 0, (B.1)

(z1 −u1)
2 +(z2 −u2)

2 +(z3 −u3)
2 −‖P1 −P3‖

2= 0. (B.2)

The two equations define the intersection between a sphere

and an ellipsoid. In Section IV it is stated that the solution is

described in terms of the the z coordinate of the point P2 and

the coordinates of the point P3. The first step towards solving

the intersection problem is to define one of the coordinates

as function of the others. Using the first equation leads to

z1 = Z(z2,z3) =±a
√

1− z2
2/b2 − z2

3/c2. (B.3)

This solution is then inserted into the second equation (A.2)

yielding a polynomial function in z2 where the coefficients

are real functions of z3,u1,u2 and u3

P4z4
2 +P3z3

2 +P2z2
2 +P1z2 +P0 = 0, (B.4)

Pi = Pi(z3,u1,u2,u3) i = 0,1,2,3,4.

Equation (B.4) is a quartic equation in z2. The equation has

an analytical solution si given by Ferrari’s method [37]. The

solution to the equation yields four roots which are function

of z3,y1,y2 and y3.

(z2 − s1)(z2 − s2)(z2 − s3)(z2 − s4) = 0, (B.5)

si = Si(z3,u1,u2,u3), i = 1,2,3,4.

Since the coefficients are all real, the roots will be a pair

of real roots (s1,s2) and a pair of complex conjugate roots

(s3,s4). This will be the case as long as the coordinate z3

remains inside a certain interval. Indeed, the z3 coordinate

cannot take any value and must remain within

z3 ∈ [(z3)min , (z3)max]. (B.6)

The extremal values for z3 are located at the point where

the real roots of (B.4) are identical. In Ferrari’s method,

this condition leads to a nonlinear equation in z3 which

can be solved using the Newton-Raphson method. Running

the algorithm twice from initial values with opposite signs

leads to the two values (z3)min and (z3)max. These values are

themselves functions of the point P3’s coordinates u1,u2 and

u3, which change as the point P3 moves. Thus, the locus of

points defined by the intersection of the ellipsoid and sphere

are parameterised as a function of z3.

z1 : Z(z3,u1,u2,u3) =

{

±a
√

1− S2
1/b2 − z2

3/c2

±a
√

1− S2
2/b2

1 − z2
3/c2

1

, (B.7)

z2 : S(z3,u1,u2,u3) =

{

s1(z3,u1 ,u2,u3)
s2(z3,u1 ,u2,u3)

, (B.8)

z3 : z3 ∈ [(z3)min(u1,u2,u3) , (z3)max(u1,u2,u3)]. (B.9)

The z2 coordinate has four solutions, two of which are valid.

The two invalid solutions are eliminated by testing if the

solutions validate the sphere equation (B.2). Since the z1

coordinate is solved using the ellipsoid equation (B.1), the

solutions must also hold for the sphere equation. This is

achieved by testing the following equality

(Z(z3,si)− u1)
2 +(si − u2)

2 +(z3 − u3)
2 = ...

−‖P2 −P3‖
2, i = 1,2. (B.10)

This test eliminates two of the four solutions from (B.7).

Figure 10 illustrates an example of the locus of points

obtained from the intersection of a sphere and ellipsoid.

Lastly, the coordinate z3 can be replaced by the relative

coordinate µ defined below. This will make its planning

easier.

z3 = (z3)min + µ · ((z3)max − (z3)min) , µ ∈ [0,1]. (B.11)

Fig. 10. Example of the ellipsoid-sphere intersection locus (in red).

ACKNOWLEDGMENT

This study was supported by the Swiss National Science

Foundation (K-32K1 122512).

REFERENCES

[1] W. T. Dempster, Mechanism of shoulder movement, Archives of
Physical Medicine and Rehabilitation, vol. 46, no. 1, pp. 49 - 69,
1965.

[2] A. E. Engin and S. M. Chen, Statistical data base for the biomechanical
properties of the human shoulder complex - part i : Kinematics of the
shoulder complex, Journal of biomechanical engineering, vol. 108, pp.
215 - 221, 1986.

[3] A. E. Engin and S. M. Chen, Statistical data base for the biomechanical
properties of the human shoulder complex - part ii : Passive resistive
properties beyond the shoulder complex sinus, Journal of biomechan-
ical engineering, vol. 108, pp. 222 - 227, 1986.

5543



[4] A. E. Engin and S. T. Tumer, Three-dimensional kinematic modelling
of the human shoulder complex - part i: Physical model and deter-
mination of joint sinus cones, Journal of biomechanical engineering,
vol. 111, no. 2, pp. 107 - 112, 1989.

[5] A. E. Engin and S. T. Tumer, Three-dimensional kinematic modeling
of the human shoulder complex - part ii: Mathematical modeling and
solution via optimization, Journal of biomechanical engineering, vol.
111, no. 2, pp. 113 - 221, 1989.

[6] C. Hogfors, B. Peterson, and P. Herberts, Biomechanical model of the
human shoulder-i. elements, Journal of biomechanics, vol. 20, no. 2,
pp. 157 - 166, 1987.

[7] C. Hogfors, B. Peterson, G. Sigholm, and P. Herberts, Biomechanical
model of the human shoulder-ii. the shoulder rythm, Journal of
biomechanics, vol. 24, no. 8, pp. 699 - 709, 1991.

[8] F. C. T. van der Helm, A finite element musculoskeletal model of the
shoulder mechanism, Journal of Biomechanics, vol. 27, no. 5, pp. 551
- 553, 555 - 569, 1994.

[9] G. Wu, F. C. T. van der Helm, H. Veeger, M. Makhsous, P. Van Roy, C.
Anglin, J. Nagels, A. Karduna, K. McQuade, X. Wang, F. Werner, and
B. Buchholz, ISB recommendation on definitions of joint coordinate
systems of various joints for the reporting of human joint motion -
part ii: shoulder, elbow, wrist and hand, Journal of Biomechanics, vol.
38, no. 5, pp. 981 - 992, 2005.

[10] M. Rosheim, In the footsteps of leonardo [articulated anthropomorphic
robot], Robotics Automation Magazine, IEEE, vol. 4, no. 2, pp. 12 -
14, 1997.

[11] M. Okada and Y. Nakamura, Development of a cybernetic shoulder-a
3-dof mechanism that imitates biological shoulder motion, Robotics,
IEEE Transactions on, vol. 21, no. 3, pp. 438 - 444, 1999.

[12] J. Lenarcic and M. Stanisic, A humanoid shoulder complex and
the humeral pointing kinematics, Robotics and Automation, IEEE
Transactions on, vol. 19, no. 3, pp. 499 - 506, june 2003.

[13] M. M. Stanisic, J. M. Wiitala, and J. T. Feix, A dexterous humanoid
shoulder mechanism, Journal of Robotic Systems, vol. 18, no. 12, pp.
737 - 745, 2001.

[14] Y. Sodeyama, I. Mizuuchi, T. Yoshikai, Y. Nakanishi, and M. Inaba,
A shoulder structure of muscle-driven humanoid with shoulder blades,
in Intelligent Robots and Systems. (IROS 2005). 2005 IEEE/RSJ
International Conference on, pp. 4028 - 4033, 2005.

[15] S. Ikemoto, F. Kannou, and K. Hosoda, Humanlike shoulder complex
for musculoskeletal robot arms, in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 4892 - 4897,
2012.

[16] J. H. deGroot and R. Brand, A three-dimension regression model of
the shoulder rhythm, Clinical biomechanics, vol. 16, pp. 735 - 743,
2001.

[17] T.-J. Grewal, Quantifying the shoulder rhythm and comparing nonin-
vasive methods of scapular tracking for overhead and axially rotated
humeral postures, Ph.D. dissertation, University of Waterloo, Waterloo,
2011.

[18] O. Khatib, E. Demircan, V. De Sapio, L. Sentis, T. Besier, and S. Delp,
Robotics-based synthesis of human motion, Journal of Physiology, vol.
103, pp. 211 - 219, 2009.

[19] W. Maurel, 3d modeling of the human upper limb including the
biomechanics of joints, muscles and soft tissues, Ph.D. dissertation,
EPFL, Lausanne, 1998.

[20] B. Garner and M. Pandy, Musculoskeletal model of the upper limb
based on the visible human male dataset, Computer Methods in
Biomechanics and Biomedical Engineering, vol. 4, no. 2, pp. 107 -
124, 1999.

[21] J. Burdick, Kinematic analysis and design of redundant robot manip-
ulators, Ph.D. dissertation, Stanford, Stanford, 1988.

[22] X. Wang, M. Maurin, F. Mazet, N. De Castro Maia, K. Voinot, J.
Verriest, and M. Fayet, Three-dimensional modelling of the motion
range of axial rotation of the upper arm, Journal of Biomechanics,
vol. 31, no. 10, pp. 899 - 908, 1998.

[23] L. Herda, R. Urtasun, and A. Hanson, Automatic determination of
shoulder joint limits using quaternion field boundaries, In Proceedings
of the 5th International Conference on Automatic Face and Gesture
Recognition, vol. 2002, pp. 95 - 100, 2002.

[24] E. Conkur and R. Buckingham, Clarifying the definition of redundancy
as used in robotics, Robotica, vol. 15, p. 583 - 586, 1997.

[25] R. Cailliet, The Illustrated Guide to Functional Anatomy of the
Musculokeletal System. American Medical Association, 2004.

[26] L. Freedman and R. Munro, Abduction of the arm in the scapular
plane: Scapular and glenohumeral movements a roentgenographic
study, The Journal of Bone & Joint Surgery, vol. 48, no. 8, pp. 1503
- 1510, 1966.

[27] I. Michiels and J. Grevenstein, Kinematics of shoulder abduction in
the scapular plane: On the influence of abduction velocity and external
load, Clinical Biomechanics, vol. 10, no. 3, pp. 137 143, 1995.

[28] B. Dasgupta and T. Mruthyunjaya, The stewart platform manipulator:
a review, Mechanism and Machine Theory, vol. 35, no. 1, pp. 15 40,
2000.

[29] B. Buchberger, Groebner bases and systems theory, Multidimensional
Syst. Signal Process., vol. 12, no. 3-4, pp. 223 251, Jul. 2001.

[30] Cox D., Little J., O’Shea D., ”Ideals, Varieties, and Algorithms,” New-
York, Springer, 2007.

[31] J. Levine, On necessary and sufficient conditions for differential
flatness, Appl. Algebra Eng., Commun. Comput., vol. 22, no. 1, pp.
47 - 90, Jan. 2011.

[32] P. Rouchon, M. Fliess, J. Levine, and P. Martin, Flatness, motion plan-
ning and trailer systems, in Decision and Control, 1993., Proceedings
of the 32nd IEEE Conference on, vol. 3, pp. 2700 - 2705, dec 1993.

[33] D. Buccieri, C. Salzmann, P. Mullhaupt, and D. Bonvin, Jet-scheduling
control for spidercrane: Experimental results, in 17th IFAC World
Congress (IFAC08), 2008.

[34] R. Happee, Inverse dynamic optimization including muscular dynam-
ics, a new simulation method applied to goal directed movements,
Journal of Biomechanics, vol. 27, no. 7, pp. 953 - 960, 1994.

[35] C. Quental, J. Folgado, J. Ambr osio, and J. Monteiro, A multibody
biomechanical model of the upper limb including the shoulder girdle,
Multibody System Dynamics, vol. 28, pp. 83 - 108, 2012.

[36] V. De Sapio, K. Holzbaur, and O. Khatib, The control of kinematically
constrained shoulder complexes: physiological and humanoid exam-
ples, in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pp. 2952 - 2959, 2006.

[37] G. Cardano, Ars magna or The Rules of Algebra. Dover (published
1993), 1545.

5544


