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Abstract— Simultaneous place classification and object 
detection (SPCOD) is an algorithm which is able to categorize 
the environment (place) and detect the objects presented in the 
environment. Although both place classification and object 
detection problems have been in discussion in literature, as a 
concept SPCOD is still in its early stage of research. Focusing 
mainly on the discrimination ability of SPCOD, in this paper 
we have proposed a pairwise conditional random field (CRF) 
framework to integrate mature techniques on laser data based 
place classification and vision based off-the-shelf object 
descriptor. Extensive experimental results on a public data set 
demonstrate the effectiveness of the proposed method.  

I. INTRODUCTION 

The concept of simultaneous place classification and 
object detection (SPCOD) refers to the task of simultaneously 
distinguishing differences between various environmental 
locations and classifying part of the environment as 
representing certain objects. More importantly, the targets 
being processed should be assigned with human-defined 
labels (kitchen, office, chair, fridge, etc). The SPCOD has a 
variety of applications in robotics, such as human-robot 
interaction [1] and mapping [2].  

In our perspective, SPCOD is a natural evolution of the 
current research on place classification which has been 
carried out based on various sensory modalities to a 
reasonable success. Vision based solutions for place 
classification have been in the forefront for many years 
[3][4][5], with a basic assumption that a realistic scene can be 
represented by a visual descriptor without any loss of 
discriminative information [6]. Pronobis et al. designed a 
vision-only recognition algorithm for place classification 
using rich global descriptors from image and support vector 
machine (SVM) as a discriminative classifier. Ranganathan 
and Jongwoo labeled the robot trajectories using CRF [4]. 
Vasudevan and Siegwart suggested functional concepts of 
places based on the objects and inter-object relationships [3]. 
In terms of 2D laser range sensor based solutions, Mozos et 
al. extracted hundreds of simple features and employed the 
AdaBoost classifier to label indoor environments consisting 
of rooms, corridors, doorways and halls [7]; Sousa et al. used 
a subset of the aforementioned features with SVM classifier 
[8]. In previous work, we were able to achieve an accuracy of 
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96% using i.i.d. classifiers on similar data sets for multiclass 
classification [2][9].  

Research results show that graphical-models-based 
algorithms incorporating the contextual information usually 
exhibit superior performance than those relying only on the 
local observations [1][26]. Typical forms of this information 
are spatial/temporal consistency and place-object context. 
Therefore, combining well-developed object detection 
technique with current place classification methods are 
becoming a reality. In this respect, Murphy et al. used a tree-
structured graphical model to facilitate object-presence 
detection, and vice versa [10]. Torralba et al. employed the 
semantic knowledge to provide contextual priors for object 
recognition [11]. More recently, the proposal of the concept 
simultaneous place and object recognition further reflected 
the need for modeling bidirectional interaction between 
places and objects for simultaneous reinforcement (which is 
somewhat analogous to simultaneous localization and 
mapping (SLAM)). Kim et al. extended the hidden Markov 
model (HMM) by incorporating the bidirectional context of 
objects, and Luo et al. proposed a hierarchical random field 
[12][13]. They all used low level features from images for 
object recognition, and modeling the coexistence of objects is 
reported to be computationally expensive.  

As an effort towards developing fully functional SPCOD, 
we propose a supervised learning framework based on 
pairwise CRF to classify places and determine the 
presence/absence of target objects simultaneously. 
Experiments show that the proposed method is capable of 
producing appealing results. 

The rest of this paper is arranged as follows. Section II 
describes the details of pairwise CRF and the methods 
proposed for SPCOD, as well as the standard SVM 
classification scheme which provides an alternative approach 
for comparison. Section III introduces the features extracted 
from multiple cues in two sensory modalities. Section IV 
describes the experimental setup. In Section V, experimental 
results are presented; and Section VI concludes the paper 
with pointers to future directions of the research. 

II. BACKGROUND ALGORITHMS AND SPCOD METHODS 

A. Pairwise CRF and Parameter Estimation 

Probabilistic graphical model like CRF captures both 
uncertainty and logical structure to compactly represent 
complex phenomena [14]. To be specific, CRF is a 
discriminative model which is used to directly estimate the 
conditional probability distribution ( | )p y x , where y  and x  
are labels (to be predicted) and observations respectively.  
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In the work presented in this paper, an implementation of 
a CRF with pairwise potentials [15] is employed. The 
conditional distribution of pairwise CRF is defined in 
equation (1)  
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| , , ,

( ) ij i j i i
ij i
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where i and ij  represent node and edge potentials 

respectively, and  Z x  is the normalizing partition function. 

The node potential is a function of node features ix  and 
parameter matrix w , and the edge potential is a function of 
edge features ijx  and parameter matrix v . We choose 

[1, ]i ix f  and [1, , ]ij i jx f f  as the forms of the node and the 

edge features respectively, where if  contains the local 
features associated with node i . As a common practice, the 
node features are derived from the local observation and the 
edge features share the node features from two end nodes of 
the edge [16]. In order to reduce the risk of over 
parameterization, the same set of parameter matrices are 
applied on all nodes and edges, and the node and edge 
potentials are set in the following forms. 
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where  1 1= ,..., nw w w , 11 1, 1= [ ,..., ]n n v v v , and n  is the 

number of target classes, i.e.  1, ,iy n  . 

For the convenience of further analysis, equation (1) can 
be written in another way:  

      | ; exp , , |p z y x x y x          (4) 

where     | ln exp , ,z  
y

x x y  ,  , w v , 

and  , x y is called sufficient statistics. 

By applying clique decomposition,  , x y  can be 

calculated by summing the clique potentials over all nodes 
and edges [16]. 
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In the parameter estimation stage, given a training set 
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The maximum conditional likelihood estimation is 
adopted to estimate the parameter  , i.e. 

 * arg max | ;P Y X                (7) 

Equation (7) is equivalent to minimizing the negative log-
likelihood  * arg min  nll   . As per the common practice, 

an L2-regularization term 2  can be added to equation (6) 

to improve cross-validation results. 

The negative log-likelihood function can be written as 
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and the gradient of equation (8) is also required. 
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The prediction process consists of calculating 

 * *arg max | ;p yy y x   for any new observation x . 

In this paper the loopy belief propagation (LBP), which is 
a generalization of the forwards-backwards message passing 
algorithm to loopy graphs, has been adopted for parameter 
estimation and inference.  

B. Support Vector Machine 

SVM is a well-established classifier which has been 
proved to offer excellent generalization ability. In this paper, 
the results from SVM are used for comparison purposes. 

The basic idea of SVM is to map the data into a high 
dimensional feature space and find an optimal separating 
hyper-plane with the maximal margin.  

Consider a training set of instance-label pairs 
    1 1, ,..., ,m mD y y x x , n

i Rx and  1, 1iy   , 1,...,i m  

where m  is the number of samples, instances ix are firstly 
mapped into a higher dimension feature space F via a 
nonlinear mapping : nR F  . 

Theoretically, a soft-margin SVM constructs an optimal 
hyper-plane 0T b w x  with maximum-margin and bounded 
error by solving, 
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where w  and b  denote the weight vector and bias 
respectively in the equation of the optimal hyper-plane 

0T b w x . The positive constant C  is a penalty parameter 
used to control the amount of regularization, and the non-
negative slack variable i  accounts for the amount of 
misclassification. 

Although SVM is originally a binary classifier, it has also 
been extended by applying strategies such as one-against-all, 
one-against-one and directed acyclic graph SVM to deal with 
multi-class classification problems. Throughout the work 
reported in this paper, the multi-class implementation of the 
C-support vector classification scheme included in the 
LIBSVM package has been utilized [17].  
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C. Candidate Methods for SPCOD 

In this research, three methods based on pairwise CRF are 
proposed and two of them are designed for SPCOD.  

As shown in Fig. 1, single sensor modality place 
classification (S-PC) is similar to the VRF proposed by 
Friedman et al. for place classification [18]. It is a CRF built 
on top of spatially connected topological map. This method 
does not have object detection capability but it serves as the 
root of the other two methods. In addition, it provides useful 
reference results in experiments. 

observations
(features)

latent random variables
(labels to be predicted)

Place

px 0,1, ,kp y

 
Fig. 1.  Single sensory modality place classification model 

The multiple cues SPCOD with individual object feature 
(M-SPCOD-IOF) shown in Fig. 2 is a derivation of S-PC by 
adding object nodes. The edges between place nodes and 
object nodes do not represent spatial connectivity any more 
but spatial co-existence. The co-existence of objects are not 
modeled otherwise the complexity of the model will increase 
dramatically with the categories of object nodes.  

As an ideal setup, each object is described by only one 
feature which is the highest value in the Object Bank 
response map according to the specific object. 

px

hox   0,1 , 0,1, ,
h

h r o y
 0,1, ,kp y

 
Fig. 2.  Multiple cues SPCOD with individual object feature 

            (the figure is better viewed in color) 

The multiple cues SPCOD with object feature pool (M-
SPCOD-OFP) shown in Fig. 3 further expands M-SPCOD-
IOF by introducing an object feature pool (OFP) due to the 
consideration that an object may not be described well using 
corresponding object descriptor in the Object Bank, and it 
could also be represented better by other object descriptors 
[21]. A case in point is that a computer screen in an image 
may also respond well to “television filter” and “laptop 
filter”, or even “window filter” due to the reflection. Since 
that the pairwise CRF deals with relatively high dimensional 
feature space well, introducing more features for each object 
is expected to provide better system performance. Therefore 
the OFP for a scene contains the peak values of responses 
from all available object filters (currently there are 208 object 
filters in Object Bank) which presumably represent the 
presence/absence of corresponding objects. It is the 
classifier’s task to assign proper parameters to combine these 
features for each object node. 

   0,1 , 0,1, ,
h

h r o y
 0,1, ,kp y

px

OFPx

 
Fig. 3.  Multiple cues SPCOD with object feature pool 

            (the figure is better viewed in color) 

It is to be noted that all the solutions proposed in this 
section are based on cyclic graphs, so that they are able to 
work on general graphs. 

III. FEATURE CONSTRUCTION 

A. Features from 2D Laser Range Data 

The typical output of a 2D scanning laser range finder 
(LRF) is a beam sequence corresponding to a constant angle 
interval, which represents a point set in Euclidean Plane.  

For the purpose of place classification, various features 
extracted from 2D laser range data have been reported in the 
literature including spectral features [19] and single-valued 
features capturing statistical and geometric information [7]. 
Mozos et al. suggested 22 categories of single-valued 
features and extracted 150 features considering different 
thresholds [7]. Sousa et al. constructed a feature set using 14 
single-valued features [8]. 

For this research, the following 24 features including a 
subset of abovementioned simple features and those 
originally derived by Hjorth to describe time domain signal 
[20] have been adopted. Precise mathematical definitions of 
these features can be found in [7][20]. 

 The area A of the polygon Z specified by the observed 
points; the perimeter P of Z; the normalized circularity of Z; 
the quotient of A/P 

 The average and the standard deviation of both the beam 
length and the normalized beam length 

 The average, normalized average and the standard deviation 
of the difference between the length of consecutive beams 

 The average and the standard deviation of the relationship 
between the length of consecutive beams 

 The average, the normalized average, the standard 
deviation and the normalized standard deviation of the 
distances between the centroid and the shape boundary 

 The major axis Ma and minor axis Mi of the ellipse that 
approximates Z; the quotient of Ma/Mi 

 The Kurtosis, activity, mobility and complexity of the beam 
length sequence [20] 

B. Features from Image 

Both low-level and high-level features have been 
developed for the purpose of image understanding. Low-level 
features like GIST or SIFT-SPM are derived at the pixel level 
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to characterize images in a statistical way and high-level 
features like Object Bank usually analyses images in a 
semantically meaningful way [21][22]. As it is suggested that 
low-level image features are inadequate to capture complex 
semantic meaning required to solve high-level tasks [23], in 
this research the Object Bank is adopted as image-based 
object features because it serves our objectives well with 
extra convenience as off-the-shelf object filters.  

Object Bank constructs feature vector through collecting 
responses to object filters which are trained classifiers in 
HOG feature space [24]. The responses are basically heat 
maps indicating the strength of the response when the object 
filter is placed at each position [24]. The benefits of using 
Object Bank include: a) it provides pre-trained off-the-shelf 
object filters; b) it holds useful information on the precise 
object position. However, Object Bank also has some 
problems: a) it does not hold any information on whether or 
not the object is on the scene; b) it does not guarantee 
adequate semantic coherence in terms of object detection 
[21][24]; c) its high performance on scene classification tasks 
is reported to be due to the high-dimensional vectors of local 
scale-space features [21]. 

In our methods, these problems are avoidable since 1) the 
decisions on the present/absence of objects are made by 
classifiers; 2) an object feature pool is introduced to use 
Object Bank features as latent information; and 3) only one 
feature corresponding to each object filter is used to construct 
a low-dimensional feature vector. An example of 
constructing the object feature pool for the M-SPCOD-OFP 
method mentioned in Section II.C is shown in Fig. 4. For 
each object filter, 8 8  response maps in 12 scales are 
generated and only the maximum strength is employed as the 
feature indicating the presence/absence of this object. 

 
Fig. 4.  Feature extraction process for M-SPCOD-OFP 

(the figure is better viewed in color) 

IV. ENVIRONMENT AND DATA SET 

For the research reported in this paper, a subset of the 
freely available COsy Localization Database (COLD) [25] is 
adopted to validate the proposed methods. COLD contains 76 
image sequences collected in three different indoor 

environments, using the same sensor setup in rooms of 
different functionality and under various environmental 
conditions [25]. The three data sets available are called 
COLD-Saarbruecken, COLD-Freiburg and COLD-Ljubljana 
respectively. However, the COLD-Saarbruecken data set 
does not contain sufficient images with high occurrence of 
objects, and the COLD-Ljubljana data set covers only one 
area for each environment type without providing any range 
data. Therefore, the following experiments are based on 16 
sequences in the COLD-Freiburg data set as the environment 
consists of rich object density with the bonus of the available 
laser range finder data.  

Based on the properties of the COLD-Freiburg data set, 
data collected from 3 trajectories containing all target places 
and objects were selected for training, and another 13 
trajectories under different lighting conditions were divided 
into three groups for test. To clarify the terms, a sample is the 
data collected on a whole trajectory, and an instance is an 
observation (laser range finder data and image) made on a 
node (a pose) of a trajectory. To reduce the overhead of the 
system, we spatially down sample the observations to keep 
them about 0.5 meters apart on the trajectory. 

In the test data, Group 1 consists of 6 samples (shorter 
trajectories in the same area where the training data are 
gathered) under 3 lighting conditions (cloudy, night, and 
sunny). Group 2 covers 3 samples (approximate revisits of 
the training trajectories) under 3 lighting conditions (cloudy, 
night, and sunny). Group 3 contains 4 samples (trajectories in 
a new area which slightly overlaps with the training 
trajectories) under 2 lighting conditions (cloudy, sunny). 
From the perspective of training, data from Group 1, Group 2 
and Group 3 can be thought as familiar data, approximately 
replicated data, and unfamiliar data respectively. 

In the COLD-Freiburg data set, a single observation 
consists of a sequence of 180° LRF data collected by a SICK 
laser scanner and a 640 480 pixels color image came from a 
perspective camera. The corresponding pose of the robot 
which was estimated during the acquisition process using a 
laser-based localization technique was also provided [25]. 

As for the ground truth for training, place nodes are 
labeled by matching the blue-print map with poses where the 
observations are made, and the presence/absence of target 
objects in a scene is manually labeled. Please note that in this 
research, no effort has been made on providing ground truth 
about the precise object position in images. The target 
concepts include 6 place types and 10 objects. 

V. EXPERIMENTAL RESULTS 

In the following experiments, performances of different 
methods on place classification and object detection are 
discussed.  

A. Performances of Place Classification 

In this experiment, places are classified into six categories 
(printer room, corridor, kitchen, office, bathroom and stairs) 
using different methods as describe in Section II.C. Overall 
place classification accuracies achieved are compared in 
TABLE I. 
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TABLE I 
OVERALL PLACE CLASSIFICATION ACCURACIES  

 Group 1 (%)  Group 2 (%) Group 3 (%) 
SVM 79.75 78.73 75.27 

S-PC 90.93 94.93 79.81 
M-SPCOD-IOF 93.31 92.51 83.73 
M-SPCOD-OFP 96.28 94.17 81.98 

Detailed testing results further shows that all three graph-
model-based methods (S-PC, M-SPCOD-IOF and M-
SPCOD-OFP) outperforms SVM on 13 out of 13 samples, 
highlighted the importance of modeling the contextual 
information of instances.  

M-SPCOD-IOF and M-SPCOD-OFP outperform S-PC 
on 9 and 11 out of 13 samples respectively, which suggests 
the benefits of adding object information on improving the 
accuracies of place classification. 

M-SPCOD-OFP outperforms M-SPCOD-IOF on 8 out of 
13 samples, and shows slightly better accuracies than the 
latter according to TABLE I. Therefore in current setup the 
choice on the type of object feature does not seem to affect 
place classification accuracies significantly. 

B. Performances of Object Detection 

In this experiment, single observation from the camera is 
categorized into presence or absence of the following 10 
objects: chair, sofa, table/writing desk, computer monitor, 
printer, stairs/step, dish washer, fridge, closet/cupboard, and 
sink. Instead of using the overall accuracy as the judging 
criteria, specificity and sensitivity are adopted to describe the 
presence/absence of a particular object on the scenes. This is 
done to remove the effects of a biased prior distribution (i.e. 
there are much more absence than presence in the nature 
world). Definitions of specificity and sensitivity are shown in 
equations (12) and (13). 

True negatives
Specificity

True negatives + False positives
       (12) 

True positives
Sensitivity

True positives + False negatives
       (13) 

As TABLE II shows quite close and high specificities 
reported by all methods, the attention should be focused more 
on sensitivities. According to TABLE III, M-SPCOD-IOF 
outperforms SVM (IOF) as the latter may not be able to work 
properly using only one feature. On the contrary, the 
performances of M-SPCOD-OFP and SVM (OFP) are very 
comparable (as indicated in both TABLE III and TABLE IV) 
with superior performances than M-SPCOD-IOF. This 
justifies the introduction of the object feature pool. 

TABLE II 
OBJECT CLASSIFICATION ACCURACIES EXPRESSED IN SPECIFICITY 

 Group 1 (%) Group 2 (%) Group 3 (%) 
SVM (IOF) 99.96 100.00 99.93 
M-SPCOD-IOF 97.00 96.90 92.95 

SVM (OFP) 97.12 97.24 92.53 
M-SPCOD-OFP 97.47 98.06 94.72 

TABLE III 
OBJECT CLASSIFICATION ACCURACIES EXPRESSED IN SENSITIVITY 

 Group 1 (%) Group 2 (%) Group 3 (%) 
SVM (IOF) 0.69 1.64 1.73 
M-SPCOD-IOF 41.87 42.97 27.53 

SVM (OFP) 63.22 62.10 37.68 
M-SPCOD-OFP 62.78 65.18 32.06 

TABLE IV 
OBJECT-SPECIFIC CLASSIFICATION ACCURACIES EXPRESSED IN SENSITIVITY 
 SVM (OFP) (%) M-SPCOD-OFP (%) 
Chair 52.30 57.60 

Sofa 58.33 44.64 

Table, desk 64.84 63.25 

Monitor 36.07 43.08 

Printer 53.15 53.71 

Stairs 74.36 35.13 

DishWasher 54.08 61.90 

Fridge 35.71 30.95 

Closet, cupboard 28.58 48.97 

Sink 86.00 88.84 

With similar performances expressed in specificity and 
sensitivity, a direct comparison between the overall object 
classification accuracies of M-SPCOD-OFP and SVM (OFP) 
becomes meaningful.  

However, although the former (95.43%) is slightly better 
than latter (94.36%), it does not strongly support the 
expectation that knowing the place will facilitate object 
detection. This is because of the facts that: a) SVM works 
well on this binary classification task with adequate features; 
b) the room to improve current relatively high accuracies is 
limited; c) extra training and test samples are required to 
provide more statistically convincing results.  

C. Overall Performance of SPCOD 

The overall performance of SPCOD, comparing to the 
SVM (OFP) classification scheme, is shown in TABLE V. 
The overall classification accuracies (on all target concepts) 
suggest that the proposed two methods M-SPCOD-IOF and 
M-SPCOD-OFP are capable of classifying places and objects 
simultaneously at reasonably high accuracies. In addition, 
both of them outperform the highest accuracies achieved by 
SVM on the same data set. 

TABLE V 
SYSTEM PERFORMANCE EXPRESSED IN OVERALL ACCURACIES 

SVM (OFP) (%) M-SPCOD-IOF (%) M-SPCOD-OFP (%) 
92.88 93.29 95.06 

D. Precise Object Position Localization 

The current focus of this research is to determine the 
presence or absence of a certain object, rather than 
geometrically localizing them. However, the Object Bank is 
able to provide extra information on the object location. 
Since this function is not the main focus of this paper, some 
typical results from object localization relying on the peak 
value of heat maps are presented in Fig. 5 without further 
quantitative analysis. 
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Fig. 5.  Typical results from precise object position localization 

(the figure is better viewed in color) 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed and implemented two 
pairwise CRF based SPCOD methods which were able to 
classify the robot’s environment into 6 place categories and 
determine the presence of 10 objects in the scene. Simple 
statistical and geometrical features extracted from laser range 
data and Object Bank descriptors constructed from image 
were adopted. Experimental analysis was performed on 
publicly accessible data sets collected in an indoor 
environment with different environmental conditions.  

Experimental results demonstrated the capabilities and 
potentials of the proposed methods on the SPCOD task, and 
they all outperformed standard SVM. The results also 
confirmed that the Object Bank features are suitable for the 
object detection tasks. Therefore we suggested using object 
feature pool rather than individual features for object 
detection. 

The pairwise CRF based framework we proposed does 
not rely on particular sensory modality or feature set, so that 
it can be easily extended to have any arbitrary number of 
object nodes. In the future work, we plan to further improve 
the object detection ability of the system, incorporate 
temporal information and move on to online testing. 
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