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Abstract— This paper presents a posture estimation of hose-
shaped robot using microphone array localization. The hose-
shaped robots, one of major rescue robots, have problems with
navigation because their posture is too flexible for a remote
operator to control to go as far as desired. For navigational
and mission usability, the posture estimation of the hose-shaped
robot is essential. We developed a posture estimation method
with a microphone array and small loudspeakers equipped on
the hose-shaped robot. Our method consists of two steps: (1)
playing a known sound from the loudspeaker one-by-one, and
(2) estimating the microphone positions on the hose-shaped
robot instead of estimating the posture directly. We designed
a time difference of arrival (TDOA) estimation method to be
robust against directional noise and implemented a prototype
system using a posture model of the hose-shaped robot and an
Extended Kalman Filter (EKF). The validity of our approach
is evaluated by the experiments with both signals recorded in
an anechoic chamber and simulated data.

I. INTRODUCTION

Recent disasters, either natural, artificial, or combined,
have demanded robots for search-and-rescue missions be-
cause victims in the aftermath of such disasters are widely
distributed and such sites are too dangerous or difficult to
deploy human rescue teams. Based on the experience of
nine ground robots at five incidents in the United States,
Robin Murphy, one of the most active rescue robot re-
searchers, pointed out that two types of usability should be
improved to help with disasters; navigational and mission
[1]. Navigational usability focuses on navigation of rescue
robots. This is often hampered by ineffective locomotion
and lack of sensing for control. Mission usability focuses
on obtaining sensor data and providing information to remote
operators. This is often inhibited by mediation effects, flawed
sensor systems and poorly designed displays. She proposed
potential solutions including additional proprioceptive and
exproprioceptive sensors, increased autonomy, and multi-
modal displays.

One modality that has not been well investigated is sound.
In search-and-rescue missions by human rescue teams, sound
is one of the crucial cues in searching for victims. Robot
audition is used to enhance the user interface to help a remote
operator to recognize and understand the auditory situation
with sound source localization and separation [2]. A telep-
resence robot called Texai of Willow Garage was equipped
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Fig. 1. Posture estimation, and sound source localization and separation
are essential for improving navigational and mission usability.

with robot audition software HARK [3] and displayed sound
source directions superposed on a remote display. This
system demonstrated the feasibility of an auditory display
for the telepresence robot.

Hose-shaped robots with a video camera on the tip have
problems with navigational usability because their posture is
too flexible for a remote operator to control to go as far as
desired. Kitagawa et al. [4] developed Active-Hose, a hose-
shaped robot that could move forward and change directions
with small wheels and a timing belt. This robot can drive
into narrow gaps in collapsed buildings which conventional
large snake-like robots [5][6] cannot drive into. Hatazaki et
al. [7] developed an active scope camera (ASC), a hose-
shaped robot with vibrators and cilia. With its vibrating cilia
set on whole surface of the robot, the ASC could drive into
narrow gaps as long as the surface of the robot touches on the
ground. In fact, the ASC was used for a search-and-rescue
mission in Jacksonville, Florida, USA in 2008 [8]. Namari et
al. [9] developed a tube-shaped ASC to enhance the mobility
and implement some functions for practical use.

The posture estimation of the hose-shaped robot is es-
sential for navigational and mission usability because of two
reasons: First, the unexpected bending on the hose may make
it difficult for an operator to control the robot as desired.
Second, tip localization enables remote operators to estimate
victim locations through remote images.

Ishikura et al. [10] reported the tip localization method
using the temporal difference of tip camera visions. They
estimated the movement of the tip camera by extracting
similar points between images. This method often failed to
extract similar points due to excessive brightness canceled
by the tip light or the image having few characteristics, as
with a smooth wall. Ishikura et al. [11] then estimated a ASC
posture by using inertial sensors and magnetic sensors. They
adopted a flexible dynamics model of the ASC and estimated
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its posture using an Unscented Kalman Filter (UKF). The
estimation performance was often deteriorated because of its
vibrators.

Robot audition may improve navigational usability. A
hose-shaped robot with a set of microphones, or a micro-
phone array, would be expected to improve both navigational
and mission usability if it can localize microphone positions
by sound generated by itself. Localizing microphone posi-
tions will improve the performance of posture estimation of
a hose-shaped robot, which leads to enhance navigational us-
ability. In addition, a microphone array with its configuration
of microphones can localize sound sources, which leads to
enhance mission usability.

This paper proposes a posture estimation of a hose-shaped
robot using sound. The key idea is that we estimate the mi-
crophone locations on the hose-shaped robot instead of esti-
mating the posture directly. Microphone array localization is
estimated by the time difference of arrival (TDOA) between
a pair of microphones [12][13]. As a preliminary experiment,
instead of using the sound of electric motors, a set of small
loudspeakers are used in this paper to verify whether sound
is promising. The posture estimation consists of two steps:
(1) playing a known sound from the loudspeaker one-by-one
and (2) estimating the posture using the TDOA.

The rest of this paper is organized as follows: Section
II reviews related works of microphone array localization.
Section III introduces a mockup of the hose-shaped robot
and defines the problem statement. Section IV describes the
posture estimation method. Section V presents the results
of an evaluation of our method. Section VI summarizes the
paper and states our future work.

II. RELATED WORKS OF
MICROPHONE ARRAY LOCALIZATION

Microphone array localization has been actively studied.
We review these studies here for building a posture estima-
tion using the TDOA.

Ono et al. [12] defined ”Blind Alignment Problem” to
estimate sound source locations, microphone locations, and
microphone clock differences by using recorded signals of
handclap sounds. They reveal the necessary condition of
the number of microphones and handclaps for this problem,
and showed a solution. They evaluated its performance by
simulating the recorded signal of handclap sounds. Their
method solves Blind Alignment Problem through an aux-
iliary function approach with the TDOA of handclap sound.
Since their method was designed for offline operation, the
calculation cost was extremely extensive, making it difficult
to calculate in real time.

Miura et al. [13] reported an online microphone array
localization method based on Simultaneous Localization
and Mapping (SLAM) framework using a man who walks
around a robot while clapping. They also used the TDOA
of handclap sound. SLAM is a framework to estimate the
self-location and landmark locations simultaneously. They
applied the SLAM framework considering the man location
as self-location and the microphone locations and clock
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Fig. 2. Mockup of the hose-shaped robot. Squares and circles indicate
microphones and loudspeakers, respectively.

differences as landmark. This method estimates the moving
self-location and the landmarks with correcting the error
from the TDOA of handclap sound using Extended Kalman
Filter (EKF). This method works online because the man
assumption lowers calculation costs. However, it is not
practical for use with the hose-shaped robots due to the
impossibility of a moving sound source in the collapsed
buildings.

Our method uses a limitation of the hose-shaped robot
posture. The shape of the hose restricts the location of the
microphones and loudspeakers. We import this limitation into
our state space model and estimate the posture using EKF.

III. PROBLEM STATEMENT OF POSTURE ESTIMATION

In this section, we present a mockup of the hose-shaped
robot, discuss the challenges with the TDOA estimation, and
define the problem statement.

A. Description of the mockup hose-shaped robot

Figure 2 shows the mockup of the hose-shaped robot. The
hose was corrugate tube made from polypropylene (inside
diameter of 15 mm). We fixed microphones and small loud-
speakers to the hose using double-sided tape. Microphones
were placed at intervals of 10 cm, and loudspeakers were
placed between neighboring microphones. We use a small
(20 mm × 25 mm) microphones manufactured by micro-
electro mechanical system (MEMS), and small loudspeakers
with a radius of 14 mm made from a piezoelectric device.

Let N be the number of microphones (N = 8). Since
loudspeakers are placed between microphones, the number
of loudspeakers is N − 1. Let Mm, (m = 1 · · ·N) be the
coordinate of the m-th microphone and Sl, (l = 1 · · ·N−1)
be the coordinate of l-th loudspeaker. The other notations are
summarized in Table I.

B. Challenges of TDOA estimation

In the TDOA estimation for the hose-shaped robot, the
sound environment has four challenges:

1) External noise: The hose-shaped robot is used outside
which includes numerous directional noises.

2) Reverberation: The hose-shaped robot is inserted in a
narrow space, therefore, the reverberation time is long
which makes sound processing difficult.

3) Obstacles: In a narrow space, recording a played sound
directly is difficult when the space is canned.

3447



TABLE I
NOTATIONS

t Time
k Measurement index
N Number of microphones
m,n Microphone index: m,n ∈ [1, · · · , N ],m ̸= n
l Loudspeaker index: l ∈ [1, · · · , N − 1]
Mm,Mn ∈ R2 Coordinate of m-th and n-th microphone
Sl ∈ R2 Coordinate of l-th loudspeaker
mn(t),mm(t) Signal of n-th and m-th microphone
s(t) Known test signal
τ lm→n TDOA between m-th and n-th signal

from l-sth loudspeaker
xk ∈ R2N−3 State vector of the hose-shaped robot posture
c Speed of sound
L Distance between microphones

4) Covered microphone: The hose often rotates since its
cross-section is circle. Therefore, some microphones
can be under the hose. Such microphones are unreli-
able.

As a first step, we tackle the first challenge because the
noise problem is inevitable. We assume that the hose-shaped
robot is stationary during estimation, that all microphones
are turned up, and that the hose curves on a 2D surface.

C. Problem statement
Problem statement� �

Input:
Synchronized N channel audio recording of a known
sound
Output:
Locations of microphones
Assumptions:
(1) The microphones and loudspeakers are on the hose-
shaped robot.
(2) Played signal, s(t), and the index of the playing
loudspeaker, l, are known.
(3) M1 and S1 are known.� �

The input is used as a clue for the TDOA estimation.
The output is the microphone locations that represents the
posture of the hose-shaped robot because we assume that
the microphones are on the hose in the first assumption. The
second assumption holds because we can control the timing
of the sound. The third assumption avoids the ambiguity of
the rotation and translation of posture estimation because the
TDOA contains only the relative microphone position.

IV. EKF-BASED ONLINE POSTURE ESTIMATION

In this section, we describe the over view of our method,
present the TDOA estimation, formulate the state space
model of the robot posture, and describe the EKF for our
estimation.

A. Overview

Our method estimates the robot posture by measuring the
TDOA from the loudspeaker and solves the problem using
an EKF. Alg.1 shows the procedure of one iteration.

Algorithm 1 The procedure of one iteration
for l = 1 → N − 1 do

Start recording with N ch microphones
Play the test signal from the l-th loudspeaker
Stop recording

Estimate the TDOA of the test signal
Correct current state to minimize the error

end for

For this algorithm, we build a state space model of the
hose-shaped robot posture, and TDOA estimation method.

B. TDOA Estimation
In this section, we describe a TDOA estimation using a

sweep signal as the test signal and a cross correlation.
1) Design of test signal: The conventional microphone

array localization methods [12][13] used hand clap sound
which is a kind of impulsive sound. Since impulsive sound
is a short in duration, and, the cross correlation has a sharp
peak, meaning that, impulsive sound can make the TDOA
estimation to be robust against the noises.

Since it is difficult to play an impulsive sounds with a
small loudspeaker due to its limited frequency characteristics,
we use a sweep signal as the test signal. The sweep signal is
a sound whose frequency increases linearly. The frequency
of a sweep signal is changing all the times, the resemblance
sequence in sweep signal is few, so its cross correlation has a
sharp peak. As a result, it is robust against directional noise.
The sweep signal that sweeps from fs Hz to fe Hz during
T second is represented as follows:

s(t) = sin

(
2π

∫ t

0

(
fe − fs

T
t+ fs

))
(1)

= sin

(
π

(
fe − fs

T
t2 + 2fst

))
(2)

2) Cross correlation: Ono et al. [12] developed a TDOA
estimation method by finding the maximum cross correlation
between recorded signals. When a loud directional noise
disturbs the recording, the method outputs the TDOA of the
noise because the cross correlation is dominated by the loud
noise.

We use the test signal as reference. Our method esti-
mates the TDOA between m-th and n-th signals from l-th
loudspeaker, τ lm→n, by two steps: (1) Calculate the cross
correlations Rs,mn(τ), Rs,mm(τ) between each channel and
the test signal:

Rs,mn(τ) = E[s(t)mn(t+ τ)] (3)
Rs,mm(τ) = E[s(t)mm(t+ τ)] (4)

(2) Subtract the maximums of the cross correlations of m-th
and n-th recorded signals to estimate TDOA:

τ lm→n = arg max
τ

Rs,mm(τ)− arg max
τ

Rs,mn(τ) (5)

Since the test signal contains no noise signal, we can estimate
the TDOA more accurate than the method using the cross
correlation coefficient between recorded signals.
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Fig. 3. Piecewise linear model of the hose-shaped robot posture.

C. Formulation of the robot shape

We represent the posture of the hose-shaped robot using
a piecewise linear model. Figure 3 shows our expression of
the robot posture. The microphones and loudspeakers are
connected with a segment of L/2 length.

Since the length of each segment are a constant, the
joint angles of the neighboring segments represent the whole
posture of the hose-shaped robot. Therefore, the state vector
consists of only joint angles:

xk = [θ0, θ1, · · · θ2N−3]
T (6)

The coordinates of the microphone and the loudspeaker are
calculated from the first ones, M1 and S1, recursively:

Mm = Sm−1 + l[cos θ′2(m−1), sin θ
′
2(m−1)]

T (7)

Sl = Ml + l[cos θ′2(l−1), sin θ
′
2(l−1)]

T (8)

θ′n = nπ −
n∑

k=1

θk (9)

1) State update equation: During each test signal emis-
sion, we assumed that the posture of the hose-shaped robot
is stable, the state vector performs random walk for each k:

xk = xk−1 + uk (10)

where uk denotes the Gaussian distribution represented by

uk = [N (0, σ2
u), · · · ,N (0, σ2

u)]
T ∈ R2N−3 (11)

2) Measurement equation: The TDOA between Mm and
Mn from Sl is obtained from the Euclidean distance be-
tween the microphones and the loudspeaker:

τ lm→n =
||Mn − Sl||

c
− ||Mm − Sl||

c
(12)

The measurement vector is a set of the TDOA between
Ml and other microphones:

zk = h(x) + vk (13)
h(x) = [τ ll→1, · · · , τ ll→N ]T ∈ RN−2 (14)

where vk denotes the measurement noise represented by

vk = [N (0, σ2
v), · · · ,N (0, σ2

v)]
T ∈ RN−2 (15)

Since the distance |Ml −Sl| and |Ml+1 −Sl| are the same
value in this model, τ ll→l and τ ll→l+1 are constant value in
this model. Thus, they are not included in this measurement.
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Fig. 4. Location of microphones and sources of our TDOA estimation.

D. Extended Kalman Filter

We built an EKF [14] based online microphone array
localization. The EKF consists of the two steps: prediction
and correction. It estimates posteriori state by correcting the
current state estimates from a new measurement.

1) Prediction step: In the prediction step, we project the
state and error covariance estimates from the previous step.
From Eq. 10, the current time state estimates x−

k and error
covariance estimates P−

k are updated:

x−
k = xk−1 (16)

P−
k = Pk−1 +Qk−1 (17)

where Qk−1 denotes the covariance matrix defined by

Qk−1 = diag(σ2
u, · · · , σ2

u) ∈ R2N−3×2N−3 (18)

2) Correction step: In the correction step, we generate the
Kalman gain Kk to minimize posteriori error covariance:

Kk = P−
k HT (HkP

−
k HT

k +Rk)
−1 (19)

Then, we compute the posteriori state x̂k and error covari-
ance Pk with the measurement zk:

x̂k = x̂−
k +Kk(zk − h(x̂−

k )) (20)
Pk = (I −KkHk)P

−
k (21)

where Hk and Rk denote Jacobian of h(x) and the covari-
ance matrix, respectively:

Rk = diag(σ2
v , · · · , σ2

v) ∈ RN−2×N−2 (22)

V. EVALUATION

We evaluated our TDOA estimation method under two
kinds of noise: white noise and human voice in Section V.A,
and posture estimation with three shapes in Section V.B.

A. Evaluation 1: TDOA estimation

We evaluated our TDOA estimation method under the
setting of white noise and human voice as directional noise.
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(c) White noise at 77.1 (dB)
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(d) Human voice at 57.5 (dB)
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(e) Human voice at 72.2 (dB)

Fig. 5. The errors of our TDOA estimation for various distance and two noises.

TABLE II
AVERAGE AND STANDARD DEVIATION OF EVALUATION 1.

Type of noise Amplitude Mean (ms) Standard
(dB SPL) deviation (ms)

No noise 0.00641 0.00938
White noise 63.2 0.00849 0.0101
White noise 77.1 −0.0159 0.0611

Human voice 57.5 0.00909 0.0106
Human voice 72.2 0.00641 0.0238

1) Settings: The evaluation was conducted in an anechoic
chamber. Figure 4 shows the location of the loudspeaker,
microphones and noise source. We put a small loudspeaker
on the left side and a loudspeaker (MS101-III by YAMAHA)
as the noise source on the right side. We put microphones
spaced at 5, 10, 20, 40, 60, 80, 100, and 120 cm from the
small loudspeaker.

The test signal was a sweep signal from 4 kHz to 8 kHz,
200 ms. The amplitude of the loudspeaker was calibrated so
that its sound pressure level (SPL) was 61.0 dB when it plays
a 4 kHz pure tone. We set the SPL of the white noise to 63.2
dB/77.1 dB and the human voice to 57.5 dB/72.2 dB. The
human voice was the speech of 1st sentence of phonetically
balanced sentences (ASJ-JNAS[15] ). The sound pressure
level of the noise source was measured from 1 m away from
the loudspeaker by NL-21 by Rion Co. Ltd. with A weighted
mode.

We recorded the acoustic signal sampled with 8 channels,
48 kHz, and 24 bits using a multichannel A/D converter
called RASP24 developed by Systems In Frontier Corp.
RASP24 can perform 8-channel synchronized recording. The
test signal was sounded 10 times every 400 ms. We split the
recorded signal into 400 ms to include one entire test signal,
estimated the TDOA between M1 and other microphones
at each split signal, and calculated the error of the TDOA
estimation.

2) Results: Figure 5 shows the results of the TDOA
estimation with no noise, white noise, and human voice, re-
spectively. Table II shows the average and standard deviation.

In our methods, the lower limit of the error is half of the
sampling interval (the line of 0.0104 ms in the figures). In no
noise situation, the error is lower than the limit in average.
The maximum errors of the white noise at 63.2 dB and the
human voice at 57.5 dB are smaller than 0.035 ms which
is nearly 3.5 times the limit. Moreover, the average error
are smaller than the lower limit. We can say that in these
situations, our method successfully estimates the TDOA.

The errors of the white noise at 77.1 dB and the human
voice at 72.2 dB are larger than the others according to
Fig.5(c), 5(e). Since the cross correlation of the sweep signal
and noise signal is invariably not zero, our TDOA estimation
rises the error when the power of noise signal was too loud.
This problem will be solved by employing noise suppression
techniques.

B. Evaluation 2: EKF-based posture estimation

In this Section, we evaluated the posture estimation error
with simulated data of three shapes: S-curve, circle, and
straight.

1) Settings: The measurement vector was simulated by
the microphone and loudspeaker locations of the correct
posture and added measurement noise following a Gaussian
distribution with standard deviation of no noise: σv =
0.00938 ms, which was evaluated in the anechoic chamber.
The initial state was given by adding the uniform distribution
(±15 deg) to the correct posture state. The state value was
restricted to between 120 deg and 240 deg considering the
limitation of hose bending. We performed 100 evaluations for
each shape and calculated the mean error of the microphone
locations at each step.

2) Results: Figure 6 shows the estimation errors of micro-
phone locations. The error bar indicates the minimum and
maximum estimation errors and the polyline indicates the
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mean errors. Figure 7 shows the examples of the results for
each posture and the correct postures.

In the S-curve and circle shape, the errors become less
than 10% of the hose length in about fifth and second
iterations at worst case, respectively. This shows that our
posture estimation works properly in these shapes.

On the other hand, in the straight shape, Fig. 6(c), the con-
vergence speed was slower than the other two shapes. This
is because the Jacobian converges to zero as the state values
converge to 180 deg; in other words the posture converges
straight. This shows that the first order approximation of EKF
was not tolerable for the hose-shaped robot space model. For
solving this problem, we will introduce a non-linear filter
such as UKF or particle filter.

VI. CONCLUSION

This paper presented a posture estimation of the hose-
shaped robot by localizing microphone positions with mi-
crophones and small loudspeakers equipped on the hose.
Our method is built with a sweep signal and a piecewise
linear model of the hose-shaped robot posture using an
EKF. The main contribution is that our method demonstrates
the posture estimation of the hose-shaped robot by sound.
Experimental results show that our TDOA estimation can
estimate properly and our posture estimation method has
good potential.

For enhancing navigational usability, we can estimate the
posture of the hose-shaped robot more precisely by inte-
grating the microphones with the conventional sensors, such
as, video cameras, inertial sensors, and magnetic sensors. In
addition, we can enhance mission usability because the base
of sound source localization and separation was established,
which is the microphone array localization for the hose-
shaped robot. We will develop these functions for practical
use.
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