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Abstract— Cooperative manipulation, where several robots
collaboratively transport an object, poses a great challenge in
robotics. In order to avoid object deformations in cooperative
manipulation, formation rigidity of the robots is desired. This
work proposes a novel linear state feedback controller that
combines both optimal goal regulation and a relaxed form
of the formation rigidity constraint, exploiting an underlying
distributed impedance control scheme. Since the presented
control design problem is in a biquadratic LQR-like form, we
present an iterative design algorithm to compute the controller.
As an intermediate result, an approximated state-space model of
an interconnected robot system is derived. The controller design
approach is evaluated in a full-scale multi-robot experiment.

I. INTRODUCTION

The cooperation and interaction of several mobile ma-

nipulators to achieve a common task is a popular research

topic in recent years. A specific problem in the area is

the collaborative manipulation of objects. In this paper,

we investigate the prototypical task of several physically

cooperating manipulators, which collaboratively transport an

object from an initial to a final configuration. In this setup,

each manipulator is impedance-controlled and can thus react

compliantly to its environment. The contact environment can

be represented by the object, an external force, or the other

cooperating manipulator. The focus of this paper is on the

design of an optimal control scheme for an interconnected

multi-robot system integrating a rigidity constraint into the

objective. The control scheme requires two main features:

First, goal regulation in order to drive the system to a final

configuration, preferably in an optimal fashion and second,

coordination such that the overall system with distributed

impedances does not damage the transported object.

A related approach to this problem consists of distributing

the impedances to multiple cooperating manipulators in

closed contact which extends the capabilities of the robot

team in transportation and contact tasks [1], [2]. Their

method requires a path planning of individual trajectories for

each manipulator by considering grasp points and the object

geometry. However, these developed plans are very sensitive

to the initial configurations and to the model accuracy. Also

loosely related are methods in formation control of mobile

robots, where no manipulation in physical cooperation is

considered. [3]–[6]. In [3] a formation control problem

is presented for agents with integrator dynamics using a

biquadratic, positive definite function, which they employ
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for the leader-follower approach in mobile robots. Using the

rigidity constraint in the control design for interaction with a

leader-follower network is presented in [4]. Controlling and

maintaining triangular formations for mobile autonomous

agents is studied in [5], [6]. Keeping the formation while

moving in an optimal fashion to a goal configuration is one

of the main challenges which has not yet been addressed for

multi-robot cooperative manipulation in the known literature.

In this context the formation relates to rigidity constraints,

which are necessary to avoid unbounded internal forces in

the closed kinematic chain. For optimal control of linear

systems and quadratic cost functionals, the linear quadratic

regulator (LQR) approach is widely employed [7]. It enables

a consistent and transparent multivariable control system

design for linear systems. Weighting matrices in the cost term

are used for different control goals and its solution results in

a state feedback control law.

The main contribution of this paper is a suboptimal LQR-

like control law for physically cooperating manipulators

transporting a rigid object that regulates the robotic system in

an optimal fashion to a final configuration while maintaining

its formation. To achieve the LQR-like control law, we

formulate an optimal control problem which combines the

classical quadratic cost function with a relaxed formation

(rigidity) constraint in terms of an additional biquadratic

penalty term. This relaxed rigidity constraint is justified by

the use of impedance control, by which minor deviations

from the rigidity constraint result in tolerable object stress.

Because of the biquadratic term the LQR problem cannot

be solved using standard methods, we propose an iterative

descent method inspired by [8] and [9]. As an intermediate

step in the controller design, we introduce an approximated

state-space model for physically cooperating multi-robot-

teams. Our proposed controller is evaluated in experiments

and its benefit for cooperative tasks is shown. For a theo-

retical treatment using numerical investigations of iterative

control design under relaxed rigidity we refer to [10].

The remainder of this paper is structured as follows.

Section II describes formally the cooperative multi-robot

team problem considered in this work, and formulates the

control goals. The proposed controller design is presented

in III which relaxes the rigid formation constraint in a

biquadratic cost term, and which iteratively determines the

optimal feedback controller design with the iterative Quasi-

Newton BFGS method. An evaluation of the approach in a

multi-robot experiment is shown in IV.

Notation: Bold symbols denote vectors. The vectorization

of a matrix is denoted by vec(· ), the inverse operation of
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Fig. 1. Illustration of the coordinate frames robots, object, and world

reshaping a vector into a matrix is denoted by mat(· ). The

identity matrix of dimension n is signified by In. The zero

matrix of dimension m× n is denoted by 0m×n.

II. RIGIDITY-RELAXED MULTI-ROBOT SYSTEM

This section introduces a state-space model for intercon-

nected cooperative multi-robot teams, which is employed

for the control design. The schematics of the cooperating

mobile manipulators is depicted in Fig. 1 with the attached

coordinate systems. For the i-th manipulator, position and

orientation of the end-effector frame Σi is expressed in a

world coordinate system Σw. An object-centered frame Σo

is aligned to the principal axes of the object. The matrix Ri
o

describes the rotation of Σi relative to Σo.

A. Multi-robot cooperation - a state space model

Consider a cooperative team of interacting

robots i = 1, . . . , N , each one evolving according to

the inverse dynamic feedback-linearized impedance control.

1) Impedance Control Scheme: Since an impedance con-

trol enforces a compliance of the manipulator to its environ-

ment, it is widely used in manipulation tasks. Accordingly,

the system dynamics of one manipulator evolve according to

Miξ̈i +Di

(

ξ̇i − ξ̇i,d

)

+Ki

(

ξi − ξi,d
)

= f i,d − f i. (1)

Here, ξi ∈ R
n, i = 1, . . . , N is the Cartesian position

of the i-th manipulator, its time derivatives ξ̇i and ξ̈i are

velocity and acceleration, respectively. The positive definite

matrices Mi, Di, and Ki ∈ R
n×n are the inertia, damping,

and stiffness constituting the motion control scheme w.r.t.

the control inputs: The desired force f i,d and the desired

velocity ξ̇i,d, where the desired position ξi,d is inferred via

integration. Further, f i ∈ R
n denotes the resulting force. For

a single robotic manipulator, this force f i arises from contact

with the environment. However, since cooperating manipu-

lators are in contact through the object, an internal force

among the physically cooperating manipulators is present.

2) Partition of f i: In general, we consider a mea-

sured end-effector force f∗
i composed of rigid-body dynam-

ics fmotion, external force f ext, and internal force f i,int, i.e.

f∗
i =

1

N
(fmotion + f ext) + f i,int. (2)

The resulting force f i in (1) can be unequal to the mea-

sured force f∗
i , in our case we set f i = f∗

i − 1
N
fmotion.

Hence, the rigid body dynamics fmotion is suppressed in the

impedance (1). This is reasonable, since a compliance resul-

tant from the dynamics of the object leads to a permanent

undesired position deviation of the multi-robot team, e.g. the

object mass pulling down the manipulators.

Assumption 1: We assume that all resulting forces are

equally distributed among the manipulators; the factor 1
N

accounts for that. This approximation demands equal

impedance parameters Mi, Di, and Ki for all manipulators.

The resulting object force fmotion arises from Newton’s

second law of motion and it can generally be expressed as

fmotion = Moξ̈o + fo(ξo, ξ̇o), (3)

where ξo is the position of the object with its inertia Mo. For

this paper, we assume Mo and fo to be known accurately and

thus the impedance control is independent from the object

dynamics. The external force fext can originate from an

undesired obstacle or from a desired physical human input.

To calculate the virtual linkage model of inter-

nal forces, all measured end-effector forces are aggre-

gated: fo =
[

foT

1 , . . . ,foT

N

]T

. In correspondence with [11],

internal forces f int lie in the null-space of the grasp matrix

G = (G1, G2, . . . , GN ) with Gi = I3 (4)

w.r.t all measured forces. In case of Cartesian positions,

the grasp matrix is simply the identity matrix. The grasp

matrix G describes the relation of the forces of each robot

frame and the object frame, and is well-established for

robotic grasping and dexterous multi-fingered manipulation.

As G is not square, its Moore-Penrose pseudo-inverse

G† =
(

G
†
1, G

†
2, . . . , G

†
N

)T
with G

†
i =

1

N
I3 (5)

is used for the null-space calculation of

fo
int =

[

I −G†G
]

fo. (6)

For the sake of clarity we make the following assumptions.

Assumption 2: As we will be mainly concerned with

the tracking performance in this paper, we assume that

at the initial time t0 all current and desired positions are

equal, ξi(t0) = ξi,d(t0). Initial configurations ξi,d(t0) are

chosen reasonable to have no internal stress at the beginning.

This is necessary since an internal stress at initial time leads

to an induced movement of the robotic manipulators, which

is undesired for maintaining formation.

Assumption 3: There is no external force, fext = 0, and

the exact dynamic model (3) is known and can be subtracted

from fi as a feedforward term.

Assumption 4: For simplicity, we assume that the influ-

ence of damping Di and inertia Mi are negligible for

the internal forces in (6). The multi-robot team moves at

moderate velocities as we assume here, that the distributed

impedances are in a quasi-equilibrium state and act thereby

primarily via its stiffness Ki. The influence of damping Di

and inertia Mi is negligible with this assumption, which

strongly simplifies the cooperative robot model.
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With these assumptions the major part of each force fo
i

in (6) arises from the difference between desired and current

manipulator position. Then, a balance of forces due to the

impedance model is approximated as

fo
i = Ki(ξi,d − ξi), (7)

where terms involving Mi and Di vanish due to the pre-

viously made assumptions. When we establish the internal

force model, we obtain the ith internal force partition by

inserting (7) into (6) and evaluating the result row-wise as

f i,int = Ki

(

ξi,d − ξi
)

−Ro
wG

†
i

n
∑

j=1

GjR
w
o Kj

(

ξj,d − ξj
)

.

(8)

Note that for transformation of the forces to the world

frame Σw, each agent is aware of all rotation matrices Ro
w

and Rw
o .

3) Cooperative Impedance Control: Connecting the re-

sults (1), (2), and (8) with Assumptions 2- 4, we obtain

Miξ̈i +Di

(

ξ̇i − ξ̇i,d

)

+Ki

(

ξi −

te
∫

t0

ξ̇i,ddτ
)

= f i,d−

Ki(

te
∫

t0

ξ̇i,ddτ − ξi) +Ro
wG

†
i

n
∑

j=1

GjR
w
o Kj(

te
∫

t0

ξ̇j,ddτ − ξj).

(9)

Remark 1: In most impedance control models a new state

is introduced for
( te
∫

t0

ξ̇j,ddτ − ξj

)

in order to reduce the

degree of the system. For cooperative manipulation, we

cannot apply this argument because the minimal state space

representation involves both absolute and relative positions.

Therefore, the system degree of one manipulator remains 3.

4) State Space Model: Let xi =

[

(
t
∫

t0

ξ̇i,ddτ)
T , ξTi , ξ̇

T

i

]T

be the system state and ui =
[

ξ̇
T

i,d,f
T
i,d

]T

be the control

input. Then a state space model for a single manipulator in

cooperation results in

ẋi = Aiixi +Biiui +
∑

j∈{1,...,N}\{i}

Aijxj , (10)

with

Aii =





0 0 0
0 0 1

1
N
M−1

i Ki − 1
N
M−1

i Ki −M−1
i Di



 (11)

Aij = M−1
i Ro

wG
†
i





0 0 0
0 0 0

GjR
w
o Kj −GjR

w
o Kj 0



 (12)

Bii =





1 0
0 0

M−1
i Di M−1

i



 , (13)

where Aii is the system matrix of a single manipulator i, Bii

is its input matrix, and Aij represents the physical coupling

from manipulator j to manipulator i.

After deriving the system dynamics for a multi-robot

cooperative system, we obtain a standard LTI sytem.

ẋ = Ax+Bu (14)

with the aggregated state vector x =
[

xT
1 , . . . ,x

T
N

]T
and the

aggregated input vector u =
[

uT
1 , . . . ,u

T
N

]T
. The total sys-

tem is written as A = [Aij ] and B = diag(B11, . . . , BNN ).

B. Formation rigidity in multi-robot cooperation

In this section we describe the control goal considered

in this paper. We want to design a linear state feedback

controller u = −Kx which optimally drives a formation of

interconnected manipulators described by the system dynam-

ics (14) from an initial condition x0 to a desired end point xe

while maintaining the initial formation. In the following we

describe the cost functional of our LQR-like optimal control

problem and how the desired rigidity is relaxed.

In order to achieve goal regulation to the goal xe, we

employ the standard transformation of our state x into

x̃ = x− xe. (15)

Then, we can formulate the LQR cost functional which gives

a controller driving to the end point in an optimal fashion as

J = x̃T (T )Sx̃(T ) +

∫ T

0

x̃T (t)Qx̃(t) + uT (t)Ru(t)dt,

(16)

where S, Q (positive semi-definite), and R (positive definite)

are weighting matrices expressing the desired performance.

The weighting matrices need to be positive (semi-)definite

in order to guarantee a minimum with the corresponding

minimum cost finitely bounded from below.

Next, we define rigidity of the formation and how we can

integrate rigidity into the cost functional. The formation is

described by a static set of edges E with cardinality ||E||
between the manipulators such that the virtual structure

of the formation is rigid during the movement phase. and

keep their formation regardless of any direct mechanical

coupling. Rigidity of the formation is described by an edge

function f(x) =
(

. . . , ‖ξi − ξj‖, . . .
)

∈ R
‖E‖ which is

required to satisfy f(x) = p. Identical to (10) and (14),

the state variable x is concenated by xi and also contains

the manipulator positions ξi. Here, p =
(

. . . ,pij , . . .
)

is

the desired rigid distance between two manipulators, and

constant if rigidity is achieved. Differentiating f w.r.t time

leads to
(

ξi − ξj
)T
(

ξ̇i − ξ̇j

)

= 0. ∀(i, j) ∈ E (17)

The geometrical interpretation of (17) is that the difference

in position between two linked manipulators is orthogonal

to the difference in velocity. This equation represents our

second control goal of maintaining formation rigidity. Due

to Assumption 2 it is sufficient to maintain the formation

instead of establishing it. In order to include the rigidity
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condition (17) into our LQR cost functional (16), we trans-

form it into a quadratic term of the states. Thus (17) is written

as xT
i,jQijxi,j with xi,j = [xT

i ,x
T
j ]

T by defining the blocks

[qii] =





0n×n 0n×n 0n×n

0n×n 0n×n
1
2In

0n×n
1
2In 0n×n



 ∀(i, j) ∈ E (18)

[qij ] = [qji] =





0n×n 0n×n 0n×n

0n×n 0n×n − 1
2In

0n×n − 1
2In 0n×n



 ∀(i, j) ∈ E

The resultant matrix Qij =
[ qii qij
qji qjj

]

is symmetric but

indefinite and thus it cannot be employed in a standard LQR

problem directly. Since the equality constraint described in

Eq. (17) can be violated in both directions, the indefiniteness

of xT
i,jQijxi,j is obvious, and its apparent global minimum

is −∞. The biquadratic term (xT
i,jQijxi,j)

2 on the other

hand has a minimum of 0, and is thus suitable to be included

in an optimization to ensure relaxed rigidity. In other words,

minimizing (xT
i,jQijxi,j)

2 for all (i, j) ∈ E relaxes the

equality constraint (17) into a minimization problem. Relax-

ation means that the resulting controller does not guarantee

exact satisfaction of Eq. (17) for all times, but for appropriate

weighting matrices, the controller design leads to values

that are at least close to zero. Proper partitioning allows

writing (xT
i,jQijxi,j)

2 as

(xTQkx)
2 ∀ k ∈ {1, ..., ||E||} . (19)

While the control design goal of goal regulation requires

the transformation to the coordinates x̃ from (15), it is

important to note that the relaxed rigidity condition (19) still

needs to be satisfied in the original coordinate system x. In

order to combine both coordinate systems in the same cost

functional we introduce an extended state vector

x̄ =
(

x̃T , 1
)T

. (20)

With this state vector, we reformulate the relaxed rigidity

condition (19) into
(

xTQkx
)2

∀ k ∈ {1, ..., ||E||}

=

(

(

x̃

1

)T (
Qk Qkxe

xT
e Qk xT

e Qkxe

)(

x̃

1

)

)2

=
(

x̄T Q̄kx̄
)2

∀ k ∈ {1, ..., ||E||} (21)

We can now combine all of the terms into one cost

functional and restate our control goal. The goal of our

optimal control problem is to find a controller u = −K̄x̄

with structure K̄ = [K, 02nN×1] in order to minimize the

following cost functional

J = x̄(T )T S̄x̄(T )+

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ uT (t)Ru(t) + x̄T Q̄x̄dt, (22)

where S̄ and Q̄ have the structure S̄ = diag(S, 0) and Q̄ =
diag(Q, 0) in order not to penalize the additional 1-state, Q̄k

is given in (21) and q̄k is a positive scalar weighting

Robot 1

Robot i

Robot N

u = −K̃x̃

u1

ui

uN

f

fTask Plan

xe,x0

Controller
Design

xe

K̃

Q,R, S

x1

xi

xi

Fig. 2. Schematic overview of the cooperative mobile manipulation
control architecture

factor. The term x̄(T )T S̄x̄(T ) represents the penalty term

resulting from the distance between x and xe for the

final time T . Control input constraints are indirectly real-

ized by uT (t)Ru(t). This cost functional represents our

combined control goals of maintained formation by the

term
∑||E||

k=1

(

x̄T (t)Q̄kx̄(t)
)2

, and goal regulation by the

term x̄T Q̄x̄. The zero column in K̄ is necessary to discard

the augmented 1-state.

III. LQR-LIKE OPTIMAL CONTROL

When driving a multi-robot team from an initial configura-

tion to a desired final configuration, a controller approach is

depicted in Fig. 2. A task plan is obtained from a supervisory

high-level instance, e.g. a human operator commanding the

goal. Here, the task plan involves an initial configuration x0

and a final configuration xe of the multi-robot team.

While there is a linear relationship in the standard LQR

problem between the primal states x and the adjoint states λ

given by λ(t) = Px(t), allowing for the solution to use a

Riccati equation for the matrix P , this is not the case here.

Therefore we present an iterative descent algorithm to find a

(local) minimum of the biquadratic cost functional (22) using

adjoint states. The algorithm is inspired by the results in [9]

and due to the non-convexity of the optimization problem,

the result may be only suboptimal.

The corresponding Lagrangian function of the problem is

L =x̄(T )T S̄x̄(T ) +

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ x̄T (t)K̄TRK̄x̄(t) + x̄T Q̄x̄

+ λ̄
T
(t)( ˙̄x(t)− (Ā− B̄K̄)x̄(t))dt+ µ̄(x̄(0)− x̄0),

(23)

where Ā = diag(A, 0) and B̄ = [BT , 0T1×m]T .

Partial integration of (23) gives

L =x̄(T )T S̄x̄(T ) +

∫ T

0

||E||
∑

k=1

(

x̄T (t)q̄kQ̄kx̄(t)
)2

+ x̄T (t)K̄TRK̄x̄(t) + x̄T Q̄x̄

− x̄T (t)(Ā− B̄K̄)T λ̄(t)− x̄T (t) ˙̄λ(t)dt

+
[

λ̄(t)T x̄(t)
]T

0
+ µ̄(x̄(0)− x̄0), (24)
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We can derive equations for the adjoint state through the

optimality condition ∂L
∂x̄

= 0. This gives

˙̄λ(t) =(Ā− B̄K̄)T λ̄(t)− 2K̄TRK̄x̄(t)− 2Q̄x̄(t)

− 4

||E||
∑

k=1

(x̄T (t)q̄kQ̄kx̄(t))q̄kQ̄kx̄(t) (25a)

λ̄(T ) = −2S̄x̄(T ), µ̄ = −λ̄(0) (25b)

The gradient is determined from the Lagrange function as

〈LK̄ , H〉 =

∫ T

0

2x̄T (t)HTRK̄x̄(t) + x̄T (t)HTBT λ̄(t)dt

=

∫ T

0

2RK̄x̄(t)x̄T (t) +BT λ̄(t)x̄T (t)dt •H

where H is a variation in K̄, and where • denotes the

Frobenius inner product. We use the gradient to iteratively

reduce the cost. The step size used for the descent algorithm

in each iteration step should satisfy the Wolfe conditions [12]

J(K̄ + γkmat(sk))− J(K̄) ≤ γkc1(vec(∇K̄J))T sk
(26a)

(vec(∇K̄+γksk
J))T sk ≥ c2(vec(∇K̄J))T sk, (26b)

where c1 ∈ (0, 1) and c2 ∈ (c1, 1).
We determine the suboptimal feedback by using the

following algorithm based on the quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method [12]. A quasi-

Newton method uses an approximate of the Hessian matrix

in addition to the gradient to determine the search direction

in each iteration step. The BFGS method is a specific method

to determine the Hessian approximate and has been shown

to perform well in practice.

Algorithm 1:

1) Choose c1, c2 ∈ R, K̄0 ∈ R
m×nN . Pick a symmet-

ric positive definite matrix D0 ∈ R
mnN×mnN , e.g.

D0 = ImnN .

2) Compute the search direction sk as

sk = −Dk(vec(∇K̄J))

3) Compute the step size γk according to (26).

4) Update the feedback matrix

K̄(k+1) = K̄(k) + γkmat(sk).

5) Set pk = vec(K̄(k+1)) − vec(K̄(k)) and qk =
(vec(∇K̄(k+1)J)) − (vec(∇K̄(k)J)). Update the Hes-

sian approximate as

Dk+1 = Dk +
(pk −Dkqk)p

T
k + pk(pk −Dkqk)

T

pT
k qk

−
(pk −Dkqk)

Tqk

(pT
k qk)

2
pkp

T
k

Note that the resulting feedback matrices of Algorithm 1

are optimized with respect to one specific initial condition x0.

In practice the initial condition might not be known during

the control design stage, or might be slightly disturbed from

the assumed one. As a solution we propose to average over

several initial conditions for the simulated trajectories to

obtain a controller that performs well for a set of starting

points. The algorithm remains unchanged except for the

gradient which is now given by

∇K̄J =
1

nsamples

(

nsamples
∑

i=1

∫ T

0

2RK̄x̄i(t)x̄
T
i (t)

+BT λ̄i(t)x̄
T
i (t)dt

)

, (27)

where x̄i(t) and λ̄i(t) are the trajectories resulting from the

ith initial condition, and nsamples are their total number, see

[9] for more details on the iterative control design.

IV. EXPERIMENTS

To evaluate the control performance and to demonstrate

the applicability of the proposed control scheme, a full-scale

experiment is conducted. Our presented results show the

benefits of the proposed controller approach by variations

of the initial conditions and its reduction of internal forces.

A. Experimental Setup

The experimental setup consists of two commercially

available KUKA LWR 4+ (light-weight robot), which are

mounted on a mobile platform. Since both manipulators

are assembled on top of the same mobile platform, we

circumvent the challenge of distributed robotic base frames,

kinematic uncertainties, and communication uncertainties

such as time delay and packet loss. Furthermore, a 6 DOF

force/torque sensor (JR3) is mounted at the wrist of each

manipulator in order to ensure manipulator configuration in-

dependent measurements. The Fast Research Interface (FRI)

provided by KUKA is embedded in MATLAB/Simulink in

compliance with the existing software architecture which

features a data-driven architecture built upon a real-time

capable database [13]. It runs in a real-time control loop at

a frequency of 1 kHz ensured by the PREEMPT RT Linux

real time kernel patch and MATLAB Simulink Coder.

A Cartesian impedance (1) is implemented and then both

measured forces and Mi, Di, and Ki are rotated into the

world frame Σw. Both end-effector’s Cartesian positions are

captured by a QualiSys motion capture system at a frequency

of 350 Hz from which we also obtain the transformation Ro
w

for (12). A workspace extension of both robotic manipulators

is accomplished according to the approach presented in [2].

B. Experimental Design

Due to the decoupling of linear motions, we only consider

translational motions for each manipulator. An unactuated

revolute joint along yaw is mounted on each end-effector,

such that the whole system can rotate while the manipulators

move translational. Rotational motion of a manipulator hold

the object orthogonal to its boundary for collision avoidance

between manipulator and object.

To satisfy Assumption 1, the impedance

parameters are set to M1,2 = 10I3, D1,2 = 80I3,
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Fig. 3. Two robotic manipulators holding a bar and reaching a given
goal configuration, whose centroid projection on the ground is marked by a
striped object. Note that the two manipulators are independently controlled;
the mounting on a single mobile platform prevents effects from kinematic
and calibration uncertainties in the experiments.

and K1,2 = 120I3 for both manipulators. Five

possible initial values are chosen around x0 =
[1.769, 2.08, 1, 1.769, 2.08, 1, 0, 0, 0, 1.769, 1.52, 1, 1.769,
1.52, 1, 0, 0, 0]T , with the relative manipulator distance

0.56m . The goal configuration for both manipulators

is set in accordance with Assumption 2 to xe =
[−1.08,−0.95, 1,−1.08,−0.95, 1, 0, 0, 0,−0.52,−0.95, 1,
− 0.52,−0.95, 1, 0, 0, 0]T , and the manipulaotrs at the

final configuration are depicted in Fig. 3. The optimization

parameters are chosen as q̄k = 1000, Q = 0.01I18, R =
20I18, and S = 1I18.

Measurement of the system states for the feedback control

law u = −K̄x̄ is performed such that for
t
∫

t0

ξ̇i,ddτ , ξ̇i,d

is integrated in the controller and initial value ξ̇i,d(t0) is

defined by the motion capture system. The manipulator end-

effector position ξi is captured and ξ̇i is its time derivative.

With these parameters, we conduct an experiment in our

laboratory and compare the results to a controller derived by

the standard LQR implementation lqr of MATLAB/Simulink

with the weighting matrizes Q = 1, R = 1000 in accordance

with cost function (16).

C. Results: Manipulators without Rigid Link

In the first experiment, the robotic manipulators are driven

to the final configuration without any rigid object in between

the manipulators. In this scenario, we want to investigate

if the multi-robot team maintains the formation in the ex-

periment. Fig. 4 on the right shows the manipulator path

from top view. The multi-robot team controller under rigidity

relaxation according to (22) in a full-scale experiment is

depicted in blue solid, the multi-robot team controller under

LQR-like rigidity relaxation in simulation is depicted in

green dashed, and the standard LQR controlled system ac-

cording to (16) in red dashed-dotted. A good match between

simulation and experiment is achieved in this setup. Both

controllers regulate the multi-robot setup to the desired

final configuration xe. However, half way to the goal there

is a deviation between the rigidity-relaxed LQR-like and

standard LQR. Our rigidity-relaxed controller approaches the

goal configuration not in a direct way, but it maintains its

formation. Since our controller takes the formation explicitly

into account, it achieves far better results for multi-robot

cooperation compared to a problem setup without rigidity

constraints.

D. Results: Manipulators with Rigid Link

In addition to the previous results a rigid link in terms

of a bar is fixed to the manipulators in order to evaluate

the occurring internal forces. In Fig. 5 the LQR controlled

system under rigidity relaxation according to (22) is depicted

in solid blue line, the system controlled by standard LQR

according to (16) is depicted in a dashed red line. A

difference in both paths occurs, however it is not as strong as

in the previous section due to the rigidity of the bar. However,

the standard LQR controlled system is unable to attain the

goal configuration. We assume that this is due to the rigid

link which causes high effort in a rotation of the object.

Additionally, the internal force f i,int along the rigid link,

the only virtual linkage in a 2 robot team, is analyzed, see

Fig. 5. Internal forces on the object are heavily reduced

with a suboptimal controller under rigidity constraints. In

the full-scale experiment, a light chattering of the robotic

manipulator occurred due to a non-perfect following of the

platform. We assume that this causes the formation violation

between the two manipulator end-effector positions for the

real-world scenario compared to the simulation results on the

right side of Fig. 4.

V. CONCLUSIONS

In this paper we propose an LQR-optimal control design

for cooperative manipulation under rigidity constraints. This

controller regulates the configuration of the multi-robot team

and maintains its formation. To maintain the formation,

the rigidity constraint is relaxed in the control design and

results in a biquadratic term. Since a biquadratic term is

unconventional, we have to rely on an iterative method to

calculate the feedback matrix. The effectiveness and quality

of the proposed controller is successfully demonstrated in

experiments. For future work, we plan to decentralize the

controller to more cooperating manipulators and investigate

the chattering problem induced by the mobile platform.
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