
Rapid application development of constrained-based task modelling and
execution using Domain Specific Languages.

Dominick Vanthienen, Markus Klotzbücher, Joris De Schutter, Tinne De Laet, Herman Bruyninckx

Abstract— Current state-of-the-art robot program develop-
ment needs expert programmers. Moreover, most robot pro-
grams developed today are robot hardware and software
specific, and therefore little reusable without modifications.
This paper realizes easier robot (re-)programming, by software
framework independent models that can be executed using
different hard- and software platforms. First, the paper focuses
on the formalization of the tasks to be fulfilled by a robot,
more specifically constraint-based programming tasks using a
Domain Specific Language (DSL). Second, it gives a reference
implementation in Lua [1]. The presented DSL makes it easy
to develop applications, yet is powerful to execute. It enables
automatic model verification and code generation for different
hard- and software platforms, diminishing code debugging
efforts. Experimental validation shows the ease of creating
an application and adapting it, the reduction of the amount
of hand-written code, and the debugging aid offered through
meaningful errors returned by model verification.

I. INTRODUCTION

You have an important demonstration to give on your
robot, and as Murphy predicted, the robot breaks right before
your demonstration. If you only could quickly change to
the other robot in the lab, which unfortunately has another
kinematic structure. Of course you’ll have to adapt your
tasks to the new kinematic structure, with another number of
degrees-of-freedom, adapt your control gains, redefine tasks,
reconnect and configure all parts of the code. . . Or don’t you?
If the task concept and software were be separated from your
platform description, your problem would be easy to solve.
The example outlines the motivation for this work: simpler
robot (re-)programming, by software framework independent
models that can be executed using different hard- and soft-
ware platforms.

Different languages have been developed to model and
separate concerns involved in a robotic application. Simmons
et al. [2] introduced a Task Description Language for robot
control, generating a high-level task tree. Nordmann et
al. [3] introduced a Domain Specific Language (DSL) for
rich motor skill architectures and automated code-generation
from the model. Ingés-Romero et al. [4] on the other
hand focused on a DSL to express run-time variability,
using an optimization problem to bind variability at run-
time. These approaches focus primarily on the ‘higher-level’

All authors are with the Department of Mechanical Engineering,
KU Leuven, Belgium. All authors gratefully acknowledge the finan-
cial support by the Flemish FWO project G040410N, KU Leuven’s
Concerted Research Action GOA/2010/011, and European FP7 projects
RoboHow (FP7-ICT-288533), BRICS (2008-ICT-231940), and Rosetta
(2008-ICT-230902). Tinne De Laet is a PostDoctoral Fellow of the Re-
search Foundation - Flanders (FWO) in Belgium. Corresponding author:
dominick.vanthienen@mech.kuleuven.be

task descriptions and scheduling, but have rather generic
domain models for robot control tasks. This paper however
focuses on the formalisation of the tasks to be fulfilled by a
robot, more specifically constraint-based programming tasks.
Furthermore, it gives a reference implementation in Lua [1].

Constraint-based programming imposes constraints on
the modeled relative motions between robots and objects.
The paper introduces a DSL that formalizes and structures
constraint-based programming applications in robotics, in a
way that is simple to use, yet powerful to execute. It further
separates concerns, enabling a platform- and application-
independent model, and enables automatic model verification
and code generation. However, the proposed DSL does not
describe all sub-domains of an application, but permits the
integration of more specific DSLs such as rFSM [5] for finite-
state machines. Hence it forms a DSL between ‘higher’-
level domains, such as symbolic reasoning or planning and
‘lower’-level domains such as control.

DSLs have great potential within robotics to aid robot
programming by formalizing domains and enabling auto-
matic model verification and code generation. The Geometric
Relation Semantics [6]–[8] project is an example of such a
DSL in robotics that shows the assistance of modelling in
robot programming. It focuses on the formalization of a small
domain and delivers tooling for easy use and integration.

This work uses the instantaneous Task Specification and
estimation using Constraints (iTaSC) framework [9], a gen-
eralization of constraint-based programming that uses partic-
ular sets of auxiliary coordinates to express task constraints
and model geometric uncertainty. iTaSC describes a robot
application as an optimization problem consisting of a set
of constraints and one or multiple objective functions. A
software implementation of this framework [10], [11] is
available under an open-source license. The framework can
handle any kind of robot that can be represented as a
kinematic tree.

This paper follows the meta-model approach of Model
Driven Engineering (MDE) [12], introducing the concept
of Domain Specific Languages (DSL) to constraint-based
programming, as such extending the work by Klotzbücher
et al. [13]. MDE proposes a systematic approach to model a
domain, using four levels of abstraction. This paper follows
the meaning given to the levels in [13]:

M3 : Highest level of abstraction, model of the con-
straints that a valid iTaSC specification DSL should
conform to.

M2 : The level of the application-independent iTaSC
specification DSL, as a parameterized template.

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1860

M1 : The level of application-specific iTaSC specifica-
tion DSL.

M0 : The level of concrete implementations using soft-
ware libraries and frameworks.

uMF [14], a declarative and light-weight metamodelling
framework forms the M3 level, enabling the modelling and
validation of structural constraints on the presented DSL. As
for uMF, this paper presents a Lua [1] based internal DSL.
Lua is a light-weight scripting language, already integrated
in several robotic software frameworks and DSLs, such as
Orocos [15], ROS [16], and rFSM [5].

Fig. 1: Setup of the drawer opening example.

The paper first introduces the running example in section
II, and then introduces the meta-model of the iTaSC spec-
ification DSL in section III. Next it elaborates on a model
of an iTaSC specification in section IV. Further it explains
the transition from M1 to the executable code on M0 in
section V. Section VI discusses and evaluates the proposed
DSL, and finally section VII summarizes the innovations and
future work.

II. RUNNING EXAMPLE

All concepts introduced in subsequent sections will be
explained using the following example. The example consists
of a drawer opening application with a PR2 robot as shown
in figure 1. The robot has to (i) reach for the handle with its
right gripper, (ii) grasp the handle, and (iii) open the drawer,
(iv) while keeping close to a preferable joint configuration,
and (v) staying away from joint limits. A video and the full
model of the example can be found online at [17]. Listings
1 - 3 show the model for the drawer opening part of the
example, which will be explained in detail in the following
sections.

III. APPLICATION-INDEPENDENT META-MODEL FOR
CONSTRAINT-BASED PROGRAMMING (M2)

The M2 model describes a template for a constraint-based
programming robotics application. The iTaSC framework
eases the domain analysis to identify concepts and structures
of the domain of the language, since it has a systematic

design workflow and software taking into account the sepa-
ration of concerns [9]–[11].

The design workflow consists of six steps, and is briefly
recapitulated here: (i) identify the robots and objects involved
in the application and their location in the scene, (ii) define
the object frames on the robots and objects at locations
where a task will take effect, (iii) parametrize the space
between pairs of object frames, as a virtual kinematic chain
(VKC) with the feature coordinates χf as joint coordinates,
(iv) choose the outputs y = f(q,χf) to be constrained,
(v) impose constraints on the relative motion between two
object frames by selecting the type of constraints (equality or
inequality) and the control law that enforces them, (vi) select
a constraint-optimization problem solver that calculates the
desired robot joint inputs.

The software framework on the other hand, reflects this
systematic way of describing tasks. The implementation of
the functionality follows the separation of concerns prin-
ciple of the 5C’s [18]–[20] separating the communication,
computation, coordination, configuration, and composition
functionality. It builds upon the Orocos software component
framework [15] and rFSM statecharts [5], [20], [21]. Fur-
thermore, it integrates with ROS.

Building on the iTaSC theory and software concepts, we
developed the iTaSC DSL, integrating well established DSLs
such as rFSM.

The design incorporates three levels that group coordi-
nated entities. The three levels are, from high to low level:
Application, iTaSC, and Task. Each level has a similar
structure, with a coordinator FSM, and the following three
attributes: (i) The Name identifies the entity within the
model, (ii) the uri (Uniform Resource Identifier) uniquely
identifies the model, (iii) and the dsl version identifies
the M2 model version. The FSM of a level coordinates its
behavior by communicating events with the level’s entities
and the FSM of the lower level. It is a pure event processor,
independent of the other four concerns. The FSM incorpo-
rates the abovementioned rFSM DSL.

Figure 2 gives an overview of the domain entities of the
iTaSC DSL and their relations, as will be presented in the
following paragraphs. 1

A. Application level

The Application forms the highest level in the entity
tree and consists of the following entities:

• The setpoint generators entity holds the mod-
els of the different SetpointGenerators, which
deliver desired values to the controllers in the ap-
plication, for example a trajectory in task space
to open the drawer. A SetpointGenerator can
be very different in nature; as simple as a fixed
value, complexer trajectory generators, or planners. A
SetpointGenerator contains a reference to the
Task that uses the setpoints.

1Names of groups of class entities use snake case, names of entity classes
use camel case.

1861

Application

dsl_version : EString

name : EString
uri : EString

Task

dsl_version : EString

name : EString
uri : EString

iTaSC

dsl_version : EString

name : EString
uri : EString

FSM SetpointGenerator Driver

Solver FSMRobot Object SceneElement

LocationPhysicalEntity o1 : EString
o2 : EString

TaskSetting

weight : EDouble
priority : EInt

FSMCCVKC

0..* 0..* 0..* 0..* 0..*

0..*0..*

1 1

1 1

1

0..1

1

1

1 1

1

robots objects scene task_settings tasks

driverssetpoint_generators

0..1

1

Fig. 2: Overview of the model structure of the DSL with a UML 2.0 class diagram, using the Ecore dialect [22]. Attributes
such as Config, package, and type are left out for readability.

• The drivers entity holds the models of the ex-
ternal platform- and hardware interfaces, for exam-
ple the interface to the PR2 controller manager of
ROS. A Driver contains a reference to the related
PhysicalEntity.

• The FSM coordinates the behavior of the full application
for example the configuring and starting of the different
setpoint generators, drivers, etc.

• The iTaSC entity contains the model of the actual
constraint-based task specification, for example all the
constraints needed to reach, grasp, and open the drawer.
Next section III-B explains iTaSC in detail.

B. iTaSC or composition level

The iTaSC level composes the different tasks in a com-
posite task to be fulfilled by the robots. This composite task
consists of a set of constraints resulting in an over- and/or
underconstrained [9] optimization problem. The iTaSC level
consists of following entities:

• The robots entity contains the robots involved in the
application, eg. the PR2 in the drawer opening example.
Each Robot integrates the actual model, containing
the kinematic and dynamic structure and a reference to
the Driver to be used. The model integrates software
to represent kinematic or dynamic structures such as
Collada [23] or URDF [24].

• The objects entity contains the objects involved in
the application, for example the drawer to be opened.
An Object has the same structure as a Robot, but
doesn’t have controllable degrees-of-freedom (DOF).

• The scene contains SceneElements that position a
Robot or an Object at a Location in the scene.
This Location can be fixed or an external input, such
as the location of the drawer detected by a computer
vision algorithm.

• The tasks entity contains the different Tasks to be
executed by the robot, for example keeping joints away
from joint limits. A Task will be explained in the next
section.

• The task settings entity contains a
TaskSetting for each Task. The TaskSetting
(i) assigns a weight and a priority to the
Task, two measures to deal with over- and/or under-
constrainedness of the composite task [25], [26], and
(ii) defines the o1 and o2 frames between which a
Task is defined, these frames refer to a frame on a
Robot or Object kinematic model.
In the running example the task to stay close to a prefer-
able joint configuration has a lower priority than the
reaching motion. As such, it defines the composition of
the composite task. On the other hand, the object frames
for the opening task are the r gripper tool frame
of the PR2 and the handle frame of the drawer.

• The FSM of this level coordinates the composite task
behavior by enabling and disabling tasks, changing
weights and priorities, etc. For example disabling the
reaching task and activating the grasping task once an
event is received that signals that the handle is reached.

• The Solver entity contains the algorithm that solves
the optimization problem for a certain objective func-
tion, taking the constraints of the composite task into
account. This results in the desired inputs for the
robot, typically desired joint velocities, accelerations or
torques. In the running example a prioritized damped-
least squares solver [25], [27], [28] is used, solving for
joint velocities. The objective is to minimize the error
in task space and the joint velocities.

1862

C. Task level

A Task exists of a set of constraints on the task space,
and has following entities:

• The VKC entity models the task space as a Virtual
Kinematic Chain, with feature coordinates as joint coor-
dinates. Since the handle of the drawer is a cylinder and
its irrelevant from which side the robot approaches the
handle, the example considers a cylindrical task space:
TransZ, RotZ, TransX, RotX, RotY, RotZ. Where Trans
means translation and Rot rotation, along the direction
or around an axis of the moved coordinate frame.

• The CC entity models the Constraint-Controller that
imposes a desired value on an output, enforced by a
controller. The output is a function of the controllable
robot joints and feature coordinates. In the open drawer
example, we use a simple proportional controller on the
position error and velocity feedforward on each feature
coordinate (y = χf).

• The task needs a reference to the Robots in case their
joints are constrained directly, for example for the joint
limit avoidance task in the example.

• The FSM coordinates the behavior of one task, for
example enabling or disabling a single constraint of a
task.

D. Decoupling

Each entity can have a Config entity containing its
configuration, a type attribute specifying the specific type
of an entity, and the package attribute pointing to the ROS
package where to find the implementation of this type. Some
entities use references to other parts of the model, enabling
their decoupling. For example, a Robot or Object is
independent of its Location or Driver. Similarly a Task
model is independent from the weight or priority that
is assigned to the Task, the object frames o1 and o2
in between which the Task is assigned, or the origin of
the setpoint. The references are made using the Name
attribute, assigned to the entities that are referred to.

Note the separation of the Configuration in Config,
the Coordination in FSM, the Computation in the different
entities, and the Composition by for example separating
task settings from the tasks themselves. Communi-
cation is not mentioned here, since it will depend on the
software platform that is used on the M0 level.

IV. AN ITASC MODEL (M1)

The M1 level model is an instance of the M2 model,
filled in with the application-specific information. Due to the
limited space, we restrict the example code to the model for
the composite task of the drawer opening example, as listed
in following sections. The full model can be found on [17].

The M2 model and uMF [14] tools enable to formally
verify the conformity of the M1 model to the M2 model.
This verification comprises syntax verification, the existence
of referred entities and DSLs, and compatibility between
entities. The automatic verification returns meaningful errors
to the user.

A. Application level

Listing 1: Application level

1 return Application {
dsl_version = '0.1',
name = 'simple_open_drawer',
uri = 'be.kuleuven.mech.rob.app.drawer_simpr2',

5 fsm = FSM{fsm = "file://app_supervisor.lua"},
setpoint_generators = {
SetpointGenerator{

name="open_drawer_trajectory_generator",
type="trajectory_generators::←↩

nAxesGeneratorPos"
10 package="naxes_joint_generator",

config={"file://open_drawer_traj_gen.cpf"},
task="pull_drawer_handle"},

SetpointGenerator{
name="desired_joint_config_generator",

15 type="trajectory_generators::←↩
SimpleGenerator6D"

package="simple_generator_6d",
config={"file://desired_jnt_config.cpf"},
task="keep_joint_config"}},

drivers = { Driver{
20 name="pr2_driver",

file="file://pr2driver.lua",
robot="pr2"}},

itasc = my_composite_task}

The FSM points to the rFSM [20] model of the coordination.
The FSM of all levels share the same underlying structure, as
shown in figure 3. Each of the states can be a state machine
on its own. The configuration of a setpoint generator is

Configure

Stop Start

Run

Fig. 3: Basic infrastructure of a FSM of a level. Each state
is possibly a (combination) of state machines, as shown for
the Run state.

contained in an xml file, with a configuration property file
(cpf) extension. All referred packages and types can be
found in [17].

B. iTaSC or composition level

Listing 2: iTaSC level

1 my_composite_task = iTaSC {
dsl_version = '0.1',
name = 'simple_open_drawer_task',
uri = 'be.kuleuven.mech.rob.itasc.drawer_pr2',

5 fsm = FSM{fsm = "file://itasc_supervisor.lua"},

1863

robots = { Robot{
name = "pr2",
package = "itasc_pr2",
type = "iTaSC::pr2Robot",

10 config = {"file://pr2robot.cpf"}}},
objects = { Object{

name = "upper_drawer",
package = "fixed_object",
type = "iTaSC::FixedObject"}},

15 scene = {
SceneElement {

robot = "pr2",
location = Frame {

M = Rotation{X_x=1,Y_x=0,Z_x=0,X_y=0,Y_y←↩
=1,Z_y=0,X_z=0,Y_z=0,Z_z=1},

20 p = Vector{X=0.0,Y=0.0,Z=0.0}}},
SceneElement {

object = "upper_drawer",
location = Frame {

M = Rotation{X_x=1,Y_x=0,Z_x=0,X_y=0,Y_y=1,←↩
Z_y=0,X_z=0,Y_z=0,Z_z=1},

25 p = Vector{X=2.8,Y=0.0,Z=0.5}}}},
task_settings = {

TaskSetting{
task = "pull_drawer_handle",
weight = 1.0,

30 priority = 1,
o1 = "upper_drawer.handle",
o2 = "pr2.r_gripper_tool_frame"},

TaskSetting{
task = "keep_joint_config",

35 weight = 1.0,
priority = 2,
robot = "pr2"}},

solver = Solver{
name="Solver",

40 package="wdls_prior_vel_solver",
type="iTaSC::WDLSPriorVelSolver"},

tasks = my_tasks}

The iTaSC level model introduces the PR2 robot and the
drawer to open. The drawer could be part of a cupboard spec-
ified in a Collada model, but is omitted here for readability.
The Location is expressed in the uMF frame specification,
consisting of a rotation matrix and position vector. The
locations are expressed with respect to the implicit world
frame.
o1 and o2 of the pull drawer handle task refer to the

handle of the upper drawer Object and the gripper of the
PR2 Robot respectively. The task to pull open the drawer
doesn’t need a reference to a Robot, since there are no
constraints in joint space, while the task to keep a preferred
joint configuration has a Robot reference, but no o1 or o2
since all constraints are in joint space.
Tasks with a lower priority number have priority over

Tasks with a higher priority number. In the running
example, the task to pull the drawer handle has priority over
the task to keep a certain joint configuration. The weights
will have no effect in this reduced example, since there are
no conflicting constraints within each priority level.

The FSM of the iTaSC level is rather limited for the
running example, since all tasks are running in parallel
during this single opening action. The full drawer opening
application needs more complicated, multi-state coordination
at run-time [17].

C. Task level

Listing 3: Task level

1 my_tasks = tasks{
Task{
name = "pull_drawer_handle",
dsl_version = '0.1',

5 uri = 'be.kuleuven.mech.rob.task.pull_handle',
vkc = VKC{

type= "iTaSC::VKC_sixDof",
package="sixDof_pff",
config={

10 "file://VKC_sixDof.cpf" ,
{chain={"TransZ","RotZ","TransX","RotX","←↩

RotY","RotZ"}}}},
cc = CC{type="iTaSC::CC_sixDof_pff",

package="sixDof_pff",
config={"file://CC_sixDof_pff.cpf"}},

15 fsm = FSM{
fsm = "file://sixDof_pff_supervisor.lua"}},

Task{
name = "keep_joint_config",
dsl_version = '0.1',

20 uri = 'be.kuleuven.mech.rob.task.keep_jnt_cfg'
cc = CC{

type = "iTaSC::CC_PDFFjoints",
package = "joint_motion",
config = {"file://CC_PDFFjoints.cpf"} }

25 fsm = FSM{
fsm = "file://jnt_config_supervisor.lua"}}}

The task to keep a preferred joint configuration has no VKC,
since all constraints are in joint space. The configurations
are contained in a xml file with .cpf extension. The types
of the CC and VKC can be found in [11]; the sixDof pff
refers to a simple proportional controller with feed-forward
for six DOF output y, in this case the feature coordinates
of the virtual kinematic chain VKC sixDof, while the
CC PDFFjoints refers to a similar, more general PD
controller with feed-forward for an n-DOF output y.

V. CODE GENERATION: FROM M1 TO M0
The M1 model specifies a robot application, that has to

be transformed into an implementation that conforms to this
M1 model. We provide software support that transforms
the M1 model to a run-time configuration and instantiation
using the existing iTaSC software implementation [11]. This
iTaSC software is developed using the Orocos component
framework.

VI. EXPERIMENTS AND EVALUATION

Table I compares the required lines of code for two more
elaborate examples from previous work: lissajous-tracing
with a KUKA youBot [29] and human-robot comanipulation
with a PR2 robot [10]. The table shows the lines of code to
be hand coded to generate the application. Next to this code,
both implementations share the iTaSC Orocos components
needed for the execution. The total lines to be hand coded
have reduced by a factor of 2.5 when using the DSL. This
reduction is possible by the automatic derivation of frame-
work specific code from the model. Moreover the model
provides a better readable overview of the application and
introduces names in a more consistent ’hierarchical’ manner:
lower levels introduce names, referenced to by higher levels.
In order to allow this referencing, each level has to expose
the names of the entities it contains to the higher levels.

1864

laser tracing comanipulation
model 97 155

original code 237 416

TABLE I: Comparison of code efficiency by lines of code
of a laser tracing and comanipulation example.

The warnings and errors that the execution of the M1
model verification returns include:

• Syntax errors, such as the misspelling of an at-
tribute or entity, or the assignment of a wrong
type. For example when erroneously using ame
= ’pull drawer handle’ in stead of name =
’pull drawer handle’ when assigning a name to
the first task:

1 err@ app.itasc.tasks[1].ame:
illegal field 'ame' in sealed dict
(value: pull_drawer_handle)

err@ app.itasc.tasks[1]:
5 non-optional field 'name' missing

or when assigning a number to the name:

1 err@ app.itasc.tasks[2].name:
not a string but a number

• The non-existence of referred entities and DSLs, for
example robots not listed in robots or not found
configuration files:

1 err@ app: failed to resolve SceneElement.←↩
robot:

PR3
err@ app.itasc.tasks[1].fsm.fsm:

non-existing configuration file pr2robot.←↩
cpf

• Incompatibility between entities, for example when
assigning an always singular Virtual Kinematic Chain
with two Z rotational joints as first two joints:

1 err@ app.itasc.tasks[1].vkc.config[2].chain:
identical consecutive chain segments (1-2)

• The use of the same name for multiple entities, for
example when giving the drawer and the robot the name
’pr2’:

1 err@ : duplicate use of name pr2

• The use of an outdated version of the meta-model:

1 warn@ app.itasc.dsl_version:
Current iTaSC meta-model version number 0.1,
does not match required version number 0.2

One of the major advantages of the developed DSL is its ease
to create and adapt applications. As a proof, the following
paragraphs summarize some possible changes of the running
example. Video fragments of some of the changes can be
found at [17].

To change the robot that is used, as in the case given in
the Introduction, one has to change: (i) the Robot (listing
2, line 6) to for example the KUKA YouBot, (ii) the robot

Driver (listing 1, line 20), (iii) the o2 of tasks that use the
robot, in this case of the pull drawer handle task (listing 2,
line 32), (iv) the configuration of joint space tasks, such as
the keep joint config task (listing 3, line 24), (v) and possibly
the SceneElement of the robot in the scene (listing 2, line
17). A total of 13 minor modifications are needed to change
the robot platform used, far less than the more than 100 lines
without the model. The same reasoning holds for changing
an Object. In case one wants to open another drawer with
the same model, the change can be as little as one line (listing
2, line 22).

Another common change to an application is the relation
between the tasks by changing the weight and priority
of one or multiple tasks. These settings are grouped by the
task settings entity. It is common that these settings
are changed at run-time, for instance by the FSM at iTaSC
level.

In case the drawer doesn’t slide but swivels open like a
door, one can adapt the model of the task space easily, by
changing the configuration of the VKC (listing 3, line 11).
Cylindrical coordinates, ease the task specification of the
running example to a constraint on a single DOF, namely
the angle around its pivot.

In case the drawer has a rim that is easier to grip, one can
easily change the o1 frame to this rim (listing 2, line 32).

Another common alteration is the change of control used
for a task, which is easily done by replacing the CC of
the task, for example listing 3 lines 12-14 to an impedance
controller.

In case one wants to change the coordination of
the composite task, for example deactivating the
keep joint configuration task once the handle is grasped
or change how and when the transition from grasping the
handle to opening the drawer occurs, one only has to change
the FSM of the iTaSC level (listing 2, line 5).

Further one can easily change which of the two arms
of the robot should be used, by simply changing one
word, namely the object frame on the robot; for the
running example replace r gripper tool frame by
l gripper tool frame (listing 2, line 32).

VII. CONCLUSIONS AND FUTURE WORK

This paper structures and formally models constraint-
based programming tasks using a Domain Specific Language
(DSL). The presented DSL makes application development
easy, yet is powerful to execute. Furthermore, the DSL
enables automatic model verification and code generation
for different hard- and software platforms, diminishing code
debugging efforts. Moreover, it is shown that the needed
code and hence development time of constraint-based pro-
gramming applications can be significantly reduced. Next to
reduced code size, the rapid development originates from
(i) the DSL as a scripting language, without need for compi-
lation, (ii) the separation of concerns, leading to a structured
set of small configuration files that are easily adapted,
(iii) and the DSL as a template, guiding the programming
effort.

1865

The model separates concerns following the 5 C’s prin-
ciple [18]–[20] and groups reusable functionality, allowing
non-experts to develop applications by composing tasks and
assigning them to robots and objects in the scene. As such, it
can be viewed as a first step towards the robot programming
language of the future. Moreover, the structured approach
and DSL allows to integrate iTaSC in graphical programming
tools, such as ABB’s RobotStudio [30].

The proposed model opens up the possibility of tool
support for design time model checking, using for example
Xtext [31]. Further it allows the creation of a repository or
store with models and/or implementations of entities, such
as tasks i.e. a ‘task store’.

Future work will focus on the integration of dedicated
DSLs for all entities. Furthermore, the execution of the model
on other constraint-based programming frameworks such as
Stack of Tasks [32] will be investigated. Additionally, the
presented formal modelling of constraint-based programming
paves the way for robots to generate their own behavior, and
reason on their behavior on a symbolic level.

The software implementation of the DSL will be made
available under an open-source license.

REFERENCES

[1] R. Ierusalimschy, W. Celes, and L. H. de Figueiredo, “Lua Program-
ming Language,” http://www.lua.org, 2012, last visited 2012.

[2] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, vol. 3, oct 1998, pp. 1931
–1937 vol.3.

[3] A. Nordmann and S. Wrede, “A domain-specific language for rich
motor skill architectures,” in 3rd International Workshop on Domain-
Specific Languages and Models for Robotic Systems (DSLRob),
Tsukuba, Japan, 2012 2012.

[4] J. F. Inglés-Romero, A. Lotz, C. Vicente-Chicote, and C. Schlegel,
“Dealing with run-time variability in service robotics: towards a
dsl for non-functional properties,” in 3rd International Workshop
on Domain-Specific Languages and Models for Robotic Systems
(DSLRob), Tsukuba, Japan, 2012 2012.

[5] M. Klotzbuecher, P. Soetens, and H. Bruyninckx, “OROCOS
RTT-Lua: an Execution Environment for building Real-time
Robotic Domain Specific Languages,” in Int. Workshop on
DYn. languages for RObotic and Sensors, 2010, pp. 284–
289. [Online]. Available: https://www.sim.informatik.tu-darmstadt.de/
simpar/ws/sites/DYROS2010/03-DYROS.pdf

[6] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx, and
J. De Schutter, “Geometric relations between rigid bodies (Part 1):
Semantics for standardization,” IEEE Rob. Autom. Mag., vol. 20, no. 1,
pp. 84–93, 2013.

[7] T. De Laet, S. Bellens, H. Bruyninckx, and J. De Schutter, “Geometric
relations between rigid bodies (part 2): from semantics to software,”
IEEE Rob. Autom. Mag., vol. 20, no. 2, pp. 91–102, 2013.

[8] T. De Laet and S. Bellens, “Geometric semantics software,” http:
//www.orocos.org/wiki/geometric-relations-semantics-wiki, 2012, last
visited September 2012.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty,” Int. J. Robotics Research, vol. 26,
no. 5, pp. 433–455, 2007.

[10] D. Vanthienen, T. De Laet, W. Decré, H. Bruyninckx, and J. De Schut-
ter, “Force-sensorless and bimanual human-robot comanipulation,”
in 10th IFAC Symposium on Robot Control (SYROCO), vol. 10,
Dubrovnik, Croatia, September, 5–7 2012.

[11] D. Vanthienen, T. De Laet, R. Smits, and H. Bruyninckx, “itasc
software,” http://www.orocos.org/itasc, 2011, last visited July 2013.

[12] Object Management Group, “OMG,” http://www.omg.org.
[13] M. Klotzbuecher, R. Smits, H. Bruyninckx, and J. De Schutter,

“Reusable hybrid force-velocity controlled motion specifications with
executable domain specific languages,” in Proc. IEEE/RSJ Int. Conf.
Int. Robots and Systems, San Francisco, California, 2011, pp. 4684–
4689.

[14] M. Klotzbuecher and H. Bruyninckx, “A lightweight, composable
metamodelling language for specification and validation of internal
domain specific languages,” in Proceedings of the 8th International
Workshop on Model-based Methodologies for Pervasive and Embed-
ded Software, September 2012.

[15] H. Bruyninckx and P. Soetens, “Open RObot COntrol Software
(OROCOS),” http://www.orocos.org/, 2001, last visited March 2013.

[16] Willow Garage, “Robot Operating System (ROS),” http://www.ros.org,
2008, last visited 2012.

[17] D. Vanthienen, M. Klotzbuecher, T. De Laet, J. De Schutter,
and H. Bruyninckx, “itasc dsl,” http://people.mech.kuleuven.be/
∼dvanthienen/IROS2013, 2013, last visited July 2013.

[18] M. Radestock and S. Eisenbach, “Coordination in evolving systems,”
in Trends in Distributed Systems. CORBA and Beyond. Springer-
Verlag, 1996, pp. 162–176.

[19] E. Prassler, H. Bruyninckx, K. Nilsson, and A. Shakhimardanov, “The
use of reuse for designing and manufacturing robots,” Robot Standards
project, Tech. Rep., 2009, http://www.robot-standards.eu//Documents\
RoSta\ wiki/whitepaper\ reuse.pdf.

[20] M. Klotzbuecher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rFSM Statecharts,” J. Software Engin Robotics, vol. 3,
no. 1, pp. 28–56, 2012.

[21] M. Klotzbuecher, G. Biggs, and H. Bruyninckx, “Pure coordination
using the coordinator–configurator pattern,” in Proceedings of the 3rd
International Workshop on Domain-Specific Languages and models
for ROBotic systems, November 2012.

[22] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Profes-
sional, 2009.

[23] M. Barnes and E. L. Finch, “COLLADA—Digital Asset Schema
Release 1.5.0,” http://www.collada.org, 2008, last visited March 2010.

[24] Willow Garage, “Universal Robot Description Format (URDF),” http:
//www.ros.org/urdf/, 2009.

[25] B. Siciliano and J.-J. E. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Int. Conf.
Advanced Robotics, Pisa, Italy, 1991, pp. 1211–1216.

[26] Y. Nakamura, Advanced robotics: redundancy and optimization.
Reading, MA: Addison-Wesley, 1991.

[27] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control of
articulated robot arms with redundancy,” in Proc. IFAC World Cong.,
Kyoto, Japan, 1981, pp. XIV:78–83.

[28] P. Baerlocher and R. Boulic, “Task-priority formulations for the
kinematic control of highly redundant articulated structures,” in Proc.
IEEE/RSJ Int. Conf. Int. Robots and Systems, Vancouver, British
Columbia, Canada, 1998, pp. 323–329.

[29] D. Vanthienen, “itasc tutorials,” http://orocos.org/wiki/orocos/
itasc-wiki/itasc-tutorials, 2013, last visited July 2013.

[30] ABB, “ABB Robotics,” http://www.abb.com/robotics/, 2011.
[31] “Xtext,” http://www.eclipse.org/Xtext/, last visited July 2013.
[32] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-

eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in Int. Conf. Advanced Robotics,
Munich,Germany, 2009.

1866

