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Abstract— In this paper, we present an observability analysis
of a vision-aided inertial navigation system (VINS) in which the
camera is downward looking and observes a single point feature
on the ground. In our analysis, the full INS parameter vector
(including position, velocity, rotation, and inertial sensor biases)
as well as the 3D position of the observed point feature are
considered as state variables. In particular, we prove that the
system has only three unobservable directions corresponding
to global translations along the x and y axes, and rotations
around the gravity vector. Hence, compared to general VINS,
an advantage of using only ground features is that the vertical
translation becomes observable. The findings of the theoretical
analysis are validated through real-world experiments.

I. INTRODUCTION

In this paper, we are interested in studying the observabil-

ity properties of an inertial measurement unit (IMU)-camera

sensor fusion system, which is navigating in an unknown

environment. In particular, our analysis is performed for a

downward looking camera (DLC), which observes planar

features on the ground, i.e., the image plane is parallel to

the feature’s plane. Such a configuration may find interesting

applications in different scenarios. For example, where there

are many moving objects (such as pedestrians and vehicles)

in front of the camera, a forward-looking camera may not

be able to detect and reliably track static features, while, a

DLC can still track point features on the ground [1]. Fur-

thermore, in certain cases, such as micro air vehicle (MAV)

or spacecraft landing [2], most of the features observed by

the DLC lie on the ground, and one should take advantage

of this fact to improve the estimation accuracy.

The observability properties of the general vision-aided

inertial navigation system (VINS)–without using the assump-

tion of observing features in a plane–have been thoroughly

studied in the literature. Specifically in [3], [4], the authors

prove that all the quantities of the IMU-camera sensor

fusion system (i.e., the robot pose, velocity, IMU biases,

feature positions and the transformation between the IMU

and the camera) are observable given observations of known

point features [3], or when navigating from a known initial

pose [4]. Without these assumptions, it has been shown

Ghazaleh Panahandeh and Magnus Jansson are with the ACCESS
Linnaeus Centre, School of Electrical Engineering, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden.
{ghpa, janssonm}@kth.se
Chao X. Guo and Stergios I. Roumeliotis are with the Department of
Computer Science and Engineering, University of Minnesota, Minneapolis,
MN 55455, USA. {chaguo, stergios}@cs.umn.edu.
This work was supported by the Swedish Research Council (VR), the
Swedish Governmental Agency for Innovation Systems (VINNOVA), and by
the University of Minnesota through the Digital Technology Center (DTC)
and AFOSR (FA9550-10-1-0567).

that the general VINS is unobservable, and its unobserv-

able directions are the global position, as well as rotation

around the gravity vector [5], [6]. In [7], the observability

properties of VINS has been examined for different sensor

configurations including: inertial only, vision only, vision

and inertial. In [8] the concept of continuous symmetries

is used for analyzing the observability properties of VINS

and it is shown that the IMU biases, 3D velocity, and

absolute roll and pitch angles, are observable for VINS. To

the best of our knowledge, the only work that studies the

observability analysis of a VINS when observing a feature

in a horizontal plane is the work of [9]. However, since a

virtual feature projected from a laser pointer mounted on

the robot is tracked, the analysis is performed for a special

camera measurement model. Additionally, in [9] the biases in

the IMU measurements are ignored both in the observability

analysis and in the estimator, which can result in significant

drift.

To the best of our knowledge, the work presented in this

paper is the first to examine the observability properties

of the DLC-VINS when observing ground point features.

In our observability analysis, we employ the method intro-

duced in [10], which significantly reduces the complexity

of finding the system’s unobservable directions (Section II).

In particular, in Section IV, we prove that by observing a

single unknown feature on the ground, the navigation system

has only three unobservable directions corresponding to the

global translations parallel to the ground plane, and the

rotation around the gravity vector. Finally, in Section V, we

experimentally illustrate the validity of our analysis using the

method introduced in [1].

II. NONLINEAR OBSERVABILITY ANALYSIS

In what follows, we first provide an overview of the

nonlinear observability rank condition test of [11] (Sec-

tion II-A) and summarize the method of [10] for finding

the unobservable modes of our system (Section II-B).

A. Observability Analysis with Lie Derivatives

Consider a nonlinear system1

{

ẋ = f0(x)+∑
ℓ
i=1 fi(x)ui

z = h(x)
(1)

where x ∈ R
m is the state vector, u =

[
u1 . . . uℓ

]⊤
∈ R

ℓ

is the system input, z ∈ R
k is the system output, and fi for

i ∈ {0, . . . , ℓ} is the process function.

1Throughout the paper, scalars are denoted by lowercase letters (s),
vectors by bold letters (f), and matrices by bold capitals (K).
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The zeroth order Lie derivative of a measurement function

h is the function itself, i.e., L0h = h(x). For any n-th order

Lie derivative, Lnh, the n+1-th order Lie derivative L
n+1
fi

h

with respect to a process function fi can be computed as:

L
n+1
fi

h = ∇L
nh · fi, (2)

where ∇ denotes the gradient operator with respect to x

and “·” represents the vector inner product. Similarly, mixed

higher order Lie derivatives can be defined as:

L
n
fif j ...fk

h = Lfi
(Ln−1

f j ...fk
h) = ∇L

n−1
f j ...fk

h · fi (3)

where i, j,k ∈ {0, . . . , ℓ}. The observability of a system is de-

termined by calculating the dimension of the space spanned

by the gradients of the Lie derivatives of its output func-

tions [11]. Hence, the observability matrix O of system (1)

is defined as:

O ,












∇L
0h

∇L
1
fi

h

...

∇L
n
fif j ...fk

h

...












. (4)

To prove that a system is observable, it suffices to show

that O is of full column rank. However, to prove that a

system is unobservable, we have to find the null space

of matrix O, which may have infinitely many rows. This

can be very challenging especially for high-dimensional

systems, such as the DLC-VINS. To address this issue, in the

following section we present the method of [10] for proving

that a system is unobservable and finding its unobservable

directions.

B. Observability Analysis with Basis Functions

Theorem 1: Assume that there exists a nonlinear trans-

formation β(x) = [β1(x)
⊤, ...,βn(x)

⊤]⊤ (i.e., a set of basis

functions) of the variable x, such that:

1) The system measurement equation can be written as a

function of β, i.e., z = h(x) = h(β)
2) ∂β

∂x
f j, for j = 0, ..., ℓ, is a function of β

Then the observability matrix of system (1) can be factorized

as: O=ΞΩ where Ξ is the observability matrix of the system
{

β̇ = g0(β)+∑
ℓ
i=1 gi(β)ui

z = h(β)
(5)

and Ω ,
∂β
∂x

.

Proof: See [10].

Note that system (5) results by pre-multiplying the process

function in (1) with ∂β
∂x

{
∂β
∂x

∂x
∂ t

= ∂β
∂x

f0(x)+
∂β
∂x ∑

ℓ
i=1 fi(x)ui

z = h(x)

⇒

{
β̇ = g0(β)+∑

ℓ
i=1 gi(β)ui

z = h(β)

where gi(β),
∂β
∂x

fi(x) and h(β), h(x).

Corollary 1: If Ξ is of full column rank, i.e., system (5)

is observable, then the unobservable directions of system (1)

will be spanned by the null vectors of Ω.

Proof: From O = ΞΩ, we have null(O) = null(Ω)∪
(null(Ξ)∩range(Ω)). Therefore, if Ξ is of full column rank,

i.e., system (5) is observable, then null(O) = null(Ω).
Based on Theorem 1 and Corollary 1, to find the un-

observable directions of a system, we first need to define

the basis functions, β, which fulfil the first and second

conditions of Theorem 1. Then, we should prove that the

infinite-dimensional matrix Ξ has full column rank, which

satisfies the condition of Corollary 1.

To define the basis functions, we start with the system

measurement equation and extract the initial bases as a

function of the state variables (i.e., the first condition of

Theorem 1). The rest of the bases will be defined by project-

ing these initial basis functions onto the process functions.

Then, any resulting term that cannot be expressed as a

function of the previously defined bases, is incorporated

as a new basis function (i.e., the second condition of the

Theorem 1). Finally, we terminate the procedure of defining

new basis functions when the second condition of Theorem 1

is satisfied.

III. SYSTEM MODEL

Before studying the observability properties of our system

in Section IV, we hereafter describe its process and mea-

surement equations.

For the purpose of IMU-camera ego-motion estimation,

we consider the sensors to be rigidly attached to a moving

vehicle. The goal is to estimate the pose of this mobile VINS

with respect to the global frame {G}. In this system, the

IMU measurements are used for state propagation while the

camera measurements are employed for state corrections.

1) System propagation model: We define the INS state

variables in the form of a system state vector as:2

x =
[

Cs⊤G
Gv⊤C

Gp⊤
C b⊤

a b⊤
g

]⊤
(6)

where CsG is the Cayley-Gibbs-Rodriguez parameteriza-

tion [12] representing the orientation of the global frame {G}
in the camera’s frame of reference {C}, GvC and GpC denote

the velocity and position of {C} in {G}, respectively, and

ba and bg are the biases in the gyroscope and accelerom-

eter measurements. The system model describing the time

evolution of the VINS states is:

C ṡG(t) =
1

2
D
(

Cω(t)−bg(t)
)

Gv̇C(t) =
Ga(t) = Gg+C(CsG(t))

⊤
(

Ca(t)−ba(t)
)

GṗC(t) =
GvC(t) ḃa(t) = na ḃg(t) = ng (7)

where3 1
2
D , ∂ s

∂θ
= 1

2
(I + ⌊s⌋+ ss⊤) ( θ = αk̂ represents

a rotation by an angle α around the axis k̂), Cω(t) =

2To preserve the clarity of the presentation, we assume that the IMU
and camera frames of reference coincide.

3The skew-symmetric matrix of vector a is represented by ⌊a⌋.
Throughout this paper, the following properties of the cross product and
the skew-symmetric matrix operator (⌊a⌋) are used: a×b = ⌊a⌋b =−⌊b⌋a,

⌊a⌋a = 0, and ⌊a⌋⌊b⌋= ba⊤− (a⊤b)I3.
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[
ω1 ω2 ω3

]⊤
and Ca(t) =

[
a1 a2 a3

]⊤
are the rota-

tional velocity and linear acceleration, respectively, measured

by the IMU and expressed in {C}. Gg =
[
0 0 g

]⊤
is

the gravitational acceleration, C(s) is the rotation matrix

corresponding to s, and ng and na are the accelerometer and

gyroscope bias driving white Gaussian noises.

2) System measurement model: Assuming a calibrated

pinhole camera, the projective camera measurement model

is4

zC =

[
u

v

]

+nz = B
1

e⊤3
Cp f

Cp f +nz, (8)

where

Cp f = C(CsG)(
Gp f −

GpC) and B =
[

I2 02×1

]
,

Cp f and Gp f represent the position of the feature point f

with respect to the camera and global coordinate frame,

respectively, and nz is the image pixel noise.

Without loss of generality, the global frame is considered

to be on the ground plane with its z axis pointing up.

Additionally, in our DLC-VINS, it is assumed that the

camera’s optical axis is orthogonal to the ground plane and

the point features lie on the ground.5 Thus, e⊤3
Cp f = e⊤3

GpC

and the camera measurement model can be rewritten as:

zC = B
1

e⊤3
GpC

Cp f +nz. (9)

Moreover, this particular geometric configuration implies a

constraint on the velocity along the z axis which can be

represented as an additional measurement

e⊤3 CGvC = e⊤3
GvC ⇔ zv = e⊤3 CGvC − e⊤3

GvC = 0. (10)

IV. SYSTEM OBSERVABILITY ANALYSIS

In what follows, we first define the basis functions for the

DLC-VINS (Section IV-A) and then derive its unobservable

modes (Section IV-B).

A. Defining the Basis Functions

In our analysis, the position of the observed point feature

with respect to the global coordinate frame, Gp f is consid-

ered as an unknown constant variable

Gṗ f = 0, (11)

which we append to the state vector (see [5]).

For simplicity, we retain only a few of the subscripts and

superscripts in the state elements and write the augmented

DLC-INS state vector (6) as:

x = [s⊤ v⊤ p⊤ b⊤
a b⊤

g p f
⊤]⊤. (12)

4ei ∈ R
3×1 for i = 1,2,3 and e⊤1 = [1,0,0], e⊤2 = [0,1,0], and e⊤3 =

[0,0,1].
5Although the assumption of the orthogonality of the camera’s optical

axis to the ground leads to some nice properties, this assumption might be
violated in a real scenario. This constraint is relaxed in [1] using the virtual
camera concept.

Moreover, following the structure of system (1), we rewrite

the state propagation equation in (7) and (11) as










ṡ

v̇

ṗ

ḃa

ḃg

ṗ f











=











− 1
2
Dbg

g−CT ba

v

0

0

0











︸ ︷︷ ︸

f0

+











1
2
D

0

0

0

0

0











︸ ︷︷ ︸

F1

ω+











0

CT

0

0

0

0











︸ ︷︷ ︸

F2

a (13)

where C , C(s). Note that f0 is a 24× 1 vector, while F1

and F2 are both 24× 3 matrices which is a compact form

for representing three process functions as

F1ω = f11ω1 + f12ω2 + f13ω3 (14)

F2a = f21a1 + f22a2 + f23a3

Following the first condition of Theorem 1, we define the

system’s first four bases using the terms appearing in the

measurement functions (9) and (10), i.e.,

β1 , C(p f −p), β2 , e⊤3 p, β3 , Cv, β4 , e⊤3 v.

To check the second condition of Theorem 1, we compute

their derivatives with respect to the state vector x

∂β1

∂x
=
[

⌊C(p f −p)⌋ ∂θ
∂ s

0 −C 0 0 C

]

, (15)

∂β2

∂x
=
[

0 0 e⊤3 0 0 0
]
,

∂β3

∂x
=
[

⌊Cv⌋ ∂θ
∂ s

C 0 0 0 0

]

,

∂β4

∂x
=
[

0 e⊤3 0 0 0 0
]

and project them onto all the process functions. Specifically,

for the span of β1 , C(p f −p), we have:

∂β1

∂x
f0 =−⌊C(p f −p)⌋bg −Cv

=−⌊β1⌋bg −β3 ,−⌊β1⌋β5 −β3

∂β1

∂x
f1i = ⌊C(p f −p)⌋ei = ⌊β1⌋ei

∂β1

∂x
f2i = 0,

for i ∈ {1,2,3}, where ∂θ
∂ s

1
2
D = ∂θ

∂ s
∂ s
∂θ

= I3 and we have

defined a new basis element β5 , bg. Similarly, for the span

of β2 , e⊤3 p, we have:

∂β2

∂x
f0 = e⊤3 v = β4,

∂β2

∂x
f1i = 0,

∂β2

∂x
f2i = 0.

Then, for the span of β3 , Cv, we have:

∂β3

∂x
f0 =−⌊Cv⌋bg +Cg−ba

,−⌊β3⌋β5 +β6 −β7

∂β3

∂x
f1i = ⌊Cv⌋ei = ⌊β3⌋ei,

∂β3

∂x
f2i = CC⊤ei = ei,

where the newly defined bases are β6 , Cg and β7 , ba.
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Finally, for the span of β4 , e⊤3 v, we have:

∂β4

∂x
f0 =e⊤3 (g−C⊤ba) = e⊤3 C⊤(Cg−ba)

=g−1β⊤
6 (β6 −β7)

∂β4

∂x
f1i =0,

∂β4

∂x
f2i =e⊤3 C⊤ei = (Ce3)

⊤ei = g−1(Cg)⊤ei = g−1β⊤
6 ei,

where g is the norm of the gravitational acceleration, g. At

the next step, we repeat the same process of projecting the

span of the newly defined basis functions β5, β6, and β7 on

the process functions. Specifically, we have:

β5 , bg:

∂β5

∂x
=
[

0 0 0 0 I 0
]

∂β5

∂x
f0 = 0,

∂β5

∂x
f1i = 0,

∂β5

∂x
f2i = 0,

β6 , Cg :

∂β6

∂x
=
[

⌊Cg⌋ ∂θ
∂ s

0 0 0 0 0

]

∂β6

∂x
f0 =−⌊Cg⌋bg =−⌊β6⌋β5

∂β6

∂x
f1i = ⌊Cg⌋ei = ⌊β6⌋ei,

∂β6

∂x
f2i = 0,

β7 , ba:

∂β7

∂x
=
[

0 0 0 I 0 0
]

∂β7

∂x
f0 = 0,

∂β7

∂x
f1i = 0,

∂β7

∂x
f2i = 0.

Since all the terms in the preceding projections are defined

based on the existing basis functions (i.e., the second con-

dition of Theorem 1 is satisfied), we have found a complete

basis set.

The corresponding new process model for the defined

bases can be described as:













β̇1

β̇2

β̇3

β̇4

β̇5

β̇6

β̇7














=













−⌊β1⌋β5 −β3

β4

−⌊β3⌋β5 +β6 −β7

g−1β⊤
6 (β6 −β7)

0

−⌊β6⌋β5

0













︸ ︷︷ ︸
g0

+













⌊β1⌋
0

⌊β3⌋
0

0

⌊β6⌋
0













︸ ︷︷ ︸

G1

ω+













0

0

I

g−1β⊤
6 I

0

0

0













︸ ︷︷ ︸

G2

a

(16)

where

G1ω = g11ω1 +g12ω2 +g13ω3 (17)

G2a = g21a1 +g22a2 +g23a3

Finally, the measurement equations can be expressed in terms

of the basis functions as:

h1 = B
1

β2
β1 (18)

h2 = e⊤3 β3 −β4 = 0. (19)

Equations (18) and (19) are used in Appendix I for construct-

ing matrix Ξ and showing that it is of full rank.

B. Unobservable Directions of Ω

Based on Corollary 1 and given that the matrix Ξ is of

full rank (see also Appendix I) the unobservable directions

of system (1) lie in the null space of matrix Ω.

Stacking the derivatives of the basis functions with respect

to the variable x, the matrix Ω is

Ω =














⌊C(p f −p)⌋ ∂θ
∂ s

0 −C 0 0 C

0 0 e⊤3 0 0 0

⌊Cv⌋ ∂θ
∂ s

C 0 0 0 0

0 e⊤3 0 0 0 0

0 0 0 0 I 0

⌊Cg⌋ ∂θ
∂ s

0 0 0 0 0

0 0 0 I 0 0














.

To describe the null space of matrix Ω, we need to find a

matrix

A = [A⊤
1 ,A

⊤
2 ,A

⊤
3 ,A

⊤
4 ,A

⊤
5 ,A

⊤
6 ]

⊤ 6= 0, (20)

such that

ΩA = 0, (21)

in other words, A spans the full null space of Ω. From (21),

we have:6

• Multiplying the fifth and the seventh block rows of Ω

with A, we get A4 = A5 = 0.

• Multiplying the sixth block row of Ω with A, we have

⌊Cg⌋ ∂θ
∂ s

A1 = 0, which implies that either A1 = 0 or

A1 =
∂ s
∂θ

Cg.

1) If A1 = 0, then from the third block row of ΩA = 0

we have CA2 = 0 ⇒ A2 = 0, since C is a rotation

matrix (full rank). For the first block row of ΩA to

be zero, we have A3 = A6. Finally, from the second

block row of ΩA = 0, we get e⊤3 A3 = 0. This implies

that A3 is spanned by e1 and e2, i.e.,

A3 = A6 =

[
I2

01×2

]

.

2) If A1 =
∂ s
∂θ

Cg, from the first block row of ΩA = 0,

we have A3 =−⌊p⌋g and A6 =−⌊p f ⌋g. Then, from

its third block row, we get A2 =−⌊v⌋g.

Hence, the system’s unobservable directions are spanned by

A =















03×2
∂ s
∂θ

Cg

03×2 −⌊v⌋g
[

I2

01×2

]

−⌊p⌋g

03×2 03×1

03×2 03×1[
I2

01×2

]

−⌊p f ⌋g















. (22)

6The choice of the null-space bases is done so that meaningful physical
interpretations can be made.
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Fig. 1: (a) The estimated trajectory of the IMU-camera along the x−y plane
overlaid on the map of the test environment. (b) The estimated height of
the system; the IMU-camera rig was mounted at a height of 85 cm.

These unobservable directions correspond to the system’s

(IMU-camera pair) and landmark’s motion parallel to the x-y

plane (first two columns of A), and their rotation about the

gravity vector (third column of A). It should be noted that

adding more point features does not change the observable

modes of the system. The extension of this observability

analysis to the case of multiple point features is described

in [13].

V. EXPERIMENTAL RESULTS

The key findings of the observability analysis for the DLC-

VINS are validated using the method described in [1], where

the camera’s optical axis is assumed to be orthogonal to the

ground plane.

In our experiments, we employ an AVT Guppy

monochrome camera with sampling rate of 10 Hz that is

rigidly mounted on top of a MicroStrain 3DMGX2 IMU

which has sampling rate 250 Hz. The camera intrinsic

calibration is done using [14] and the IMU-camera cali-

bration parameters are estimated from [15]. The MATLAB

Computer Vision Toolbox implementation of SURF is used

for the feature extraction and matching.

An example of the estimated trajectory overlaid on the

map of the test environment is plotted in Fig. 1(a). The

path length was about 50 m and it was travelled within 400

seconds. For the experiment, the IMU-camera sensor fusion

system was mounted on a cart 85 cm off the ground such

that the camera’s optical axis was approximately orthogonal

to the ground plane. Additionally, the estimated height of

the mobile system is plotted in Fig. 1(b). Note that the
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Fig. 2: The 3σ bounds for the error in position (a), attitude (b), and velocity
(c). The σ values are computed as the square roots of the corresponding
diagonal elements of the states’ error covariance matrix.
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Fig. 3: Estimated height along the z axis.

estimated height is diverging from the approximated true

value only briefly (due to the lack of correctly detected

and matched point features), while for most of the time the

system is capable of error correction that drastically reduces

the estimated height error.

To better quantify the estimation uncertainty, the 3σ
bounds for the error in the camera position, orientation,

and velocity along the three axes are shown in Fig. 2.

The σ values are the square roots of the corresponding

diagonal elements of the states’ error covariance matrix.

As depicted in Fig. 2(a), the uncertainty of the position

along the x and y axes grows slowly since the system has

no access to absolute position information. In contrast, the

uncertainty (3σ bound) along the z axis remains constant,

which confirms the findings of our observability analysis

(i.e., the height is observable). The results shown in Fig. 2(b)

and Fig. 2(c) are also inline with our analysis; the velocity,

roll, and pitch are observable while the yaw is unobservable.

Furthermore, the precision of the height estimation was

examined by placing the IMU-camera on a test table where

the system was only moved up and lowered down parallel to

the gravity. Fig. 3 shows the estimated height for this exper-

iment. The system was lifted up and down to approximately

the same values of height by a step motor for about 140

seconds. The final error in the x-y plane is approximately

0.2 cm.

VI. CONCLUSION

In this paper, we have studied the observability proper-

ties of a VINS in which the camera only observes point

features on the ground and its optical axis is aligned with

gravity. Compared to general VINS, where features are not

constrained to be on a plane, we have proved that in our

system the vertical distance of the camera with respect to

a global frame is observable. In the analysis, the full INS

state variables, including position, velocity, and rotation of

the camera in addition to the IMU biases, are considered.

Furthermore, we have derived all the observable and unob-

servable directions of the system using only one point feature

as the camera measurement. Finally, we have experimentally

verified the key findings of our observability analysis.
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APPENDIX I

To prove that matrix Ξ is of full column rank, it suffices to show that a subset of its rows, whose dimension is the same

or larger than the number of columns, is linearly independent. To show this, we construct a sub-matrix of Ξ by selecting the

minimum number of Lie derivative gradients of the measurement functions (18) and (19) that leads to a full-column-rank

matrix. Note that, finding the proper Lie derivatives, which lead to the minimum sub-matrix dimension, is quiet challenging.

Empirically, one can seek to find the directions of the state space along which the gradients of each of the candidate Lie

derivatives provides new information. In the following, we compute only those Lie derivatives of h1 and h2 whose spans

are used to prove that Ξ is of full column rank.

• The zeroth-order Lie derivatives of the measurement functions are:

L
0h̄1 = B

1

β2
β1,

L
0h̄2 = e⊤3 β3 −β4.

Then, their gradient (i.e., the span) of each zeroth order Lie derivative is

∇L
0h̄1 =

∂ h̄1

∂β
= B

[
1
β2

I −β1

β 2
2

0 0 0 0 0
]

,

∇L
0h2 =

∂ h̄2

∂β
=
[

0 0 e⊤3 −1 0 0 0

]

.

• The first-order Lie derivatives of h̄1 with respect to g0, and g1i are computed, respectively, as

L
1
g0

h̄1 = ∇L
0h̄1 ·g0 = B(

1

β2
(−⌊β1⌋β5 −β3)−

β4

β 2
2

β1),

L
1
g1i

h̄1 = ∇L
0h̄1 ·g1i = B

1

β2
⌊β1⌋ei,

while their corresponding gradients are given by

∇L
1
g0

h̄1 =
∂L1

g0
h̄1

∂β
= B

[
1
β2
⌊β5⌋−

β4

β 2
2

I −1
β 2

2

(−⌊β1⌋β5 −β3)+
2β4

β 3
2

β1
−1
β2

I − 1
β 2

2

β1
−1
β2

⌊β1⌋ 0 0
]

,

∇L
1
g1i

h̄1 =
∂L1

g1i
h̄1

∂β
= B

[
−1
β2

⌊ei⌋
−1
β 2

2

⌊β1⌋ei 0 0 0 0 0
]

• The second-order Lie derivatives and their corresponding gradients:7

L
2
g0g1i

h̄1 =∇L
1
g0

h̄1 ·g1i = B((
1

β2
⌊β5⌋−

β4

β 2
2

I)⌊β1⌋ei +
−1

β2
⌊β3⌋ei),

L
2
g1ig0

h̄1 =∇L
1
g1i

h̄1 ·g0 = B(
−1

β2
⌊ei⌋(−⌊β1⌋β5 −β3)+

−β4

β 2
2

⌊β1⌋ei),

∇L
2
g0g1i

h̄1 =
∂L2

g0g1i
h̄1

∂β
= B

[

−( 1
β2
⌊β5⌋−

β4

β 2
2

I)⌊ei⌋ Π2i
1
β2
⌊ei⌋ − 1

β 2
2

⌊β1⌋ei
1
β2
(β1e⊤i − eiβ

⊤
1 ) 0 0

]

,

∇L
2
g1ig0

h̄1 =
∂L2

g1ig0
h̄1

∂β
= B

[
−1
β2

⌊ei⌋⌊β5⌋+
β4

β 2
2

⌊ei⌋
−1
β 2

2

⌊ei⌋(⌊β1⌋β5 +β3)+
2β4

β 3
2

⌊β1⌋ei
1
β2
⌊ei⌋

−1
β 2

2

⌊β1⌋ei
1
β2
⌊ei⌋⌊β1⌋ 0 0

]

.

• The third-order Lie derivatives and their corresponding gradients are:

L
3
g0g1ig0

h̄1 =∇L
2
g0g1i

h̄1 ·g0 = B(−(
1

β2
⌊β5⌋−

β4

β 2
2

I)⌊ei⌋(−⌊β1⌋β5 −β3)+Π2iβ4 +
1

β2
⌊ei⌋(−⌊β3⌋β5 +β6 −β7)−

g−1

β 2
2

⌊β1⌋ei(β
⊤
6 (β6 −β7))),

L
3
g0g1ig2 j

h̄1 =∇L
2
g0g1i

h̄1 ·g2 j =
1

β2
⌊ei⌋e j −

g−1

β 2
2

⌊β1⌋eiβ
⊤
6 e j,

∇L
3
g0g1ig0

h̄1 =
∂L3

g0g1ig0
h̄1

∂β
= B

[

Π̃1i Π̃2i Π̃3i Π̃4i Π̃5i Π̃6i
−1
β2

⌊ei⌋+
g−1

β 2
2

⌊β1⌋eiβ
⊤
6

]

,

∇L
3
g0g1ig2 j

h̄1 =
∂L3

g0g1ig2 j
h̄1

∂β
= B

[
g−1

β 2
2

⌊ei⌋β
⊤
6 e j − 1

β 2
2

⌊ei⌋e j +
2g−1

β 3
2

⌊β1⌋eiβ
⊤
6 e j 0 0 0 − g−1

β 2
2

⌊β1⌋eie
⊤
j 0

]

.

7Πi and Π̃i j will be removed later on by Gaussian elimination, thus we do not show their explicit expressions here.
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Stacking together the computed spans of the Lie derivatives, a subset of the observability matrix Ξ is constructed as:

Ξ̃=


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(23)

To show that Ξ is of full rank, we use Gaussian elimination. The Gaussian elimination is performed based on the knowledge

that the following matrices are of full column rank, which they clearly are as long as u and v, (8), are not both zero.
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B⌊β1⌋⌊e2⌋
B⌊β1⌋⌊e3⌋



=










0 v 1
0 −u 0
−v 0 0
u 0 1
−1 0 0
0 −1 0










, ϒ̂ =








−1
β2

B⌊e1⌋+
g−1

β 2
2

B⌊β1⌋e1β
⊤
6

−1
β2

B⌊e2⌋+
g−1

β 2
2

B⌊β1⌋e2β
⊤
6

−1
β2

B⌊e3⌋+
g−1

β 2
2

B⌊β1⌋e3β
⊤
6







=

1

β2










0 0 0
0 0 2
0 0 −2
0 0 0
0 1 v
−1 0 u










,

ϒ̌ = B⌊e2⌋e3 = [1 0]⊤.

Performing Gaussian elimination by column-row operations on (23), yields:

Ξ̄ =












0 0 0 2 0 0 0
I 0 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 0 I
0 0 0 0 0 I 0
0 1 0 0 0 0 0












, (24)

which clearly is a full column rank matrix. Hence, the system described by (5) is observable and our defined basis functions

are the system’s observable modes.
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