
Robot Learning and Use of Affordances in Goal-directed Tasks

Chang Wang1, Koen V. Hindriks1 and Robert Babuska2

Abstract— An affordance is a relation between an object, an
action, and the effect of that action in a given environmental
context. One key benefit of the concept of affordance is that it
provides information about the consequence of an action which
can be stored and reused in a range of tasks that a robot needs
to learn and perform. In this paper, we address the challenge
of the on-line learning and use of affordances simultaneously
while performing goal-directed tasks. This requires efficient on-
line performance to ensure the robot is able to achieve its goal
fast. By providing conceptual knowledge of action possibilities
and desired effects, we show that a humanoid robot NAO can
learn and use affordances in two different task settings. We
demonstrate the effectiveness of this approach by integrating
affordances into an Extended Classifier System for learning
general rules in a reinforcement learning framework. Our
experimental results show significant speedups in learning how
a robot solves a given task.

I. INTRODUCTION

Many real world robotic tasks, like navigation or object
manipulation, are dynamic and require on-line performance.
Moreover, a fully preprogrammed approach is not suffi-
cient to handle the underlying uncertainties of environments.
One solution is that robots learn autonomously through
observations and embodied interactions with environments.
Specifically, in a goal-directed task where a robot interacts
with objects, it learns to optimize its policy and select actions
with a higher chance of success. If the task or the objects
are changed, the previously learned policy will probably no
longer be optimal. Relearning a new policy from scratch is
not effective. In order to efficiently construct a new optimal
policy, it is useful to extract information from the previously
learned tasks. The notion of affordance [4] provides robots
with information whether an object affords an action or not
[15], and can be modeled as a relation between an objects,
an action and an effect [10]. This information is useful for
action selection in on-line learning tasks in which repetitive
trials are usually required for learning an optimal policy. In
this paper, our main goal and contribution is to investigate
and propose a framework that combines on-line learning of
affordances and the use of affordances at the same time to
improve the robot’s learning performance in a goal-directed
task.

Integrating on-line learning of affordances and the use
of that learned knowledge is a challenge. First, affordance

1C. Wang and K.V. Hindriks are with the Interactive Intelligence Group,
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, 2628 CD Delft, The Netherlands.

2 R. Babuska is with the Delft Center for Systems and Control, Faculty
of Mechanical Engineering, Delft University of Technology, 2628 CD Delft,
The Netherlands.

All authors are with the TU Delft Robotics Institute, robotics.tudelft.nl.
{c.wang-2, k.v.hindriks,r.babuska}@tudelft.nl

learning usually requires several steps of training to build
the relations between the perception space of objects and the
perception space of effects, both of which involve machine
learning techniques to classify objects and effects [19].
Moreover, many affordance learning approaches are based
on a developmental framework [1] where a robot first learns
affordances in a goal-free self-exploration stage, whereafter
it uses the affordances for goal-directed behaviors [2][19].
These approaches thus separate affordance learning and use,
so that there is no on-line learning of affordance in the latter
phase. As a result, they have difficulty handling environmen-
tal changes. For example, when the robot has learned that a
ball is rollable during the training process, it might end up
repetitively trying to kick an unmovable object which looks
similar to the ball. In contrast to these approaches, our aim
is to provide an approach that integrates the learning and
the use of affordances which allows learning while the robot
performs a task, even in a dynamic environment.

Due to the complexity of real world environments and
the limitations of robot platforms, it is a big challenge to
establish affordances for a multitude of robotic behaviors in
various environments [11]. In the literature, some affordances
are predefined based on human-predicted effects such as
rollability [3], liftability [12] and traversability [20]. For
example, a ball will probably roll by a pushing action
and a box will not. A wide range of machine learning
techniques have been proposed for learning affordances.
For example, Support Vector Machines were trained in an
exploration phase to predict the possibility of traversing when
the robot faces different shaped objects [20]. Other methods
include Decision Trees [16], Bayesian Networks [10], Self-
Organizing Maps [14] and Reinforcement Learning [13].
However, affordances were not learned on-line [10][16], or
reused in other tasks [13][14][25] due to that only one
specific action was given to the robot to learn affordances.
Furthermore, most of the existing methods have focused on
the discussion of how a robot perceives affordances rather
than how a robot makes use of affordances to improve its
performance in tasks.

The main contribution of this paper is the proposal of an
architecture that integrates simultaneously on-line learning
and the use of affordances in goal-directed tasks. Affordances
are stored as interpretable triples in a table that can be
updated and reused in a set of tasks. More specifically,
affordances are acquired automatically during on-line task
learning. But, while being learned, they are also used to
speed up the task learning. In our approach, affordance
learning interacts with a task learning system, using an XCS
classifier system [24], within a reinforcement learning [18]

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2288

framework. In addition, we pay special attention to the on-
line use of affordances.

The paper is organized as follows: Section II describes the
interaction between affordances and task learning. Section
III introduces the task environments that we use in our
experiments. Section IV concludes the paper and outlines
our plans for future work.

II. SIMULTANEOUS LEARNING AND USE OF
AFFORDANCES DURING TASK LEARNING

Similarly to [10], [15], we define an affordance as a triple:(
Object,Action,Effect

)
(1)

where Object refers to the entity that can be interacted with,
e.g., a box or a door knob; Action refers to a behavior or
repertoire of motor skills that can be used to interact with
the object, e.g., pushing and turning; and, Effect refers to
the result of performing the action on the object, e.g., the
box has been moved or the door is opened. We note that
affordances provide general information about the effects of
actions on objects and this knowledge is independent of the
task at hand.

A. Architecture

The overall approach to the learning and use of affor-
dances while learning how to perform a goal-directed task
is based on an architecture consisting of three components:
an affordance learning component, a common task learning
component based on reinforcement learning, and a compo-
nent that feeds learned affordances into the action selection
mechanism of the task learning component. Fig. 1 illustrates
the architecture we propose.

Fig. 1. An architecture for affordance learning and use during task learning.

In the affordance learning component, the robot perceives
the environment via its sensors. It extracts features and forms
a representation of the environment. For example, a camera
provides visual features of an object such as the color or
shape and a depth sensor provides the distance between the
robot and the object. The robot is provided with a set of
preprogrammed behaviors to learn affordances and perform

tasks. Additionally, the conceptual input provides the robot
with the knowledge on how the effects of these actions
are detected, e.g., a notion of distance and its change. By
providing the affordance learning component with a priori
conceptual knowledge about general types of affordances,
actual affordances can be learned in association with particu-
lar objects and robot actions. In other words, the affordances
are updated on-line during the task learning, by collecting
data of the encountered object, the action performed and the
resulting effect. For example, a robot can learn the movability
of objects by observing their displacement after a pushing
action. In summary, with the sensory input, given actions,
and the conceptual knowledge, the robot is able to learn
actual affordances during its embodied interaction with the
environment.

In the affordance use component of Fig. 1, the learned
affordances filter out those actions which are likely to cause
undesired effects under the current task goal. As the general
problem of relating such effects with goals is beyond the
scope of this paper, we use a simple approach where we
assume that when an action has no effect on the object,
performing the action is considered to be undesired. For
example, the robot pushes an unmovable box and learns that
it cannot move the box, thereafter it avoids pushing this box.

Finally, in the task learning component of Fig. 1, the task is
learned under a goal in a reinforcement learning framework,
which as usual consists of a set of states and actions, as
well as rules describing state transitions and the associated
immediate rewards.

The state vector contains sufficient information about the
object for the current task, the set of actions is the same set
of preprogrammed behaviors as for learning affordances, and
the reward is derived from the task goal. The task learning
system makes use of the affordances for action selection,
avoiding inefficient actions and thus resulting in a higher
chance of selecting an action sequence to achieve the task
goal. In other words, the affordances bias the action selection
and speed up the task learning process.

Even though affordance and task learning are coupled in
our approach, the affordances learned are independent from
task learning and can be reused in other tasks.

B. Affordance Learning

We have defined affordances as triples above, see (1). We
now discuss in more detail each of the three components of
an affordance.

1) Perception of objects: The robot perceives the envi-
ronment and extracts a set of features {fi}Ni=1 from its raw
sensory input. In this paper, objects are classified based on
features such as color and size. Then, the object is denoted
by o which refers to the set of attributes. We also assume that
the sensors can be used to extract the environmental state of
the object which might be changing with time, denoted as
so, e.g., its location in the world space.

2) Robot actions: We provide the robot with a set of pre-
programmed behaviors {aj}Mj=1 that can be used to perform
a given task. For example, a robot may encounter obstacles

2289

Algorithm 1 On-line learning of affordances during a task
1: Initialize the affordance table [T] empty or load it from

a file.
2: Repeat until the end of the task
3: Observe the current object o and its state so.
4: Apply action a.
5: Observe a new state s′o.
6: Compute the effect e of a by using (2).
7: if (o, a) matches no item in [T] then
8: Add (o, a, e) to [T].
9: else

10: Replace (ok, ak, ek) by (o, a, e) if o = ok and a = ak.
11: end if
12: Go to Line 2.

while navigating through a corridor. In our affordance-based
approach, if an obstacle is detected in front of the robot, it
can choose to remove the obstacle, e.g., push it aside, lift it
or it can choose to step over it.

3) Perception of effect: After performing an action a on
the object o, the robot perceives a new state of the object
s′o. By comparing s′o and so, the effect e can be obtained as
follows:

e = m(s′o, so) (2)

where m is a suitable measure. For example, a box is pushed
and its location change is measured. If a robot tries to drop
an object into a rubbish bin, the effect can be a binary state
description that the object is in the rubbish bin or not.

4) Update of affordances: The knowledge of affordances
is represented as an affordance table [T], consisting of
triplets:

(o, a, e) (3)

in which o is the object, a is the action and e is the effect.
Algorithm 1 updates [T] during a task. Initially, [T] is

empty or loaded from a file which contains previously
learned affordances. Various mechanisms can be used to
update the affordances. In this paper, we use a short term
memory with a simple forgetting mechanism. That is, the
robot obtains (o, a, e) and searches (o, a) in [T]. If no match
is found, (o, a, e) is added to [T]. Otherwise, assume o = ok
and a = ak, then (ok, ak, ek) is replaced by (o, a, e). In this
way, the robot is able to handle dynamic situations in which
the action effect on the same object changes. Although the
current implementation is a simple affordance table, it allows
further generalization with additional techniques.

C. Task Learning System

We demonstrate the effectiveness of the architecture by
using an Extended Classifier System (XCS) for learning
general rules in a reinforcement learning context.

XCS classifier system [24] is a rule-based system which
solves reinforcement learning problems [18]. It can be re-
garded as a generalization of tabular Q-learning [22] by using
a Genetic Algorithm (GA) [5] to aggregate equivalent states
in the Q-table [6]. In XCS, the GA produces rules which

are used by Q-learning to update the prediction of reward.
Then, based on the error of prediction, the rules are evaluated
by their fitness values and updated by the GA. Besides,
while tabular Q-learning updates a single state-action pair,
XCS updates multiple state-action pairs. For physical robot
control, XCS does not require careful tuning of parameters
to achieve satisfactory behavior [17]. So we choose XCS for
on-line robot learning tasks.

The knowledge of XCS is represented as a set of rules
(called classifiers in the LCS literature [7]). The rules can use
real numbers, symbols or the classical ternary representation.
In this paper, we choose the ternary representation {0,1,#}
to encode the conditions and binary strings to encode the
actions. The hash symbol # can be either 0 or 1 which allows
generalization and GA operations on the rule conditions with
the same length.

A rule maps a condition and an action to a prediction,
with an associated fitness as follows:

(condition, action)→ prediction : fitness (4)

For example, the rule

(0#0#11#11, 001)→ 1000 : 0.59 (5)

means if the current state string s meets the condition
0#0#11#11 and if action 001 is taken, then a reward of
1000 is predicted. This rule has a fitness of 0.59.

The mapping in equation (5) is a value function, so the
rules are value function fragments, and XCS generalizes over
its value function using GA techniques [21].

In this paper, the current state of the system (see Fig. 1)
only considers the object, represented as:

s = (o, so) (6)

which ignores the information about the robot itself, e.g., its
distance to the object and its joint angle values. We assume
that the objects are within the robot’s reach and we note that
the state of the robot is not included in the tasks considered
in this paper. However, in general, it may be included.

Assume [P] is the current set of rules of XCS. If s is
obtained from the environment by the robot sensors, then a
subset of [P] forms a match set [M] whose rule conditions
match s. [M] can be further decomposed as a union of
subsets:

[M] =

M⋃
i=1

[M]ai (7)

where [M]ai are the rules which advocate action ai. Then, a
prediction of action ai is calculated as

P (ai) =
Σl∈[M]ai

plFl

Σl∈[M]ai
Fl

(8)

in which pl is rule l’s prediction of reward and Fl is rule l’
fitness, based inversely on the error εl in the prediction of
pl. Based on equation (8), an action aj is selected by

aj = arg max
i
P (ai) (9)

2290

where aj is the action with maximal prediction. After aj
is applied and reward r is obtained, all the rules in [M]aj
are updated by the Credit Assignment Algorithm [24], which
uses a version of Q-learning update to distribute r. For more
information on updating pj , εj and Fj , we refer the reader
to [21].

D. Affordance Use

Traditionally, the task learning system selects an action
according to a criterion, e.g., random action selection, greedy
action selection or mixed. Some actions are efficient in the
learning task while some are not. Take a navigation task for
example, the robot would prefer pushing a movable obstacle
to the side if this helps arrive at its destination faster than by
avoiding the obstacle, but trying to push the same unmovable
obstacle for several times is not desired. In the task learning
system, however, there is no guarantee that this will not
happen.

We show that this problem can be solved with the aid
of affordances. Under a specific task goal, some effects are
desired while some are not. In this paper, if o matches ok in
[T], the related action ak is filtered out from the candidate
actions if its effect ek satisfies:

ek ∈ E (10)

where E is the set of predefined undesired effects. For
example, “unmoved” is not desired in a task where the goal
is to move objects to a location, while “moved” is not desired
in a task where the robot is not allowed to move anything
when navigating to the destination.

In this way, affordances influence action selection of the
task learning system. Algorithm 2 shows how the affordances
are used by the XCS classifier system.

Algorithm 2 Use affordances with XCS in a task
1: Initialize the affordance table [T] and the population of

XCS rules [P] empty or load them from files.
2: Repeat until the end of the task
3: Observe the current system state s = (o, so).
4: Form [M] ⊂ [P] whose rule conditions match s.
5: Calculate the prediction for each action using (8).
6: if o matches object ok of (ok, ak, ek) in [T] then
7: Filter ak by its effect ek using (10).
8: end if
9: Select an action aj by using (9).

10: Apply aj .
11: Observe the new system state s′ = (o, s′o).
12: Update [T] by Algorithm 1 (Line 6 to Line 11).
13: Receive a reward r from the environment.
14: Form the action set [M]aj ⊂ [M] which advocated aj .
15: Call the Credit Assignment Algorithm to update [M]aj .
16: Go to Line 2.

At the first time step, the system initializes [T] and [P],
both of which can be empty or loaded from files. Line 2
starts a loop that the robot selects an action in explore or
exploit episode, alternating until the end of the task. In case

of an endless loop, each episode ends anyway after nstep
steps. Line 4 and 5 are the standard XCS way of forming
the match set [M] and prediction of actions. Before selecting
an action in Line 9, Line 6 checks [T] first. If o matches an
object ok of (ok, ak, ek) in [T], equation (10) filters ak by its
effect ek. After the robot performs the action aj , it observes
the new system state s′ and updates [T] by algorithm 1.
At last, the action set [M]aj ⊂ [M] which advocated aj is
updated by the Credit Assignment Algorithm [6].

III. EXPERIMENT: LEARN MOVABILITY IN
GOAL-DIRECTED TASKS

In this paper, we investigate the movability of objects
with different weights and sizes. A humanoid robot uses
its whole body motion to push the object in front of it.
It observes the effect, which is the location change of the
object before and after the action. With these affordances,
the robot is expected to operate more effectively and avoid
making mistakes repeatedly in a task, e.g., pushing the same
unmovable box even though it has failed for several times.

Sequential goal-directed tasks are designed to test the
proposed model on a humanoid robot NAO. We assume
that the robot is able to detect the current state of the
environment and of itself by extracting features from its
camera and sonars. In our setup, the NAO has a repertoire of
preprogrammed behaviors to interact with the environment.
We use XCSlib [8] for task learning.

A. Environment and tasks
Given a map and a landmark in the world space, the NAO

can localize itself and guarantee its safety on a flat table
(see Fig. 2). A marker is used on each object to measure the
relative location and distance to the NAO.

In the navigation task, two boxes block the NAO’s way
and they are movable and not movable respectively, see Fig.
2(a) and Fig. 2(b). The goal is to reach the destination as
quickly as possible. After several trials, the locations of the
boxes are exchanged to show that the NAO can reuse the
learned movability in a different setting.

In the stacking task, the NAO stands on the table edge and
chooses different pushing poses for a high box or a piece of
low foam, see Figures 2(c) and 2(d). The goal is to push
them off the table to make a stack as high as the table.

B. Sensory Input
The forehead camera is used as the main sensory input

(640×480 resolution) and the sonars on its chest confirm
there is an object in front of the robot. The NAO localizes
itself by matching SIFT [9] features of the landmark with
known 3D coordinate (xl, yl, zl) in the world space. This
provides the NAO its camera location (xr, yr, zr) in the
world space [23]. When the marker on the object is detected,
the NAO calculates its relative location to the object as
(xr2o, yr2o, zr2o). The object’s location (xo, yo, zo) is then
obtained, which is discretized as a 4-bit binary string Sxyz
to represent so. Meanwhile, the height of the object ho is
obtained by:

ho = hr2t − |zr2o| (11)

2291

(a) A navigation task. (b) NAO faces two boxes. (c) A stacking task. (d) NAO faces a piece of foam.

Fig. 2. A humanoid robot NAO learns movability in a navigation task and a stacking task.

where hr2t is assumed known as the height of the NAO’s
camera in its normal standing pose and |zr2o| is the approx-
imate vertical distance from the camera to the object. Then,
ho is represented by oheight where 1 means the object is high
and 0 means low. The colors of the boxes are represented
by a 3-bit binary string ocolor. In total, s in equation (12) is
a 8-bit string:

s =
(
o, sxyz

)
(12)

in which

o = (oheight, ocolor) (13)

C. Actions

We provide the NAO with eight actions represented as
a 3-bit binary string in Table I. In the navigation task, the
first four actions are used. The NAO can move a distance of
dwalk left, right, ahead, or push when walking ahead. In the
stacking task, the NAO stands on the table edge and chooses
the latter four actions in Table I. To simplify the process
of finding and taking an object to the table edge, the NAO
chooses an object by requesting the human operator with an
“text-to-speech” command. Then, the NAO confirms there is
an object in front and tries to push it in two different poses,
standing or squatting.

TABLE I
ACTIONS OF THE NAO FOR THE TASKS

Binary ID Actions
000 walk (dwalk) left
001 walk (dwalk) ahead
011 walk (dwalk) right
010 push (dwalk) ahead
100 push (stand)
101 push (squat)
110 choose (object 1)
111 choose (object 2)

D. Movability

As defined in equation (2) and (3), movability is learned
automatically in a task whenever the robot has effective
contact with the objects, e.g., pushing them in various ways.
In our case, pushing the object o with the action a would
make it move a distance of dj , which is thresholded to be 1
or 0, meaning “moved” or “unmoved” respectively.

E. Action Filter
The action filter in equation (10) blocks those actions

which are predicted to have the “unmoved” effect on the
object. For example, pushing an unmovable object or pushing
a movable low object in a wrong pose.

F. Reward Function
After the action aj at the previous time step, the NAO

gets an immediate reward of r in the current time step. In
the navigation task, if its current distance to the destination
d is smaller than a threshold ddst, a final reward of 1000
is given. If its location change ∆d is less than dmove, it is
punished by −100. This is described by:

r =

 1000 if d < ddst
−100 if ∆d < dmove
0 otherwise

(14)

In the stacking task, if the distance from the NAO’s camera
to the object approximately equals hr2t, the distance from
the NAO’s camera to the table, a final reward of 1000 is
given. Whenever it asks for an object, it gets a punishment
of −100. Otherwise, r = 0. This is described in equation
(15):

r =

 1000 if |hr2f − hr2t| < hε
−100 if aj = choose (object)
0 otherwise

(15)

When each explore/exploit trial terminates, the rewards
obtained in this trial are summed up to be the accumulated
payoff :

payoff = Σ r (16)

G. Experimental setting
In both tasks, an experiment consists of alternated explore

and exploit trials. They use the same parameter setting of
XCS. For more details, please refer to [21]. The number of
steps in one trial is limited to the maximum of nstep = 10.

During the first 10 explore/exploit trials in the navigation
task, the unmovable box is put on the left side of the movable
one (see Fig. 2(b)). Then, the boxes are exchanged and the
remaining 10 trials are performed. In this task, the table
area is 0.75 m × 0.6 m, and dwalk = 0.15 m. The NAO can
start from anywhere on one side of the area aiming for the
destination which is 0.4 m away on the other side of the area.

In the stacking task, the camera height of the NAO in its
normal standing pose is known as hr2t = 0.55 m.

2292

TABLE II
XCS RULES LEARNED IN THE NAVIGATION TASK.

ID Condition Act. Pred. Error Fit. Size E. N
12 1#00#010 000 -33.6 29.7 0.29 2.5 2 3
14 1#1##### 000 24.3 71.7 0.32 5.6 11 5
30 #1100#00 000 -93.0 1.0 0.37 3.0 2 3
137 1#1##### 000 109.9 24.8 0.15 7.3 3 1
23 1000#### 001 12.5 54.8 0.31 3.7 3 3
24 10000### 001 -44.0 25.5 0.02 3.0 0 1
25 1011#### 001 10.0 1.0 0.01 1.0 0 1
36 #11#0010 001 -93.0 1.0 0.37 1.0 1 1
60 11#1#### 001 10.0 1.0 0.01 1.0 0 1
2 1####000 010 138.1 137.9 0.15 6.9 10 3
7 ###01100 010 850.0 75.0 0.37 1.0 2 2
9 ##0#10## 010 241.7 154.0 0.68 2.6 5 2

19 10#0#110 010 1000 1.0 0.59 3.3 4 3
39 1111#### 010 -93.0 1.0 0.37 1.0 1 1
45 1###001# 010 493.1 138.4 0.23 3.6 5 2
94 1###00#0 010 456.0 93.0 0.33 7.4 6 2
106 #00001#0 010 917.3 89.6 0.07 6.3 4 1
146 1#####00 010 672.1 163.0 0.14 8.7 3 1

5 ###01000 011 -94.0 0.5 0.30 2.5 2 2
21 100#1010 011 -33.6 29.7 0.17 2.5 2 3
26 #1#000#0 011 -111.9 9.5 0.37 1.5 2 2

H. Results

We compare the results of the standard XCS and the
affordance-based XCS in the navigation task, and we show
the affordances learned in both the navigation and the
stacking task.

1) XCS Rules: Table II lists a typical population of XCS
rules learned in one experiment. The rules with larger ID
were generated after the rules with smaller ID.

The meaning of the rules is according to equations (12)
and (13). Take rule 19 for example, when facing the object
“10#0” (high and probably a white box) which is in the area
“#110” (the middle part of the table, either left or right), if
the NAO takes the action “010” (push 0.15 m ahead), the
predicted reward will be 1000 (goal achieved), and the error
of this prediction is 1.0. This rule has a fitness of 0.59, and
the average action set size is 3.3. It has been activated for
4 times and there are 3 such rules with the same condition
and action.

In the first 10 trials, if the NAO faced the object “1000”
in the area “1000”, it was most likely to choose rule 9, 7 and
19 to push the movable box. In the second 10 trials, if the
NAO faced “1111” also in the area “1000”, it was inclined to
choose rule 14 and 137 to move 2 steps left to avoid pushing
the unmovable box.

2) Affordance-Based XCS versus Standard XCS: As men-
tioned in Section III-G, odd trials were always exploratory
while even trials were exploiting. The average payoff and the
average number of steps in each trial are shown in Figures
3 and 4. The result was averaged over 5 experiments.

In the first 10 trials, both affordance-based XCS and
standard XCS solved the problem since the 4th trial. This is
because it was not difficult for the NAO to find the two-step
solution to push the movable box. However, the differences
became obvious in the next 10 trials. Affordance-based XCS
succeeded in finding the way to the destination while the
standard XCS failed within 10 trials. Overly general rules

Fig. 3. Average payoff in the navigation task.

Fig. 4. Average number of steps in the navigation task.

were learned in the first 10 trials which suggested the NAO
to push the object to the old place as before. It would take
some time for XCS to recover from these incorrect rules.
But the affordance-based approach did not suffer from this
problem, because it filtered undesired action effects in every
step of action selection. Therefore, it had a better chance to
achieve the optimal performance than the traditional XCS.

3) Learned Movability: Table III shows the learned mov-
ability. Similar to the XCS rules, the triplets with larger
ID were generated later. Actually, we can find the relations
between the triplets in Table III and the rules in Table II. For
example, triplet 1 in Table III is related to rule 39 in Table
II. They suggest that action “010” did not move the object
“1111” and a reward of −93 is predicted.

In the navigation task, Table III filtered unwanted actions
by triplets 1, 2 and 4 which means that the NAO pushed the
unmovable box or part of it with no effect. In contrast, triplet
3 means that the NAO pushed the movable box ahead. As a
result, the NAO avoided the unmovable box and pushed the
movable one to arrive at the destination.

In the stacking task, the NAO first failed to move the low
object in a normal standing pose, as illustrated by triplet 5.

2293

TABLE III
MOVABILITY LEARNED IN THE NAVIGATION AND THE STACKING TASK.

ID Object Action Effect
1 1100 010 0
2 1111 010 0
3 1000 010 1
4 1011 010 0
5 0000 100 0
6 0000 101 1
7 1000 100 1

The NAO tried to squat first and then push the low object
to move it. Finally, the NAO succeeded to learn the policy
to choose the high box rather than the low foam due to the
reinforcement.

IV. CONCLUSIONS

In this paper, we proposed an architecture to learn and use
affordances on-line in goal-directed tasks. We have integrated
task learning, affordance learning and affordance use in a
general reinforcement framework, in which affordance in-
formation can be obtained automatically during on-line task
learning. Our approach has proved to speed up a navigation
task and is robust to environmental changes while a standard
action selection methods failed to solve the problem within
a limited number of steps. In the future, we will further
investigate this architecture to learn and use affordances to
improve the robot’s performance in more complex tasks,
without discretizing state and action representations.

REFERENCES

[1] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi. Cognitive
developmental robotics as a new paradigm for the design of humanoid
robots. Robotics and Autonomous Systems, 37(2):185–193, 2001.

[2] M. R. Dogar, M. Cakmak, E. Ugur, and E. Sahin. From primitive
behaviors to goal-directed behavior using affordances. In Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2007, pages
729–734, 2007.

[3] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning
about objects through action - initial steps towards artificial cognition.
In Proceedings of IEEE International Conference on Robotics and
Automation, volume 3, pages 3140 – 3145 vol.3, Sept. 2003.

[4] J. J. Gibson. The ecological approach to visual perception. Houghton
Mifflin, 1979.

[5] J. H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. A Bradford Book, Apr. 1992.

[6] T. Kovacs. Strength or Accuracy: Credit Assignment in Learning
Classifier Systems. Springer, London, UK, 2004.

[7] P. L. Lanzi. Learning classifier systems: then and now. Evolutionary
Intelligence, 1:63–82, 2008.

[8] P. L. Lanzi and D. Loiacono. XCSlib: The XCS classifier system
library, 2009.

[9] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[10] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learn-
ing object affordances: From sensory–motor coordination to imitation.
IEEE Transactions on Robotics, 24(1):15 –26, Feb. 2008.

[11] R. Murphy. Case studies of applying Gibson’s ecological approach to
mobile robots. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 29(1):105–111, 1999.

[12] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner. Learning
to perceive affordances in a framework of developmental embodied
cognition. In Proceedings of IEEE 6th International Conference on
Development and Learning, pages 110 –115, July 2007.

[13] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner. Perception
and developmental learning of affordances in autonomous robots. KI
2007: Advances in Artificial Intelligence, pages 235–250, 2007.

[14] B. Ridge, D. Skocaj, and A. Leonardis. Self-supervised cross-modal
online learning of basic object affordances for developmental robotic
systems. In Proceedings of 2010 IEEE International Conference on
Robotics and Automation (ICRA), pages 5047 –5054, May 2010.

[15] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk. To
afford or not to afford: A new formalization of affordances toward
affordance-based robot control. Adaptive Behavior, 15(4):447–472,
2007.

[16] J. Sinapov and A. Stoytchev. Learning and generalization of behavior-
grounded tool affordances. In Proceedings of the 6th International
Conference on Development and Learning, pages 19 –24,July 2007.

[17] M. Studley and L. Bull. X-TCS: accuracy-based learning classifier
system robotics. In The 2005 IEEE Congress on Evolutionary
Computation, volume 3, pages 2099–2106, Sept. 2005.

[18] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[19] E. Ugur, E. Oztop, and E. Sahin. Goal emulation and planning in
perceptual space using learned affordances. Robotics and Autonomous
Systems, 59(7–8):580–595, 2011.

[20] E. Ugur and E. Sahin. Traversability: A case study for learning and
perceiving affordances in robots. Adaptive Behavior, 18(3-4):258–284,
2010.

[21] C. Wang, P. Wiggers, K. Hindriks, and C. Jonker. Learning classifier
system on a humanoid NAO robot in dynamic environments. In 12th
International Conference on Control, Automation, Robotics and Vision,
pages 94–99, 2012.

[22] C. Watkins and P. Dayan. Q-learning. Machine learning, 8(3):279–
292, 1992.

[23] C. Wei, J. Xu, C. Wang, P. Wiggers, and K. V. Hindriks. An approach
to navigation for the humanoid robot NAO in domestic environments.
In 14th Towards Autonomous Robotic Systems (TAROS-13), Oxford,
U.K., In press 2013. Springer Berlin Heidelberg.

[24] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3(2):149–175, June 1995.

[25] T. Yamashiro and K. Ito. Comparative study of affordance-based
navigation and model-based navigation: Experimental analysis of
learning ability of mobile robot that taps objects with a stick for
navigation. In 2011 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 372–377, Dec. 2011.

2294

