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Abstract— Controlling haptic devices in an optimal way is
crucial to achieve both, best performance and most realistic
haptic feedback. The present article investigates control design
of a single degree of freedom haptic device that is interacting
with a human operator and rendering a virtual wall affected by
time delay. To this end, it suggests different optimization criteria
based on the step response of the haptic system. These criteria
cover fundamental requirements for efficiently using haptic
devices, particularly fast settling and minimum overshoot. For
each criterion an optimal path and point inside the stable region
of the virtual wall parameters is derived. These optima depend
mainly on the system mass, sampling time and time delay. This
approach is supported by experiments on two devices, a Falcon
haptic device and a DLR/KUKA Light-Weight Robot arm.

I. INTRODUCTION

The purpose of force-feedback haptic devices is to display

forces from virtual or real environments to human operators.

Stability is a fundamental requirement for such devices, as

violating stability may result in uncontrollable oscillations

that make any reasonable interaction impossible, or can even

harm the human operator. Thus, lots of research in this field

tackles the question of how to obtain stable control behavior

for haptic interaction.

One strategy uses passivity to obtain stable systems. Pas-

sivity has the appealing advantage that it guarantees stability

also if the environment is unknown. The most famous work

following this strategy in the Laplace domain is written by

Colgate and Schenkel [1]. They derived a passivity condition

for virtual environments such that energy can never be

extracted from the haptic system. Although passivity pro-

vides a comfortable means for obtaining stability, it has the

disadvantage of being conservative in terms of stability [1],

[2]. This means that there are parameter values that violate

the passivity condition but result in a stable system behavior,

possibly with even higher performance than achievable by

passivity.

Another well studied control approach is the time-domain

passivity controller introduced by Hannaford and Ryu [3],

which observes the energy generated by the haptic device.

As soon as energy is generated, a variable damper tries to

dissipate this amount of energy before the system becomes

unstable. This approach is less conservative compared to

passivity criteria in the Laplace domain. It was improved

with respect to various aspects, e.g. in [4], [5], [6]. Yet, the
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practical use of this approach reveals some problems, such

as imprecise energy observation and possibly delayed energy

dissipation, causing the haptic system to become active.

The theoretical stability region for haptic walls represented

by a virtual spring-damper system was first determined

numerically by Salcudean and Vlaar [7]. They considered

their haptic device as a simple mass actuated by a one

sample-step delayed force. For this system, they determined

the stability boundary inside a normalized parameter plane.

A more recent theoretical approach [8] analyzed stability

for haptic rendering comprising time-delay and a more

generic haptic device modeled as mass-damper system. In [9]

this approach was enhanced by including a linear model of

the human arm. That work derives stability boundaries for the

parameters of the virtual wall and analyzes the influence of

the human arm parameters. Although it clarifies for which

wall parameters the system is stable, it becomes not clear

what the optimal parameters for a specific task are. Before

investigating this issue, we postulate four common objectives

for an optimal haptic system behavior, which are congruent

with those of many fields other than haptics:

1) high stiffness range of the wall, such that various

environments can be rendered realistically, and that the

steady-state position error can be minimized,

2) fast settling, such that oscillations decline quickly,

3) minimum overshoot, such that the maximal wall pene-

tration is close to the steady-state one, and

4) robustness against parameter uncertainties, such that

the human operator influences the optimal behavior

only minimally.

In practice, parameter tuning for haptic interaction is often

performed directly on a haptic system, following the trial and

error approach. One reason for not using tuning rules is that

there are no such general rules for optimally parameterizing

the controller of a haptic device.

The present article finds optimal points based on the step

response of impedance-type haptic systems. At first, Sect. II

defines the considered haptic system. Then, Sect. III sum-

marizes previous stability analysis on which the introduced

approach is based. Sect. IV introduces optimization criteria

and presents the theoretical optimal curves and point. These

findings are supported by experiments in Sect. V. Sect. VI

summarizes the results and draws important conclusions for

the optimal control of haptic rendering.
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Fig. 1. Linear model of a human arm interacting with a single degree
of freedom haptic device, which is rendering a discrete-time spring-damper
system, [9].

II. SYSTEM DESCRIPTION

The control design in this article is based on the stabil-

ity analysis of [9]. Thus, the present article considers the

same haptic system composed of a human arm holding a

haptic device (see Fig. 1). The device is colliding against

a virtual wall, which is represented by a discrete-time

spring-damper system (discrete-time PD-controller), with

stiffness K, damping B, and constant sampling rate 1/T .

The unilateral constraint of virtual walls is not considered.

The haptic device is modeled by a single degree of

freedom mass mL, which is damped by a viscous damper bL.

Nonlinear effects like static friction or quantization and

saturation of sensors and actuators are not taken into account.

Also the structural compliance the actuator dynamics of the

device are neglected, such that a force will be assumed to

be applied constantly over one sampling period T .

Each real haptic system is affected by time delay, orig-

inating from different sources, such as communication or

force computation. The overall time delay td is considered

as sum of all delays in the haptic system, and is assumed

being constant and positive td ≥ 0. It has a transfer function

of e−tds, or in the discrete-time domain z−d, where d is the

delay factor given by d = td/T .

The human arm is modeled by a single degree of freedom

mass-spring-damper system with mass mH , stiffness kH and

viscous damping bH . Although it is an approximation, this

linear model of the real human has been applied in many

theoretical studies [10]. It is further assumed that the human

operator holds the haptic device in such a way that the human

arm mass mH is directly coupled to the device inertia mL.

Thus, the physical parameters of the haptic device and the

human can be combined to

m = mL +mH

b = bL + bH
k = kH ,

(1)

where m, b and k are the effective physical mass, damping

and stiffness respectively.

Under these assumptions the control loop shown in Fig. 2

results. It contains continuous-time (physical stiffness, damp-

ing and mass) and discrete-time (virtual environment) el-

ements. The input F is an external force, comprising the
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Fig. 2. Control loop of a haptic system employed for stability and passivity
analysis, [9].

intended force of the human operator and possible collisions

of the haptic device with the real environment. This force is

assumed being constant during a sampling period T .

The possible range for the physical system parameters is

wide. They depend not only on the haptic device, but also on

the direction of movement and on the current arm and device

configuration. Thus, for the calculations in this article only

limits for the parameter ranges of the fractions k/m and b/m
will be assumed, and not specific parameter values of the

human and the device. These limits were derived in [9]. To

account for inaccuracies in determining the parameters of the

human and the haptic device, a range extended by roughly

50% will be assumed in the remainder of this article, i.e.

0 ≤ k/m < 1000 s−2

0 ≤ b/m < 20 s−1.
(2)

Thus, the majority of realistic values of human arm and hap-

tic device parameters should be covered by these parameter

ranges.

III. SUMMARY OF THE STABILITY ANALYSIS

The present work is based on a previous stability analysis

of the considered system [9]. This analysis yielded stable

regions and their boundaries for the discrete-time parameters

of the virtual environment. This section summarizes the

approach and its main results.

The discrete- and continuous-time elements of the sys-

tem in Fig. 2 must be transformed into a common time

domain before analyzing stability becomes possible. For the

continuous-time element an exact discrete-time equivalent

can be calculated, which has at the sampling instances the

same behavior as the original system. This equivalent makes

possible to determine the closed-loop discrete-time transfer

function from force to position Gx(z) = x(z)/F (z).
It turns out that this transfer function can be significantly

simplified by certain normalization rules for the system

parameters (see Table I). By applying these rules, the two

parameters m and T drop out of the characteristic equation of

the transfer function. The resulting normalized characteristic

equation only depends on the five remaining dimensionless

parameters. The dependency on m and T is implicit.

A stability check of the investigated system can now be

performed easily by computing the zeros of the normalized

characteristic equation. The system is stable if all zeros are

located inside the unit circle in the plane of the complex vari-

able z. Analytical solutions for stability could be determined
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TABLE I

NORMALIZATION RULES AND THE RESULTING DIMENSIONLESS

PARAMETERS, [9].

parameter variable dimensionless variable

sampling period T —

mass m —

virtual stiffness K α := KT 2 /m

virtual damping B β := BT /m

physical stiffness k γ := kT 2 /m

physical damping b δ := bT /m

delay td d := td / T

by applying the Jury stability criterion [11]. Yet, for delays

larger than zero the resulting expressions quickly become

very complex. Thus, in [9] an iterative method is applied to

numerically determine points on the stability boundaries.

Fig. 3 shows the resulting boundaries for fixed delays

d = 0 (left) and d = 1 (right) in the parameter plane of

the virtual environment. It also shows the influence of the

normalized physical damping γ and stiffness δ inside their

possible parameter ranges. These ranges for the normalized

parameters can be determined by combining the limits of the

parameter fractions (2) with the widely accepted lower limit

for the sampling rate of 1 kHz [12], such that for the ranges

results 0 ≤ γ < 0.001 and 0 ≤ δ < 0.02.

These boundaries reveal that the effect of physical damp-

ing δ and stiffness γ on stability is rather small. Nevertheless,

the presence of these parameters slightly increases the stable

region. Moreover, the mass m is linearly scaling the normal-

ized axes and thus the boundaries. Therefore, in the end all

three parameters of the human arm contribute to stability.

IV. OPTIMAL RENDERING

The previous section presented stability boundaries for the

investigated haptic system. These boundaries show for which

parameters the system is stable, and thus define the maximal

stiffness range, resulting as α ∈ [−γ, αmax] (see Tables III

and IV for the numerical values for d = 0 and d = 1).

Although a wide stiffness range is desirable in many cases,

it says nothing about the system behavior itself. Thus, the

important question of how to set the parameters of a haptic

system in an optimal way remains unanswered.

A common way of optimizing system behavior is placing

the system poles inside certain regions in the plane of the

complex variable [13]. More interesting than pole-based

criteria for the practical use are criteria that consider the

system response of haptic systems directly. Such response

does not only depend on the system poles, but rather on the

whole transfer function.

This section introduces several optimization criteria that

take the step response of the haptic system into account.

Applying a unit step input is equivalent to shifting the

equilibrium position of the mass m by △x = 1/(k + K).
Based on the step response, this section further determines

optimal points inside the stable region. As they are given

in normalized parameters, they can be transformed into
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Fig. 3. Stability boundaries in the (α, β)-plane for d = 0 (left) and
d = 1 (right), and for the limits of the parameter range γ ∈ [0, 0.001] and
δ ∈ [0, 0.02]. The effect of γ on the stability boundary is not visible in this
scale.

their non-normalized counterparts by the normalization rules

specified in Table I, i.e.

Kopt = αopt ·m/T 2

Bopt = βopt ·m/T.
(3)

Note that this relation implies a linear dependency on the

total mass m, and a linear respectively quadratic one on the

sampling rate 1/T . The first subsection introduces energy-

based criteria, whereas the second subsection analyzes the

overshoot of the haptic system.

A. Fast Energy Dissipation

One important control design objective for haptic systems

is optimizing the settling behavior. To this end, the following

lines introduce a criterion that considers how fast energy of

the step response is declining.

In general, the considered system can store energy only

by the moving mass m and the two springs k and K. Under

the assumption that the potential energy of the discrete-time

spring K has the same equation as an ideal continuous-time

spring, the total system energy is constituted by the sum of

potential and kinetic energy,

E(t) = 1

2
(K + k) (x(t)− x(∞))

2
+ 1

2
mẋ2(t). (4)

The continuous-time step response of the investigated

haptic system describes the movements x(t) of the mass m
caused by a unit step of the input force F (t) = 1N for t ≥ 0.

This input step is introducing energy E(0) into the system

and pushing the final position to x(∞) = x(0)+F/(k+K).
As the mass m is not moving before the unit step acts, the

initial energy E(0) is given only by the energy stored in the

two springs, i.e.

E(0) =
1

2
(k +K) (x(0)− x(∞))

2
=

1

2

F 2

k +K
. (5)

To achieve fast settling behavior, this energy should be

dissipated as fast as possible. This design goal can be

formulated as linear quadratic (LQ) optimal control problem

with a cost function given by the time-integral of the system

energy. In order to obtain cost values that are independent

of the two system parameters m and T , this integral is
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Fig. 4. The optimal curves for the four analyzed criteria for d = 0, γ = 0 and δ = 0. Contour lines in the upper subfigures illustrate how the costs are
changing. The lower subfigures show the development of costs when moving along the optimal curve.

normalized by the initial energy E(0) and the sampling

period T , resulting in

CE0 :=
1

T · E(0)

∫

E(t) dt. (6)

Motivated by time scaling of standard optimization crite-

ria [11], two more criteria are introduced with cost functions,

CE1 :=
1

T 2 · E(0)

∫

E(t)t dt (7)

CE2 :=
1

T 3 · E(0)

∫

E(t)t2 dt (8)

where the time t is starting with the input step. They result

in optima with faster energy dissipation than CE0, since late

energy is penalized more severely. In comparison, criteria

that only consider the square error of the position (e.g. [11],

[13]), i.e. only the potential energy stored in the springs,

result in optimal curves with faster movements and slower

dissipation of the total energy than the suggested criteria. On

the other hand, if only kinetic energy is considered, optima

with extremely slow movements result.

The optimal curves inside the stable parameter region in

the (α, β)-plane can be determined by a method composed of

two calculation steps. First, the stable region is gridded and

for each grid point the costs CEx are determined. Second, for

each grid value of α the optimal β is refined iteratively until a

predefined accuracy is reached. The resulting optimal curves

for the three cost functions CEx are shown in Fig. 4(a)-(c)

for the case d = 0, γ = 0 and δ = 0.

The upper subfigures show the optimal curves inside the

normalized (α, β)-plane as black lines, whereas the lower

subfigures show the progress of the cost values along these

optimal curves. This progress is also illustrated by contour

lines, where every second line means a doubling of costs. It

appears that for each criterion there is an absolute minimum

for the costs, which is marked by a green plus. Their

numerical values are listed in Tables III and IV for d = 0
and d = 1 respectively. These tables also show that, similar
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Fig. 5. Continuous-time step responses for optimum points for d = 0,
γ = 0 and δ = 0. The markers are placed at the points of maximum
overshoot, in case it occurs inside the shown timescale. Left: Optima of the
three energy-based criteria CEx. Right: Optima of the three energy-based
criteria without overshoot CEx∧OV.

to the stability boundaries, the influence of γ and δ on the

optima is rather small.

The step responses of the haptic system are shown for each

of the three optima on the left plot of Fig. 5 exemplarily for

d = 0. For CE2 fastest settling and lowest overshoot are

achieved, but with the drawback of foregoing approximately

25% of virtual stiffness compared to CE0 Therefore, if fast

settling is of higher importance than maximizing virtual

stiffness, then the most favorable of the three criteria for

control design is the optimum point of CE2.

Note that for the three cost functions CEx the continuous-

time position signal x(t) was taken into account. The

discrete-time position would result in wrong optima with a

more than 3% too high virtual stiffness α for d = 0. Yet, for

higher delays this error becomes much smaller due to the

slower dynamics of the haptic system in the optimal points,

such that for d = 1 the error is already less than 1%.

B. Minimum Overshoot

Another fundamental control design objective is minimiz-

ing the overshoot. The overshoot is constituted by the po-

sition difference between the steady-state and the maximum

position of the step response. The cost function is defined as

4508



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

β

γ=0  δ=0  d=0

 

 

unstable

stable

no overshoot

C
OV

C
E0

C
E1

C
E2

Fig. 6. Optimal curves for delay d = 0.

the relative overshoot

COV :=
(

max(x(t))− x(∞)
)

/ x(∞). (9)

For this overshoot criterion an optimal curve can be de-

termined as for the energy-based criteria (see Fig. 4(d)).

This curve reveals that in a subregion of the stable region

the step response has no overshoot COV = 0. Outside of

that subregion the resulting optimal curve is discontinuous.

The numerical values of the point with no overshoot and

maximum virtual stiffness α (i.e. the rightmost point of the

subregion with no overshoot) are listed in Tables III and IV,

labeled with COV.

Yet, for practical applications of higher relevance are

optimal points, which have as primary criterion minimum

overshoot, and as side criterion fast energy dissipation. Such

optima would result in faster settling behavior, while not

causing any overshoot. To this end, Fig. 6 shows the three

optimal curves for fast energy dissipation in the same plot

as the region without overshoot. The optimal points being

sought are the rightmost points on the optimal curves, which

just do not cause an overshoot (i.e. the right intersection

points of the green curve with the three optimal curves).

Their values are also listed in Tables III and IV denoted

as CEx∧OV. The step responses of these optima are shown

in the right plot of Fig. 5 exemplarily for d = 0. Note that in

order to determine the overshoot COV of the position of the

physical mass m correctly, the continuous-time position x(t)
must be taken into account. Only if the maximum position

falls just on a sampling instance, it can be determined by

the discrete-time signal. Otherwise the real overshoot would

always be higher than the one detected.

V. EXPERIMENTS

This section describes experiments performed on two

haptic devices, the Novint Falcon and the DLR/KUKA Light-

Weight Robot (LWR). Two different kinds of experiments

were performed on each device. The first was used to

determine stability boundaries of the devices, while the

second resulted optimal curves inside the stable regions.

Fig. 7. The configuration of the Falcon (left) and the LWR (right) when
performing the experiments. The direction of the movements are indicated
by the red arrows.

TABLE II

TOTAL MOVING MASS RESPECTIVELY INERTIA IN THE EXPERIMENTS.

no human with human

Falcon 0.22 kg 0.3 kg

LWR 0.062 kg m2 0.065 kg m2

These optimal curves followed the optimization criteria (6)–

(9). Both kinds of experiments were performed with and

without a human holding the devices. The human operator

was told to hold each devices in a comfortable manner with

medium force. The determined inertia m of each experiment

is shown in Table II.

For the first kind of experiments a bidirectional wall

consisting of a discrete-time spring K and damper B was

implemented in one degree of freedom, as indicated in Fig. 7.

For each value in a predefined set of reasonable B, a limit

stable virtual stiffness K was determined by a two steps

method, similar to the one used for the theoretical curves in

the previous section. For the second set of experiments, the

data acquired in the previous kind of experiments was used

to predefine stable parameter ranges. Inside these ranges the

same gridding method was used, but this time to determine

optimal B with minimum costs CEx and COV.

A. Falcon

The Falcon is a low-cost commercial haptic device with

parallel kinematics (Fig. 7, left). The handle is linked to

the base through three symmetrically arranged arms. The

device was connected via USB to a standard Linux computer

without a real-time operating system. The execution speed

of the controller program was paused each sampling step to

obtain an average sampling rate of 1 kHz. The overall average

delay was 6ms.

Fig. 8(a) shows the stability boundaries and the optimal

curves and points. Due to noise, mostly present at high virtual

stiffness and damping there are small peaks in both, stability

boundaries and cost functions. The experiments performed

with a human operator show a considerable increase of the

stable region towards higher K and B, and similarly a scale

of the optimal curves. Following the theoretical analysis

this increase originates mainly from the additional mass

introduced by the human operator [9]. The human also shifts

the starting point of the stability boundary at B = 0 towards

around K ≈ 6.000N/m. This shift can be explained by the

additional physical damping introduced by the human arm.
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Fig. 8. The experimental stability boundaries and optimal curves for the
two sets of experiments (left: no human; right: with human) for the Falcon
device (top) and LWR (bottom). The pluses indicate zero overshoot. The
other three markers indicate the optimal points for the criteria CEx.

B. Light-Weight Robot

The LWR is a seven degree of freedom robot arm equipped

with torque sensors in every joint [14], [15]. Though it

weighs only 14 kg, it is able to handle payloads of 7 kg

throughout the whole dynamic range. The experiments were

performed on the fifth robot joint (see Fig. 7, right). The

environment was implemented using a real-time computer

connected to the robot via sercos interface. The sampling

rate was constant at 1 kHz and a round trip delay of 5ms

was determined, which has its origin in the specific hardware

and software infrastructure used.

The curved shape of the theoretical stability boundaries

could not be determined by this experimental configuration

(see Fig. 8(b)). As the robot should not be stressed too much

by the stability tests, the experiments were stopped at a

virtual damping of 15N m s/rad. A possible reason why the

curved shape did not occur, may be due to elasticity in the

mounting of the LWR. Nevertheless, the optimal curves were

determined. Compared to the Falcon device, the human effect

is not as strong in the experimental results. This is probably

because the human has a relatively lower contribution to the

total moving inertia m in this experiment (see Table II).

VI. CONCLUSIONS

The present article suggests optimization criteria based on

the step response of haptic systems and determines optimal

curves and points for each of these criteria. They cover two

fundamental requirements for haptic systems, i.e. fast settling

and minimum overshoot. Similar to the stability boundaries,

the influence of the human on the determined optimal curves

and points is mainly constituted by the arm mass, since they

depend linearly on the total system mass. In comparison,

these optima are nearly not affected by the human stiffness

and damping using realistic parameter ranges.

One important outcome of the performed analyses is that

the stable regions are not flat with respect to the considered

cost functions. Rather, there is an optimal virtual damping for

each virtual stiffness, depending on the optimization criterion

chosen. It is remarkable that a further increase of the virtual

damping above the optimal curves does not speed up energy

dissipation with regard to the step response. A main reason

therefore may be that a higher damping factor slows down

movements and causes the system to take longer to reach its

steady-state position.

It is interesting to note that there is also a certain

optimal virtual stiffness, with its corresponding damping

value. Above that optimal stiffness value the system behaves

worse with respect to the optimization criteria. Therefore, the

virtual wall parameters cannot be chosen arbitrarily inside

the stable region, without highly affecting system behavior.

Rather, they have to be carefully tuned, by weighting up the

system behavior and the desired stiffness that is demanded

for example by a virtual reality simulation. This finding

contrasts classical approaches that aim at purely maximizing

stable virtual stiffness, e.g. [2], [16].

The step response, which constitutes the basis for the

optimality analysis presented in this article, corresponds to

the response of the haptic system to a shift of the equilibrium

position of the mass. Thus, on the other hand, the specific

optimal curves and points presented in this article do not

hold for haptic devices colliding with a certain initial velocity

against a virtual wall. To find optimal solutions for that case,

the impulse response of the analyzed haptic system must

be considered. The difference between the two is that the

impulse response corresponds to the case with initial kinetic

energy, whereas the step response implies initial potential

energy. Preliminary investigations indicate that the optimal

curves for the impulse response look quite different to those

derived in the present article. But nevertheless, above general

conclusions and relations still hold for the impulse response.

Finally, it is revealing to apply the passivity condition [1]

to these optimal points. It can be easily checked that they

violate passivity (see also [9]). This finding does not only

emphasizes the fact that passivity is conservative for stable

control of haptic systems, but rather suggests a detrimental

property that passivity prevents haptic systems of being

controlled in an optimal way.

The devices on which the experiments were performed

were affected by quite long time delay of several sampling

steps. It would be interesting for the future work to ana-

lyze the optimization criteria also on haptic devices with

very short delays. Possibly, nonlinear effects, which were

neglected in the present approach, will have a predominant

effect on stability.
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TABLE III

OPTIMAL VALUES FOR THE CRITERIA FOR DELAY d = 0.

criterion given parameters resulting optimum

γ δ αopt βopt cost

αmax

0.000 0.00 0.6863 0.8283 –

0.001 0.00 0.6858 0.8280 –

0.000 0.02 0.7132 0.8244 –

0.001 0.02 0.7127 0.8241 –

COV

0.000 0.00 0.222 0.97 0.000
0.001 0.00 0.221 0.97 0.000
0.000 0.02 0.230 0.97 0.000
0.001 0.02 0.230 0.97 0.000

CE0

0.000 0.00 0.3220 0.9800 2.583
0.001 0.00 0.3212 0.9798 2.582
0.000 0.02 0.3341 0.9816 2.536
0.001 0.02 0.3333 0.9815 2.535

CE1

0.000 0.00 0.2816 0.8419 4.143
0.001 0.00 0.2808 0.8417 4.140
0.000 0.02 0.2922 0.8415 4.002
0.001 0.02 0.2914 0.8413 3.999

CE2

0.000 0.00 0.2474 0.7445 10.80
0.001 0.00 0.2466 0.7443 10.79
0.000 0.02 0.2569 0.7427 10.26
0.001 0.02 0.2561 0.7425 10.25

CE0∧OV

0.000 0.00 0.211 0.791 2.877
0.001 0.00 0.210 0.791 2.876
0.000 0.02 0.219 0.788 2.827
0.001 0.02 0.218 0.788 2.826

CE1∧OV

0.000 0.00 0.189 0.673 5.136
0.001 0.00 0.189 0.673 5.132
0.000 0.02 0.197 0.670 4.962
0.001 0.02 0.196 0.670 4.959

CE2∧OV

0.000 0.00 0.165 0.591 15.51
0.001 0.00 0.164 0.590 15.49
0.000 0.02 0.171 0.586 14.77
0.001 0.02 0.170 0.586 14.75
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