
Robust Landmark Selection for Mobile Robot Navigation

Maximilian Beinhofer Jörg Müller Andreas Krause Wolfram Burgard

Abstract— Precise navigation is a key capability of au-
tonomous mobile robots and required for many tasks including
transportation or docking. To guarantee a robust and accu-
rate localization and navigation performance, many practical
approaches rely on observations of artificial landmarks. This
raises the question of where to place the landmarks along the
desired trajectory of the robot. In this paper, we present a
novel approach to landmark selection, which aims at selecting
the minimal set of landmarks that bounds the uncertainty about
the deviation of the robot from its desired trajectory. At the
same time the selected landmark sets are robust against the
fact that a certain number of landmarks can be obscured from
view during operation. Our algorithm is highly efficient due
to a linearization of the whole navigation cycle and employs
submodular optimization, for which strong formal bounds on
the approximation quality are known. In extensive experiments,
also carried out with a real robot, we demonstrate that our
approach outperforms several other methods and that it enables
robust autonomous robot navigation in practice.

I. INTRODUCTION

For autonomous mobile robots, being able to make distinc-

tive observations of the environment is essential to ensure a

reliable navigation performance. Due to possible ambiguities

and dynamic changes, the features which are present in the

environment are often insufficient for the desired accuracy

in navigation. Therefore, especially in industry and logis-

tics, many practical approaches rely on the use of artificial

landmarks to achieve a robust navigation performance [8],

[20]. Depending on their type, the landmarks or their place-

ment can be expensive. Additionally, the computing power

required during navigation increases with the size of the

landmark set. On the other hand, landmarks can wear out

over time or be obstructed by dynamic objects. Therefore,

an ideal landmark placement minimizes their number, while

nevertheless allowing for a certain redundancy.

In this paper, we consider the problem of selecting a

set of landmarks that is suitable for robust navigation of

mobile robots that repeatedly execute the same trajectory.

Our approach to landmark selection builds on Bayesian A-

optimal design [15], bounding the trace of the covariance

of the robot’s deviation throughout the whole trajectory.

Thereby, our method effectively bounds the uncertainty about

the deviation of the robot from its desired trajectory for

all dimensions of the state space. Our approach aims at

minimizing the number of landmarks needed, while still

satisfying the bound on the trace even if any k of the
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Fig. 1. The KARIS robot in the experimental environment. The two laser
scanners on opposite corners of the robot provide a 360◦ field of view. The
three stripes of reflective tape on the walls can be detected in the laser scans
and are part of the robust landmark set selected by our approach.

selected landmarks are not observable. By choosing k, the

user can trade off the number of landmarks needed against

the robustness to missing landmarks.

Our approach has several characteristics that make it

especially useful in practice: The robustness against missing

landmarks allows the application of smooth fallback pro-

cedures: If the robot does not observe a placed landmark

for some time, it can send a signal to the maintenance

personnel and can still travel safely back to its parking

position, leaving the workspace unobstructed for others. For

landmark placement, we take into account the desired trajec-

tory of the robot as well as its motion model and its sensor

model, making the selected landmarks especially useful for

the considered navigation task and the specific robot. As

we linearize the model of the entire navigation cycle, our

approach is highly efficient and therefore can be utilized even

in large scale scenarios. We represent the space of possible

landmark locations by a discrete set. Therefore, in contrast

to many continuous optimization procedures, our approach

does not rely on continuity assumptions for the space of

possible landmark locations and is easily adjustable to new

scenarios. To achieve the desired robustness in the landmark

placement, our approach uses a conservative approximation

of the landmark visibility that does only depend on the

desired bound specified by the user. Also, we formulate

our objective function in a way that allows us to utilize

techniques from submodular function optimization, which

come with formal approximation guarantees.

II. RELATED WORK

In the context of robot navigation, there exist several

approaches to landmark selection for a robot with on-

board sensors and to the similar problem of sensor location
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selection for tracking a blind robot. For example, Sala et

al. [16] cover an environment with landmarks so that at every

position, at least n ≥ 1 landmarks are observable. Erickson

and LaValle [9] derive bounds on the maximum number of

deterministically observable color-coded landmarks needed

to cover a polygonal region. For a fixed set of possible robot

positions, Jourdan and Roy [12] place sensors on the walls

of buildings to minimize the average position error bound.

Lerner et al. [14] select a landmark set that minimizes the

weighted trace of the covariance resulting from one single

observation of the landmarks. In contrast to these methods,

our approach considers the full specification of the robot and

its navigation task for landmark selection.

Similar to our approach, Vitus and Tomlin [18] place

landmarks along a given trajectory. They use the a-posteriori

covariance of the most likely run of the robot to approximate

the a-priori covariance. Van den Berg et al. [5] consider

a similar linearized system as we do, and choose one out

of a set of randomly sampled sensor locations for a single

sensor without observability constraints. In our previous

work [3], we placed landmarks to minimize the entropy of

the joint distribution of all robot states, which is a sub-

modular optimization problem. In that approach, we applied

Monte-Carlo simulations for landmark placement, which is

computationally more demanding than the linearization we

apply in this paper. In a second previous approach [2],

we considered an efficient linearized system with a less

strict observability constraint than the one presented in this

paper. Therefore, that approach is not robust against missing

landmarks and is highly non-submodular. Also, both our

previous approaches do not consider the case of missing

landmarks. See Sec. VI-B for a comparison to these methods.

To our knowledge, there exists no other approach in the

landmark selection literature that takes into account the

specification of the navigation task and ensures robustness

against missing landmarks.

Also on the topic of submodular function optimization,

there exists a large body of literature [7], [11], [13], [17],

ranging from applications like Gaussian Process model fitting

for ship hull inspection [11] to selecting beneficial grasping

poses for robotic manipulators [17].

III. BACKGROUND AND PROBLEM STATEMENT

We consider the problem of landmark placement for

a mobile robot that repeatedly and autonomously travels

along the same trajectory T . Hereby, the trajectory T =(
(x⋆

1,u
⋆
1), . . . , (x

⋆
T ,u

⋆
T )

)
is a time-discrete sequence speci-

fying the desired robot state x
⋆
t and control command u

⋆
t at

each time step t.

For localization, the robot has a map of the positions and

the unique identities of the landmarks A = {L1, . . . , Ln}
in the area surrounding the trajectory and is equipped with

a sensor to observe them. The robot takes noisy observa-

tions z
A
t of the landmarks inside its actual field of view ac-

cording to a sensor model zAt = h(xt, obs(xt,A),nt). Here,

obs(xt,A) specifies the subset of the landmarks in A which

are observable from the state xt and nt ∼ N (0, Nt) is the

sensor noise, which we assume to be Gaussian distributed.

After taking an observation and updating its state estimate

in a localization algorithm, the robot executes a control com-

mand ut, propagating its state xt according to a noisy motion

model xt+1 = f(xt,ut,mt+1), where mt+1 ∼ N (0,Mt+1)
is the motion noise. The control commands are selected by

a linear-quadratic regulator (LQR) feedback controller [6].

At each time step t, the LQR controller selects the control

command ut that minimizes the expected quadratic error

term

E

[ T∑

ℓ=t

(
∆x

T
ℓ C∆xℓ +∆u

T
ℓ D∆uℓ

) ]
, (1)

where ∆xℓ = xℓ − x
⋆
ℓ , ∆uℓ = uℓ − u

⋆
ℓ , and C and D are

positive definite weight matrices.

In this closed-loop system for autonomous navigation, we

consider a discrete set of possible landmark locations V , and

aim to select the subset A ⊆ V of landmarks for placement

that are most beneficial for the navigation task. We measure

the quality of a landmark selection A by considering the a-

priori probability distribution of the deviation xt−x
⋆
t of the

robot from its desired trajectory

p(xt−x
⋆
t | obs(x1:t,A)) =∫ ∫

p(xt − x
⋆
t | u1:t−1, z1:t, obs(x1:t,A))

· p(u1:t−1, z1:t | obs(x1:t,A)) du1:t−1 dz1:t . (2)

Note that this distribution is independent of the actual values

of the controls u1:t−1 and observations z1:t that are not

yet known at the moment of landmark placement. The a-

priori distribution depends, however, on the number and the

positions of the landmarks obs(x1:t,A) that are observable

during operation on the trajectory.

In this work, we consider Bayesian A-optimal design [15],

i.e., we aim to select landmarks so that the trace of the

estimated covariance matrix ŜA
t of p(xt − x

⋆
t | obs(x1:t,A))

stays below a user-defined threshold for every time step t ∈
[1, T ]. Thereby, we effectively bound the uncertainty about

the deviation of the robot from its desired trajectory for all

dimensions of the state space.

To guarantee safe operation even if up to k landmarks are

missing, we aim at finding

A⋆ = argmin
A⊆V

|A| (3)

subject to

max
B⊆A,|B|≤k

tr
(
Ŝ
A\B
t

)
≤ ǫt ∀t ∈ [1, T ] . (4)

This is the smallest set of landmarks A⋆ that ensures a

bounded trace of the estimator of the a-priori covariance.

In particular, we ensure that the trace of the estimator Ŝ
A\B
t

of the a-priori covariance stays below ǫt for all t ∈ [1, T ],
even if any subset B ⊆ A⋆ with |B| ≤ k is not observable

during operation. Here, ǫt is a user-defined bound that can

be set for each part of the trajectory individually. This allows
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the user to specify lower ǫt values for critical parts of the

trajectory in which a path execution with higher accuracy is

required.

To efficiently place landmarks in this framework, two

important issues have to be addressed: handling the combina-

torial structure of the problem stated in Eqs. (3) and (4) and

estimating the a-priori covariance ŜA
t . Our efficient solution

to the combinatorial optimization problem is presented in

the next section. In general, ŜA
t cannot be estimated in

closed form, so one solution that is often applied is to

approximate the high-dimensional integral defined in Eq. (2)

via Monte-Carlo simulation. Monte-Carlo simulation can

deal, for example, with non-linearities due to discontinuities

in the observability obs(xt,A) of landmarks depending on

the actual state of the robot, but it is computationally

demanding. In contrast to that, using the conservative approx-

imation ôbs(t,A) of the landmark observability defined in

the next section, we can estimate ŜA
t efficiently by applying

the linearization proposed by van den Berg et al. [4].

Their approach linearizes the model of the whole navigation

system, consisting of observation, localization, control, and

motion, resulting in a Gaussian a-priori distribution

p̂
(
xt − x

⋆
t | ôbs(1 : t,A)

)
∼ N (0, ŜA

t ) (5)

that can be calculated efficiently via standard matrix ma-

nipulations. This method has been applied successfully in

practice [2], [5]. For completeness, it is described in detail

in the appendix.

IV. EFFICIENT AND ROBUST LANDMARK SELECTION

We now describe our approach towards landmark place-

ment. We first propose how to address the challenge of un-

certain landmark observability. We then reformulate Eq. (4)

such that it becomes amenable to efficient optimization.

A. Observability Constraints

For most types of landmark detection sensors (e.g., cam-

eras, RFID readers, and laser range finders), the ability to

observe a landmark L changes with the state xt of the

robot due to a limited sensor range or obstacles concealing

the landmark. However, in our approach it is necessary to

evaluate the quality of L at a stage at which the only

knowledge about xt is the condition on its covariance defined

in Eq. (4), which the final landmark set shall guarantee.

Therefore, we define the approximate observabil-

ity ôbs(t,A) in a conservative way: We consider a landmark

as observable at time t only if it is observable with a

probability of at least (1 − δ) according to every a-priori

distribution for which the bound in Eq. (4) holds. Fig. 2

shows an example of ôbs(t,A) for a two dimensional robot

state xt = [xt, yt]. Note that in the experiments, we consider

a three dimensional robot state [xt, yt, θt].

We calculate ôbs(t,A) using the following insights: As

stated in Eq. (5), all estimated a-priori distributions are

Gaussians. The (1 − δ)-confidence region of a Gaussian is

an ellipsoid whose principal axes have the lengths c
√

λt,i.

Here, λt,i are the eigenvalues of the covariance ŜA
t and

●

x
⋆
t

c
√

λt,1
c
√

λt,2

c
√
ǫt≥c

√

λt,1+c
√

λt,2

L

Fig. 2. Desired robot state x
⋆

t
and landmark L. All (1 − δ) confidence

regions of estimated covariances satisfying the bound in Eq. (4) (one
example shown in light blue) are inside the circular region with radius c

√
ǫt

(dark blue). According to ôbs(t, L), L is visible at time t if it is inside the
sensor range of every pose in the dark blue circle and the shaded area is
free of obstacles that would block the robot’s line of sight to the landmark.

c = c(δ, dim(xt)) is a constant that depends only on the

probability δ and the dimensionality of the state space. If

the bound in Eq. (4) holds, it holds that tr(ŜA
t ) ≤ ǫt

and therefore λt,i ≤ ǫt for all eigenvalues λt,i of Ŝt.

Consequently, at time t, at least (1 − δ) of the probability

mass of every Gaussian that satisfies Eq. (4) lies inside the

sphere K with radius c
√
ǫt and center x⋆

t . If a landmark L

is observable from within every state inside K, we define it

to be in ôbs(t,A), resulting in

ôbs(t,A) = {L | L ∈ obs(xt,A) ∀xt ∈ K} . (6)

Having defined ôbs(t,A), we can evaluate ŜA
t . Therefore,

we can also evaluate the bound in Eq. (4) for a given set A
by iterating over all subsets of A with |A|−k elements. Note

that in the definition of ôbs(t,A) we assume that the bound

in (4) holds for A. Hence, if the bound holds, then also the

approximation of the observability, which was applied in the

evaluation of the bound, is conservative.

B. Objective Function

Being able of evaluate Eq. (4) for a given landmark

set A makes it possible to run a brute force search on

the power set P(V) of all possible landmark positions to

find the optimal landmark set satisfying Eq. (4). However,

as P(V) grows exponentially with the number of possible

landmark locations |V|, we apply an efficient approximation

instead. We now show, building on techniques of Krause et

al. [13], how the overall problem defined in Eqs. (3) and (4)

can be reformulated in a way that admits highly efficient

approximation algorithms.

As a first step, we define the reduction of the trace of

the a-priori covariance induced by the observations of the

landmarks in A as

Ft(A) = tr(Ŝ∅

t )− tr(ŜA
t ) (7)

for every time step t. We truncate this function at the target

value tr(Ŝ∅

t )− ǫt, leading to the function

Ft(ǫt,A) = min
(
Ft(A), tr(Ŝ∅

t )− ǫt

)
. (8)
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Note that this function achieves its maximum value if and

only if the target condition tr(ŜA
t ) ≤ ǫt is satisfied. We

take into account the robustness against up to k missing

landmarks in the objective function by considering the av-

erage over Ft(ǫt,A \ B) for all possible subsets of missing

landmarks B:

Ft(k, ǫt,A) =
1

∑k

i=0

(
|A|
i

)
∑

B⊆A,|B|≤k

Ft(ǫt,A \ B) . (9)

Similar to the function in Eq. (8), this function achieves its

maximum value tr(Ŝ∅

t )−ǫt if and only if the target condition

under k-robustness tr(Ŝ
A\B
t ) ≤ ǫt is satisfied for all B. We

finally consider multiple time steps or a whole trajectory by

using the same averaging procedure, leading to

F (k, ǫ1:T ,A) =
1

T

T∑

t=1

Ft(k, ǫt,A) . (10)

Due to its construction, this function takes on its maximum

c =
1

T

T∑

t=1

tr(Ŝ∅

t )− ǫt (11)

if and only if the condition defined in Eq. (4) is satisfied.

With this, we can re-formulate the problem definition stated

in Eqs. (3) and (4) in terms of F as

A⋆ = argmin
A⊆V

|A| s.t. F (k, ǫ1:T ,A) = c . (12)

C. Landmark Selection Algorithm

As problems of the type defined in Eq. (12) are typically

NP-hard (see Sec. V for details), we apply a greedy itera-

tive landmark selection algorithm that finds an approximate

solution to (12). The procedure is stated in Algorithm 1.

Algorithm 1 Iterative approximation algorithm

Input: V , k, ǫ1:T
Output: A
A = ∅

while F (k, ǫ1:T ,A) < c do

L⋆ = argmaxL∈V F (k, ǫ1:T ,A ∪ {L})
A = A ∪ {L⋆}

end while

return A

The computation of the argmax operator in the algorithm

evaluates each landmark L individually, which makes it well-

suited for parallel computing.

Note that due to the usage of ôbs in the evaluation

of F , which is a conservative approximation of the observ-

ability only if F (k, ǫ1:T ,A) = c, stopping the algorithm

before F (k, ǫ1:T ,A) reaches c leads to landmark sets that

can perform arbitrarily badly. However, for the final output

set A, the observability, and therefore also the condition in

Eq. (4), is approximated conservatively.

D. Practical Considerations

Our algorithm can be used to guarantee a collision-free

path execution with high confidence. For that, we use the

same insights as for the approximation of the observability.

We choose the bound ǫt on the trace such that the nearest

static obstacle is at least c
√
ǫt away from the desired state x

⋆
t

for every t. To avoid collisions with moving obstacles

without breaking the bound on the trace, the robot needs

to stop if its path is blocked and wait until the moving

obstacle left the corridor with width c
√
ǫt around the desired

trajectory.

If the robot has to repeatedly execute the same round-

trip task, our method can be adjusted to guarantee bounded

traces even for a continuous long-term operation of the robot.

By setting ǫT to at most the minimum eigenvalue of Ŝ1,

our algorithm produces a landmark set A that guarantees

that ŜT is governed by Ŝ1, which enables a continuous safe

operation.

V. APPROXIMATION BOUND

In this section, we provide a theoretical motivation for

our approximation algorithm, which rests on the concept of

submodularity, a natural diminishing returns property. For

landmark sets, submodularity states that adding a landmark

to an already large set of landmarks C results in a smaller

increase in the objective function than adding the same

landmark to a subset of C. Concretely, a function F is called

submodular if for all A ⊆ C ⊆ V and all landmarks L ∈ V\C
F (C ∪ {L})− F (C) ≤ F (A ∪ {L})− F (A) . (13)

For submodular functions, problems of the type defined in

Eq. (12) are called submodular set cover problems, and

are NP-hard in general [19]. However, for these problems,

Wolsey [19] showed that for greedy solutions Agreedy, such

as those produced by Algorithm 1, it holds that

|Agreedy| ≤ |A⋆|
(
1 + logmax

L∈V
F ({L})

)
, (14)

and under natural complexity-theoretic assumptions, no ef-

ficient algorithm can provide better solutions. Hence, such

greedy solutions Agreedy are near-optimal for submodular set

cover problems.

Therefore, the key question is whether (or under which

conditions) our objective function F (k, ǫ1:T ,A) for land-

mark placement is monotonic and submodular. First, note

that the function Ft(A) (Eq. (7)), from which our objective

function is constructed, can be rearranged to be the sum

of the variance reductions in the diagonal elements of the

covariance. Das and Kempe [7] show that variance reduction,

such as the summands of Ft(A), under certain technical

conditions on the covariance matrices is usually monotonic

and submodular. In this case, F (k, ǫ1:T ,A) is monotonic

and submodular as well, since these properties are preserved

under nonnegative linear combinations and truncation [10],

[13]. These observations theoretically justify our efficient

approximation Algorithm 1. Similar techniques have been

successfully used in other domains [11], [13], [17].
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Fig. 3. A sweeping (left) and a surveillance task (right) with the 99% a-
priori confidence ellipses (blue) when observing all landmarks (red triangles)
in the sets that our algorithm selected for at most k = 0 (top), 1 (middle), or
2 (bottom) missing landmarks. The k-subsets of selected landmarks whose
absence resulted in the highest simulated maximum trace are shown in pink.
The red dots indicate the sets of possible landmark locations V .

VI. EXPERIMENTAL RESULTS

We evaluated our approach in extensive experiments both

with a simulated differential drive robot and with a real

holonomic drive robot. For these robots, the state xt of the

robot can be described by its pose [xt, yt, θt] in the 2d-

plane. We assume that the robot is equipped with a landmark

detection sensor with a circular field of view and 5m sensor

range. In the different experiments, the sensor can observe

either landmarks placed on the walls or landmarks placed on

the ceiling of the environment, resulting in different sets V
of possible landmark locations. In all experiments, we set

the allowed maximum trace ǫt to 0.05 for all t and the

probability δ in the observability constraint to 1%.

A. Evaluation of Robustness

In the first set of simulation experiments, we evaluated the

robustness of our landmark sets against missing landmarks.

To this end, we considered the two trajectories shown in

Fig. 3, corresponding to a sweeping pattern in an obstacle-

free environment and a surveillance task in an environment

with obstacles. For the sweeping trajectory, our approach se-

lected 10, 15, and 19 landmarks assuming at most zero, one,

and two missing landmarks, respectively. For the surveillance

task, our approach selected 12, 20, and 27 landmarks. To

evaluate the effects of the linear approximation applied

in the landmark selection method, we conducted Monte-
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Fig. 4. Means and 95% error bars resulting from simulations on ten
randomly sampled trajectories. For k = 1, the results for the simulations in
which the one most crucial landmark was missing are shown. The horizontal
red line indicates ǫt = 0.05. The maximum deviation is stated in m.

Carlo simulations using the real, non-linear models. In the

simulations, we estimated the a-priori traces trMC(St) using

the empirical distributions gained from the deviations xt−x
⋆
t

observed in 1000 simulated executions of the trajectory in

each scenario. For all six landmark configurations and all

possible combinations of k missing landmarks, the Monte-

Carlo simulations resulted in traces that were below the

bound ǫt = 0.05 for all time steps t. The maximum 0.0439 of

the traces in simulation occurred in the surveillance scenario

for k = 0.

B. Comparison to Other Approaches

In the second set of simulation experiments, we compared

the landmark sets selected by our approach to the ones

selected by our previous approaches [2], [3], and by two

straightforward heuristics. The Deviation method [2] aims

at minimizing the translational deviation of the robot from

its trajectory in a linearized system. Entropy [3] minimizes

the entropy of the joint distribution of x1:T using Monte-

Carlo simulations instead of linearized models. The Grid

and Random heuristics place a given number of landmarks

in the area observable by the robot, Grid in a regular grid

pattern and Random at randomly sampled locations. For

comparison, we adjusted all methods to select the same num-

bers of landmarks. To get scenario-independent results, we

considered ten randomly chosen trajectories, each connecting

six randomly sampled goal points in an area of 15m×15m.

On these trajectories, our approach selected landmark sets of

average sizes 5.7 and 9.3 for k = 0 and k = 1, respectively.

We used Monte-Carlo simulations to evaluate the maximum

trace per trajectory, the 99% quantile of the maximum trans-

lational deviation per trajectory, and the information gain of

the joint distribution of x1:T . The results can be seen in

Fig. 4. The Entropy approach results in the best information

gain values, but yields suboptimal traces and deviations. This

is probably due to the fact that minimizing the entropy can

lead to flat but elongated covariance ellipses, which have high
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Fig. 5. Pick-and-place trajectory and landmark sets selected by our
approach for a constant ǫt of 0.05 for k = 0 (left) and k = 1 (right),
and for k = 0 and ǫt = 0.03 for the time steps in which the robot is inside
the pick-up and deposit zones (gray areas) and 0.05 outside (middle). The
trajectory goes from the start to goal 1, then to goal 2, and back to the start.

trace and deviation values. Paired sample t-tests showed that

our approach results in significantly smaller maximum traces

and 99% quantiles of the maximum translational deviations

than Entropy, Grid, and Random on a 5% level for k = 0
as well as k = 1. For zero missing landmarks, the Deviation

method produces maximum traces and deviations similar to

our approach, but seems to behave unreliably in the case of

a missing landmark. For k = 1, when the most influential

landmark is hidden, it results in maximum traces and devia-

tions that are significantly higher than the ones produced by

our approach and even the Entropy approach on a 5% level.

This is probably due to the fact that the placement algorithm

employed in the Deviation approach aims at maximizing

the distance between two consecutive landmarks, which is

especially unfavorable in the case of missing landmarks,

while our approach uses more sophisticated techniques from

submodular function optimization to explicitly take missing

landmarks into account.

Running multi-threaded on an Intel R© CoreTM i7 2.8GHz,

the runtime of the Entropy approach for computing a single

landmark set was 8:10 h on average, while due to the

linearization in landmark placement, single-threaded imple-

mentations of our approach and Deviation took 28:27min

and 27:22min, respectively.

C. Landmark Selection for Changing Bounds

To demonstrate the ability of our approach to select

landmarks for values of ǫt which vary along the trajectory,

we applied our approach on the pick-and-place trajectory

shown in Fig. 5. As can be seen in the figure, a higher

demand for accuracy in the pick-up and deposit zones and

the robustness against a missing landmark in this case lead

to the same number of landmarks, but to different locations.

D. Long Term Evaluation on a Real Robot

Finally, we evaluated the landmark sets selected by our

approach also on the real robot shown in Fig. 1. The

robot is equipped with Mecanum wheels for omnidirectional

motion and with two SICK S300 laser scanners mounted

on opposite corners of the robot, providing a 360◦ field

of view. The lasers can detect reflective markers, whose

unique landmark IDs we calculated using a nearest neighbor

heuristic. In a training run, we calibrated the motion noise

and sensor noise of this specific robot, and used the calibrated

parameters in the linearized models for landmark placement.
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Fig. 6. Landmark sets (red triangles), desired robot path (blue) and actual
robot paths (red) for k = 0 (left), and k = 1 (right). For k = 0, also
the linearized 99% a-priori confidence regions are shown (light blue). For
k = 1, each landmark was hidden during 10 runs of the robot. The landmark
whose absence resulted in the largest deviations is marked in pink. The
trajectory goes from the start to goal 1, back to the start, then to goal 2 and
again back to the start.

The trajectory and the landmarks that our approach selected

to ensure continuous long term operation (see Sec. IV-D)

are shown in Fig. 6. To evaluate the selected landmark sets,

the robot continuously executed the trajectory several times.

Observing only the landmarks selected for k = 0, the robot

autonomously executed 20 runs of the trajectory, continu-

ously operating for one hour. The a-priori traces calculated

from the deviations measured by a Motion Analysis motion

capture system with ten digital Raptor-E cameras stayed

considerably below 0.05, with a maximum of 0.0087 occur-

ring close to goal 1. The measured maximum translational

deviation of the robot from the desired trajectory was 0.36m.

For k = 1, the robot executed 50 runs of the trajectory during

2.5 hours of continuous operation. As illustrated in the video

attachment, during operation each landmark was hidden from

the robot during ten runs. The a-priori traces calculated

from the whole dataset and also the ones calculated from

each block of ten runs in which one landmark was hidden

stayed below 0.05. The maximum value, 0.0444, occurred

close to the lower left corner of the trajectory when the

landmark marked in Fig. 6 was hidden. During the whole

experiment, the measured maximum translational deviation

from the desired trajectory was 0.45m.

VII. CONCLUSIONS

In this paper, we presented a novel method to trajectory-

dependent landmark placement, which is robust against miss-

ing landmarks. It keeps the trace of the a-priori covariances

of all robot states below a user-defined threshold, effectively

bounding the uncertainty in all dimensions of the state space.

The linearized objective function in our method takes into

account the full specification of the navigation task and can

be evaluated efficiently. We showed how our problem can

be reformulated in a way that enables the use of submod-

ular optimization techniques, which enjoy strong theoretical

guarantees. Extensive experiments, also with a real robot,

demonstrate that the robustness against missing landmarks

resulting from our approach is guaranteed in practice, even in
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continuous long term operation. The experiments also show

that our approach outperforms several other approaches to

landmark selection.

APPENDIX

The Linearized System for A-Priori Covariance Estimation

In our landmark selection algorithm, we apply the efficient

method for the estimation of the a-priori covariance ŜA
t

introduced by van den Berg et al. [4], which is restated here

for completeness. This method assumes that the observabil-

ity of landmarks ôbs(t,A) is independent of the concrete

state xt of the robot. It uses first-order Taylor approximations

to linearize the sensor model h(xt, ôbs(t,A),nt) and the

motion model f(xt,ut,mt) around the desired state x
⋆
t and

the desired control u⋆
t . The resulting linearized functions are

xt ≈ f(x⋆
t−1,u

⋆
t−1,0) +At(xt−1 − x

⋆
t−1) (15)

+Bt(ut−1 − u
⋆
t−1) + Vt mt ,

zt ≈ h(x⋆
t , ôbs(t,A),0) +Ht(xt − x

⋆
t ) +Wt nt , (16)

with the Jacobians

At =
∂f

∂x
(x⋆

t−1,u
⋆
t−1,0), Bt =

∂f

∂u
(x⋆

t−1,u
⋆
t−1,0),

Vt =
∂f

∂m
(x⋆

t−1,u
⋆
t−1,0), (17)

Ht =
∂h

∂x
(x⋆

t , ôbs(t,A),0), Wt =
∂h

∂n
(x⋆

t , ôbs(t,A),0) .

In this linearized system, the Kalman filter (KF) is the

minimum mean-square error estimator [1] for the a-posteriori

distribution p(xt−x
⋆
t | u1:t−1, z1:t, ôbs(1 : t,A)), estimating

it as a Gaussian N (µt−x
⋆
t , P̂

A
t ). In contrast to the extended

Kalman filter (EKF) [1], we linearize around the a-priori

known desired states instead of the means in the filter.

Therefore, the Kalman gains Kt in the KF can be computed

a-priori, without knowledge of the values of u1:t−1 and z1:t.

Applied on the mean µt in the Kalman filter, the LQR

controller selects control commands ut according to

ut − u
⋆
t = Lt(µt − x

⋆
t ) , (18)

where Lt is the feedback matrix that minimizes the quadratic

error defined in Eq. (1). With the Jacobians defined in

Eq. (17), also the feedback matrices Lt can be calculated

a-priori via the recursive formula ET = C,

Lt = −(BT
t+1Et+1Bt+1 +D)−1BT

t+1Et+1At+1 , (19)

Et = C +AT
t+1Et+1At+1 +AT

t+1Et+1Bt+1Lt .

As can be seen in Eq. (18), the LQR controller linearly

connects the Kalman filter estimate µt with the true robot

state xt via the selected control ut. This fact allowed

van den Berg et al. [4] to prove that in the linear navigation

system defined above, the joint a-priori distribution of the

deviations of xt and µt from x
⋆
t is a Gaussian

[
xt − x

⋆
t

µt − x
⋆
t

]
∼ N (

[
0
0

]
, R̂A

t =

[
ŜA
t Cov(xt, µt)

Cov(xt, µt)
T ÛA

t

]
),

whose covariance R̂A
t can be computed recursively by

R̂A
1 =

[
P̂A
1 0
0 0

]
, R̂A

t = FtR̂
A
t−1F

T
t +Gt

[
Mt 0
0 Nt

]
GT

t ,

with

Ft =

[
At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

]
, (20)

Gt =

[
Vt 0

KtHtVt KtWt

]
. (21)

This recursive scheme can be computed independently of the

actual values ut and zt. It efficiently estimates the a-priori

covariance ŜA
t of the deviation as the upper left block of R̂A

t .
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